JPS5864342A - High hardness sintered body for tool and its manufacture - Google Patents

High hardness sintered body for tool and its manufacture

Info

Publication number
JPS5864342A
JPS5864342A JP56162781A JP16278181A JPS5864342A JP S5864342 A JPS5864342 A JP S5864342A JP 56162781 A JP56162781 A JP 56162781A JP 16278181 A JP16278181 A JP 16278181A JP S5864342 A JPS5864342 A JP S5864342A
Authority
JP
Japan
Prior art keywords
sintered body
powder
iron group
pressure
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56162781A
Other languages
Japanese (ja)
Inventor
Katsuhiro Mitsusaka
三坂 勝弘
Shuji Yatsu
矢津 修示
Tetsuo Nakai
哲男 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56162781A priority Critical patent/JPS5864342A/en
Publication of JPS5864342A publication Critical patent/JPS5864342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high hardness sintered body for a tool with superior wear resistance and high toughness by sintering a mixture consisting of high pressure phase type boron nitride, an iron group metal, Al and Cu in a prescribed ratio at a prescribed temp. under a prescribed pressure. CONSTITUTION:Powder of high pressure phase type boron nitride which is cubic system boron nitride is mixed with powder of >=1 kind of iron group metal or powder of a compound of the metal, Al powder and Cu powder. This mixture is die-pressed and sintered at >=900 deg.C under >=20 kb pressure to obtain a sintered body composed of 75-95vol% high pressure phase type boron nitride and the balance alloy consisting of 25-90wt% iron group metal, 5-50wt% Al and 5-45% Cu.

Description

【発明の詳細な説明】 立方晶型窒化硼素(C!ubic Boron N1t
ride、以下Chillと略す)はダイヤモンドに次
ぐ高硬度の物質であり、超高圧高温下で合成される。現
切削用途にはCBN f Co  などで結合した焼結
体が一部に使用されている。このCBN焼結体は切削工
具として使用し九場合、特に断続切削が存在する場合、
初期の段階で工具の刃先が欠損するといった欠点があっ
た。本発明は、このような欠点上解消し友高靭性を有す
るとともに耐摩耗性の優れ九新しいOBN焼結体、に関
するものである。
[Detailed description of the invention] Cubic boron nitride (C!ubic Boron N1t)
ride (hereinafter abbreviated as chill) is a material with the second highest hardness after diamond, and is synthesized under ultra-high pressure and high temperature. Sintered bodies bonded with CBN f Co or the like are currently used in some cutting applications. When this CBN sintered body is used as a cutting tool, especially when there is interrupted cutting,
The drawback was that the cutting edge of the tool would break off in the early stages. The present invention overcomes these drawbacks and relates to a new OBN sintered body that has high toughness and excellent wear resistance.

OBNは前記し九如く、高硬度であり、耐熱性、耐摩耗
性に優れ友物質である。このOBNのみ【焼結する試み
は種々なされているが、これには例えば特公昭59−8
9411号公報に記載されテイル如く、約70 Kk以
上、1?00を以上の超高圧高温下で焼結する必要があ
る。現状の超高圧高温装置ではこのような高圧高温条件
を発生させることはできるが、工業的規模に懺置會大型
化した場合、高圧高温発生部の耐用回数が制約され、実
用的でないol九OBMのみの焼結体は硬度は高いが、
工具として使用した場合の靭性が劣る。この為にOBM
に適当な結合材を加えることによってこのような欠点を
改良することが考えられる。
As mentioned above, OBN has high hardness, excellent heat resistance and abrasion resistance, and is a useful material. Various attempts have been made to sinter only this OBN.
As described in the No. 9411 publication, it is necessary to sinter at an ultra-high pressure and high temperature of about 70 Kk or more and 1?00 Kk or more. Current ultra-high-pressure, high-temperature equipment can generate such high-pressure and high-temperature conditions, but if the installation is scaled up to an industrial scale, the number of service cycles of the high-pressure and high-temperature generation part will be limited, making it impractical to use OBM. Although the sintered body of chisel has high hardness,
Poor toughness when used as a tool. For this purpose OBM
It is conceivable to improve these drawbacks by adding a suitable binder to the material.

会知の方法の一つは金属結合材を用いる方法であり、市
販のOBM i金属co  などで結合した焼結体がそ
の例である。
One of the well-known methods is a method using a metal bonding material, an example of which is a sintered body bonded with commercially available OBM i metal co.

このCo  f結合材として用いた焼結体は前述した如
く靭性が低い。この原因tys<るため、CO結合材の
OBN焼結体についてI線で組成を調査し九〇その結果
焼結体中には01M以外にa(。
The sintered body used as the Cof binder has low toughness as described above. In order to determine the cause of this, the composition of the OBN sintered body of the CO binder was investigated using the I line.

のポライドが多量に検出され九が、金属COは観察され
ず、このOBM焼結体の結合材はCOのポライドである
ことが判明した。通常、これらのボッイドは硬度は高い
が非常にもろい物質である九め、このよう軽ボッイド結
合材の焼結体の靭性が低くなり九ものと推定された。本
発明者等は0Bli焼結体の靭性【上げるには、このポ
ライドの発生【抑制することにより、ポライドのみの結
合材でないようにすれば良いと考え、種々検討し九〇そ
の結果、結合材にOu  f添加することによ身、ポラ
イドの発生が抑制されることt見出した。たとえば、焼
結体中の結@44として鉄族金属のみt用いた場合1ま
、鉄族4JiJ4のkv増加しても、焼結中に液相が発
生【7、そのほとんどがポライドになってしまう。しか
し、鉄族金属に値にのOu  k含Mさせると、焼結中
に液相が発生してもポライドの発生tま抑制され、鉄族
金属とOu の固溶体合金るるいは化&物としで、焼結
体中に残ることがわかった。この現&C利用して不発明
者等は、晶1M性でかつi5+摩耗性の優れた0BI(
焼結IC1発すべく、研究金車ねた0その結果、CBN
 t−鉄族、Mとcu  とAtの合金で結合しfc焼
結体が従来にない高い靭性と耐4耗at有することがわ
かった。
A large amount of polide was detected, but no metal CO was observed, indicating that the binder of this OBM sintered body was CO polide. Normally, these voids are highly hard but extremely brittle substances, and it was estimated that the toughness of the sintered body of such a light void binder would be low. The present inventors thought that in order to increase the toughness of the 0Bli sintered body, it would be good to suppress the generation of polide so that it would not be the only binder, and conducted various studies.90 As a result, the binder It has been found that the addition of Ouf to the material suppresses the generation of polide. For example, when only iron group metals are used as cement in a sintered body, even if the kv of iron group 4JiJ4 increases, a liquid phase occurs during sintering [7, and most of it becomes polide. Put it away. However, if the iron group metal contains a certain amount of M, even if a liquid phase occurs during sintering, the generation of polide is suppressed, and the solid solution alloy of the iron group metal and O becomes a solid solution. It was found that it remained in the sintered body. Utilizing this current &C, non-inventors etc. have developed 0BI(
In order to produce sintered IC1, research gold car neta0 result, CBN
It was found that an FC sintered body bonded with an alloy of T-iron group, M, Cu, and At has unprecedentedly high toughness and 4 wear resistance.

本@明の焼結体が優れた性能を示すのは次のp日く推測
される0 本発明の焼結体においてはOBNはポライド相が存在し
たとしても極めて薄いものでるり、このポライド相を介
して鉄族金属とOu、ムtの合金で結合されているもの
と思われるが、OBN −ポライド−鉄族金属とOu、
ムtの合金間の接合強度は非常に高く、ポライド相が薄
い丸め、ポライド円で亀裂が発生することは少なく、さ
らに鉄族金属とCu、ムtの合金は靭性が高いためであ
ると考えられる。また本発明の焼結体はムttm加する
ことにより性能を向上させている。
It is estimated that the sintered body of this invention will exhibit excellent performance in the next p days. It is thought that the iron group metal and O are bonded through an alloy of Mut, but OBN-polide-iron group metal and O,
This is thought to be due to the fact that the bonding strength between Mut alloys is very high, the polide phase is thinly rounded, and cracks rarely occur in the polide circles, and alloys of iron group metals, Cu, and Mut have high toughness. It will be done. Further, the performance of the sintered body of the present invention is improved by adding Muttm.

これは、例えばWO−Co超硬合金の液相焼結の如く、
硬質粒子の結合相への溶解と再析出現象があれば結合相
と硬質粒子、又は硬質粒子相互の結合@度の高いものが
得られるが、本発明Ovl結体では結合材中にムtまた
はムを化合吻が存在することにより、これと類似した現
象が生じたからである。さらに、ムを扛OBMの一部と
反応し、硬度の高いムjBfiやムtMt生じ、これと
結合材が強固に接合することも1つの要因である。
This is, for example, liquid phase sintering of WO-Co cemented carbide.
If the hard particles are dissolved in the binder phase and the re-precipitation phenomenon occurs, a highly bonded bond between the binder phase and the hard particles or between the hard particles can be obtained. This is because a phenomenon similar to this occurred due to the presence of a proboscis that combines the mucous membranes. Furthermore, another factor is that the silica reacts with a part of the OBM to produce highly hard silicas Bfi and tMt, which are firmly bonded to the binder.

本発明の焼結体に石いる結合材は、特にOBNの含有量
が多い場合にその効力を発揮する。CBNの含糞率が高
い場合、相対的に結合材が減少し、結合材を混合したの
みでは均一に混ざらないが、本発明の結合材は焼結時に
液相を発生する丸め、均一に0Bliの周IIK浸入し
て、緻密な焼結体となるとともに、ポライドの発生が抑
制される友め、ポライドのみの結合相とならず、靭性は
低下しない。
The binding material in the sintered body of the present invention is especially effective when the OBN content is large. When the feces content of CBN is high, the binder is relatively reduced and the binder is not mixed uniformly by itself. IIK permeates around the periphery of the steel, forming a dense sintered body, suppressing the generation of polide, and preventing the formation of a binder phase consisting only of polide, so that the toughness does not deteriorate.

本発明焼結体においてOBMの含有量は体積で75q1
1以上95嘔以下がよいoCBNの含有量が体積で75
チ未満であると、相対的に結合材が多くなり耐摩耗性に
問題がある。また1、OBNの含有量が体積で95−を
越えると結合材が少なくなり靭性が低下する。(3u 
の含有量は結合材中の重量で5哄以上4S哄以下がよい
。Ou の含有量が5s未満ではポライドの形成を抑制
することができず、また45−會越えると結合材の強度
が低下する。鉄族金属の含有量は結合材中の重量で25
96以上9〇−以下がよい。鉄族金属の含有量が25チ
未満であると結合材の強度が低下し、90−・を越える
と相対的に結合材中のcuotV量が減少しポライドO
形FILt抑制することができない0ムを含有の効果が
現われるのは、ムtの含有量が結合材中の重量で5憾以
上の場合である。tた、ムtの含有量が結合材中の重量
で50%を越えると結合材の強度が低下するため好まし
くなく最適合金有量は5嘔〜50暢である◎ 鉄族金属、CU、ム1t−添加する方法は種々考えられ
る。たとえば焼結前のOBM粉末に金属粉末のit、6
るいは化合物粉末の形で添加する方法は最も簡単である
。また鉄族金属とCu  t−焼結時に焼結体外部から
溶融させて浸入させることもできる0 焼結体め製造に当ってはダイヤモンド合成に用いられる
超高圧高温装置を使用して圧力20xb 以上、温度?
00℃以上で朽う0特に好ましい焼結圧力、温度条件は
圧力50 Kb 〜70Kb、  温度1100℃〜1
500℃である。この圧力、温度条件の上限はいずれも
工業的規模の超高圧高温装置の実用的な運転条件の範囲
内で参る◎更に圧力、温度条件は第1図に示した高圧相
型窒化硼素の安定域内で行う必要がある0このような優
れた焼結体を切削工具として使用する場合、高硬度焼結
体は切れ刃となる部分にのみあれば貞く、この高硬度焼
結体を強度。
In the sintered body of the present invention, the content of OBM is 75q1 by volume.
1 or more and 95 or less is better oCBN content is 75 by volume
If it is less than 1, the amount of binder increases relatively and there is a problem in wear resistance. Further, 1. If the content of OBN exceeds 95- by volume, the amount of binder decreases and the toughness decreases. (3u
The content is preferably from 5 to 4S by weight in the binder. If the content of O is less than 5s, the formation of polide cannot be suppressed, and if it exceeds 45s, the strength of the binder will decrease. The content of iron group metals is 25% by weight in the binder.
96 or more and 90- or less is preferable. If the content of iron group metal is less than 25%, the strength of the binder will decrease, and if it exceeds 90%, the amount of cutV in the binder will be relatively reduced and the content of polide O will decrease.
The effect of containing Omu, which cannot suppress the form FILt, appears when the content of Mut in the binder is 5 or more by weight. In addition, if the content of Mut exceeds 50% by weight in the binder, the strength of the binder decreases, which is undesirable, and the optimum alloy content is 5 to 50%.◎ Iron group metals, CU, Mu Various methods can be considered for adding 1t. For example, if metal powder is added to OBM powder before sintering,
The simplest method is to add the compound in the form of powder. In addition, during sintering with iron group metals, it is also possible to melt and infiltrate the sintered body from the outside.In manufacturing the sintered body, ultra-high pressure and high temperature equipment used for diamond synthesis is used to create a sintered body under pressure of 20xb or higher. ,temperature?
Particularly preferred sintering pressure and temperature conditions are pressure 50 Kb ~ 70 Kb, temperature 1100°C ~ 1
The temperature is 500°C. The upper limits of these pressure and temperature conditions are all within the range of practical operating conditions for ultra-high pressure and high temperature equipment on an industrial scale. Furthermore, the pressure and temperature conditions are within the stability range of high-pressure phase type boron nitride shown in Figure 1. When using such an excellent sintered body as a cutting tool, it is best to use the high hardness sintered body only in the part that will become the cutting edge.

靭性、熱伝導に優れ九超硬合金に接合して使用すればそ
の性能を十分発揮することができる。
It has excellent toughness and thermal conductivity, and can fully demonstrate its performance when used in conjunction with 9 cemented carbide.

しかし超硬合金に直接接合すればOBMの含有1が多い
場合などは接合強度が弱く断続切削などには使用できな
いこともある0十分な接合強度を得るにはC!BN ’
i容積で70嘩未満含有し、残部がTi 、 Zr 、
 If の炭化物、窒化物、炭窃化物の1N%しくけこ
れらの混合物や相互7固体化合物からなる中間層を用い
て接合すればよい。
However, if it is directly bonded to cemented carbide, the bonding strength will be weak and it may not be possible to use it for interrupted cutting if the OBM content is high. 0 To obtain sufficient bonding strength, C! BN'
Contains less than 70 parts by volume, with the remainder being Ti, Zr,
If 1N% of carbides, nitrides, and carbonaceous compounds are used for bonding, an intermediate layer consisting of a mixture of these or a mutual solid compound may be used for bonding.

また高圧相型窒化硼素の別の形態であるウルツ鉱型窒化
硼素についても同様の検討全行い、OBNを用いえ場合
と類似した結果を得た。
Further, similar studies were conducted on wurtzite boron nitride, which is another form of high-pressure phase boron nitride, and results similar to those obtained when OBN was used were obtained.

〔実施例1] 平均粒度5μのOBN粒子を体積で80係含有[7、残
部が結合材粉末から亀る混合粉末全作成した。結合材粉
末は、ムを粉末、 Ou 粉末、 Ml粉末を重量で各
々20優、20チ、60係の割合で混合したものを真空
炉中で1000℃、50分間加熱処理後粉砕したものt
用いた。この081粒子と結合材粉末の混合粉末を外径
14a*内径10■のMQ 製の容器にWO−4嘔Oo
 組成の超硬合金(外径10■、高さ2−5 m )を
置いた稜a4f充填しえ。さらに仁の上に超硬合金(外
9110■、高さ2■)を置き、MO製O栓tして、こ
の容器全体tダイヤモンド合成に用いる超高圧装置に入
れた。圧力150 Km)に加圧し、次いで1500℃
まで加熱し、20分間保持した◎取り出し良焼結体をダ
イヤモンド砥石を用いて高硬度焼結体が現われるまで研
削加工し、さらにダイヤモンドペーストを用い一1iF
t磨しえ。光学顕微鏡で観察し良ところ気孔も表〈緻密
1に焼結体で6った◎ξの焼結体の生成物kXm回折に
より調査した結果、OBM、ムjM。
[Example 1] A mixed powder containing OBN particles with an average particle size of 5 μm by volume of 80% [7], the remainder being a binder powder was prepared. The binder powder is a mixture of Mu powder, Ou powder, and Ml powder in weight ratios of 20, 20, and 60, respectively, which is heated in a vacuum furnace at 1000°C for 50 minutes, and then pulverized.
Using. This mixed powder of 081 particles and binder powder was placed in a container made of MQ with an outer diameter of 14a*inner diameter of 10mm.
Fill the ridge A4F with cemented carbide of the composition (outer diameter 10 cm, height 2-5 m). Furthermore, a cemented carbide (outside: 9110 mm, height: 2 mm) was placed on top of the diamond, an MO O plug was placed on the container, and the entire container was placed in an ultra-high pressure apparatus used for diamond synthesis. Pressure: 150 Km) and then 1500°C
◎The good sintered body was taken out and ground using a diamond grindstone until a high hardness sintered body appeared, and further heated to -1iF using diamond paste.
T polish. Observation with an optical microscope revealed that the sintered body had good pores.As a result of examining the product of the sintered body with a density of 1 and 6◎ξ by kXm diffraction, it was OBM, MujM.

0u−111合金の他に微量のムtBs  および社 
のポライドが検出されえ。なお比較のため上記組成のう
ちOu  を抜いた焼結体も同条件で試作しX−1折に
より調べ九。
In addition to the 0u-111 alloy, trace amounts of MutBs and
of polide could be detected. For comparison, a sintered body with the above composition excluding O was also produced under the same conditions and examined by X-1 folding.

その結果OBM 、ムtN、ムl−Bmおよび多量のN
1  のがライドが観察され九が金属M1  は検出さ
れなかった。これら2種類の焼結体と市販の体積で90
優のOBN i含有し、CO′を主成分とする金属で結
合し九焼結体の切削用チップを作成し、外径100−で
円周に4ケ所の溝を有する8KD11ダイス鋼(H,o
61)k、切削速度100m/Im1切込み05−1送
りa5■/r・マ乾式でテストし九。
As a result, OBM, MutN, Mul-Bm and a large amount of N
1 was observed to be ridden, and 9 metal M1 was not detected. These two types of sintered bodies and the commercially available volume are 90
A 8KD11 die steel (H, o
61) k, Cutting speed 100m/Im1 Depth of cut 05-1 Feed a5/r・Ma Dry test 9.

その結果、Cu  t−含有した本発明焼結体は刃先が
欠損するまで20分間切削可能であったのに対し、Ou
  f含有しない焼結体及び市販の焼結体は双方共6分
切削した時点で刃先は欠損してしまつ九〇 〔実施例2〕 第1表に示した結合材粉末【作成した。これらの組成の
結合材粉末を実施例1と同様にして加熱処理を施し、粉
砕しえ。
As a result, the sintered body of the present invention containing Cu t- could be cut for 20 minutes until the cutting edge was damaged, whereas the sintered body containing Cu t-
The cutting edge of both the f-free sintered body and the commercially available sintered body broke after 6 minutes of cutting.Example 2 The binder powder shown in Table 1 was prepared. The binder powders having these compositions were heat treated and pulverized in the same manner as in Example 1.

この結合材粉末と平均粒度5sの0Bli粉末と【混合
して第2表の組成の混合粉末を作成した。
This binder powder was mixed with 0Bli powder having an average particle size of 5s to prepare a mixed powder having the composition shown in Table 2.

喪だしllo、 G、 IC,Mij本発明焼結体でな
い。
It is not a sintered body of the present invention.

実施例1と同様にして、勤製容器KWO−4僑COS硬
合金を置き、その上に完勝と超硬合金を置いて輩O製の
栓をし、超高圧高温装置を用りて50g K加圧L、次
りでIJOOCまで加熱し、20分間保持し友C 次にこれらの焼結体【切削し、超硬合金のスローアウェ
イチップの一角にロク付は後、加工して切削チップを作
成し九。切削性能を評価する丸め、まず正面フライス盤
を用いて1枚刃で断続切削を行なう九。被削材は熱処理
され九外径I Q OmoHBo62のBED 11ダ
イス鋼である◎切削速度111200肩/分、切込み1
5■とじ、送9速度tan y■/刃で5@切削し、次
にa12冑/刃で5同、その後a1?4靭で5同と、願
次厳しい条件に上けてぃき、焼結体の欠損状mを調べた
。なお比較の丸め市販の体積饅で約90−のOBI f
含有し% oQ  を主成分とし友金属で結合した焼結
体のチップも作成しテストしえ0その結果を第2表に示
す。また、外41100xgDIKD 11 f切削速
度100 m/’s+w切込みα2■、送りIIL1■
/rev  乾式で切削し、工具逃げ面摩耗中がα2雪
に達するまでの切削可能時間も第2表に示す。
In the same manner as in Example 1, a container made of KWO-4 COS hard alloy was placed, a cemented carbide was placed on top of it, a stopper made of O was put on, and a 50 g K Apply pressure L, then heat to IJOOC, hold for 20 minutes, and then cut these sintered bodies and attach a lock to one corner of a cemented carbide indexable tip. Create nine. For rounding to evaluate cutting performance, first perform interrupted cutting with a single blade using a face milling machine. The workpiece material is heat-treated BED 11 die steel with an outside diameter of 9 IQ OmoHBo62 ◎ Cutting speed 111200 shoulder/min, depth of cut 1
5■ Stitching, 5@ cutting with feed speed 9 speed tan y■/blade, then 5 same with A12 blade/blade, then 5 same with A1-4 toughness, and then increase the tough conditions and bake. The defect shape m of the body was examined. For comparison, a commercially available volumetric steamed rice cake has an OBI f of approximately 90-
A chip of a sintered body containing % oQ as the main component and bonded with a friendly metal was also prepared and tested.The results are shown in Table 2. Also, outside 41100xg DIKD 11 f cutting speed 100 m/'s + w depth of cut α2■, feed IIL1■
/rev Dry cutting is performed and the machining time until the tool flank wear reaches α2 snow is also shown in Table 2.

〔実施例3〕 粒度1μ以下の嬌撃技法によって合成されたウルツ鉱証
窒化硼素粉末を用い、実施例2で使用した結合材粉末口
とウルツ鉱型窒化fs素粉末90体Itjt唾、結合材
粉末10体積憾の割合に混合した。
[Example 3] Using wurtzite type boron nitride powder synthesized by the impact technique with a particle size of 1 μ or less, the binder powder used in Example 2 and 90 wurtzite type nitride fs raw powders were combined. The powder was mixed in a proportion of 10 volumes.

MO製の容器に、この粉末を実施例1と同じ構成で充填
した後、超高圧、高温装at用いて焼結した。焼結体の
硬FIK#′iビッカース硬度で3900であった。
This powder was filled into an MO container with the same configuration as in Example 1, and then sintered using an ultra-high pressure and high temperature apparatus. The hardness FIK#'i Vickers hardness of the sintered body was 3900.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明焼結体の製造条件を説明する為のもので
高圧相型窒化硼素の圧力一温度相図上における熱力学的
な安定領域【示したもので6る0 代理人  内 1)  明 代理人  萩 原 亮 一 温度じC) 昭和57年1月7日 特許庁長官 島田春樹殿 1、事件の表示 昭和56年特許願第162781号 2、発明の名称 工具用高硬度焼結体及びその製造方法 3、補正をする者 事件との関係 住 所  大阪市東区北浜5丁目15番地氏 名 (’
213)  住友電気工業株式会社(名  称) 代表者  亀  井  正  夫 4、代理人 5、補正命令の日付  自発補正 6、補正によシ増加する発明の藪  な し。 Z補正の対象 (1)明細書の「特許請求の範囲」の項a補正の内容 (1)明細書第1〜2頁の特許請求の範囲全別紙の如く
補正する。 特許請求の範囲 (1)高圧相型窒化硼素を体積で75チ以上95チ以下
含有し、残部が鉄族金属、kl、 Cu の合金よりな
シ、該残部中の鉄族金属の含有量が重量で25%以上9
0%以下であり、Atの含有量が重量で5係以上50チ
以下であシ、さらにCuの含有量が重量で5チ以上45
チ以下であることを特徴とする工具用高硬度焼結体。 (2)上記高圧相型窒化硼素が立方晶型窒化硼素である
特許請求の範囲第(1)項記載の工具用高硬度焼結体。 (3)  高圧相型窒化硼素粉末と鉄族金属の1種の粉
末または2種以上の混合粉末または化合物粉末とAt粉
末、Cu粉末を混合し、これを粉末状もしくは型押成型
後超高圧装置を用いて圧力20 Kb以上、温度900
℃ 以上で焼結することを特徴とする高圧相型窒化硼素
を体積で75チ以上95チ以下含有し、残部中の以下で
あり、Atの含有量が重量で5チ以上量で5チ以上45
%以下である工具用高硬度焼結体の製造方法。 (4)  高圧相型窒化硼素が立方晶型窒化硼素である
特許請求の範囲第(3)項記載の工具用高硬度焼結体の
製造方法。 (5)  高圧相型窒化硼素粉末とAt 粉末を混合し
これを粉末状もしくは型押成型後超高田装置I/lを用
いて圧力20Kb以上、温度900℃以上で焼結させる
とともに焼結体外部より鉄族金属およびCu あるいは
鉄族金属とCu  の合金を焼結体中に浸入させる特許
請求の範囲の(3)項または(4)項記載の工具用高硬
度焼結体の製造方法。
Figure 1 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the thermodynamic stability region on the pressure-temperature phase diagram of high-pressure phase boron nitride. ) Akira Agent Ryo Hagiwara Ichitenji C) January 7, 1980 Commissioner of the Patent Office Haruki Shimada 1 Indication of the case 1983 Patent Application No. 162781 2 Name of the invention High hardness sintered body for tools and its manufacturing method 3. Address related to the amendment case: 5-15 Kitahama, Higashi-ku, Osaka Name ('
213) Sumitomo Electric Industries, Ltd. (Name) Representative: Masao Kamei 4, Agent: 5 Date of amendment order: Voluntary amendment: 6, Invention thicket increased by amendment None. Z Target of amendment (1) ``Claims'' section a of the specification Contents of amendment (1) The entire scope of claims on pages 1 to 2 of the specification shall be amended as shown in the appendix. Claims (1) Contains high-pressure phase boron nitride from 75 to 95 by volume, the remainder being an alloy of iron group metals, kl, and Cu, the content of iron group metals in the remainder being 25% or more by weight9
0% or less, the At content is 5 or more and 50 or less by weight, and the Cu content is 5 or more and 45 or less by weight.
A high-hardness sintered body for tools, characterized in that the hardness is less than or equal to 1. (2) The high-hardness sintered body for tools according to claim (1), wherein the high-pressure phase type boron nitride is cubic boron nitride. (3) Mix high-pressure phase type boron nitride powder, one type of powder of iron group metal, or a mixed powder of two or more types of powder, or compound powder, At powder, and Cu powder, and after molding into powder or molding, use an ultra-high pressure apparatus. using a pressure of 20 Kb or more and a temperature of 900
Contains high-pressure phase type boron nitride characterized by sintering at a temperature of 75 cm or more and 95 cm or less by volume, and the At content is 5 cm or more by weight or more and 5 cm or more by weight. 45
% or less, a method for manufacturing a high hardness sintered body for tools. (4) The method for manufacturing a high-hardness sintered body for tools according to claim (3), wherein the high-pressure phase boron nitride is cubic boron nitride. (5) Mix high-pressure phase type boron nitride powder and At powder, mold it into powder form or mold it, and then sinter it using Chotakada equipment I/L at a pressure of 20 Kb or more and a temperature of 900°C or more, and then externalize the sintered body. A method for manufacturing a high-hardness sintered body for a tool according to claim (3) or (4), wherein a ferrous metal and Cu or an alloy of an ferrous metal and Cu are infiltrated into the sintered body.

Claims (1)

【特許請求の範囲】 (1)  高圧相型窒化硼素を体積で75%以上95−
以下含有し、残部が鉄族金属、ム4Guの合金よりなり
、該残部中の鉄族金属の含有量がl蓋で25−以上90
Is以下であり、ムtの含有量が重量で5%以上50慢
以下であり、さらにOu の含有量が重量で5慢以上4
5−以下であることt特徴とする工具用l1i1i硬度
焼結体〇閾 上記高圧相型窒化硼素が立方晶製窒化4#
I素である特許請求の範囲第(1)項記載の工具用高硬
度焼結体。 <3)  高圧相型窒化礪票粉末と鉄族金属の1檜の粉
末または2檜以上の混合粉末または化合物粉末とムを粉
末、 Ou粉末を混合し、こfLk粉末状もしくは型押
成型後超高圧装置を用い−〔圧力20 It)以上、温
度900C以上で焼結するととt−特徴とする高圧相!
!!!輩化#1木を体積で75憾以上95%以下含有し
、残部中の鉄族金属の含有量が重量でさらにOu の含
有量が重量で5162以上4591以下である工具用高
硬度焼結体の製造方法。 (4)  高圧相型窒化硼素が立方晶型窒化硼素である
特許請求の範囲第0)項記載の工具用高硬度焼結体の製
造方法。 (荀 高圧相型窒化硼票粉末とムを粉末を混合しこれ【
粉末状もしくFi型型押成型超超高圧装置用いて圧力2
0 Kini上、温度900℃以上で焼結させるととも
に焼結体外部より鉄族金属およびCu  あるいは鉄族
金属とOu の合金を焼結体中に浸入させる特許請求の
範囲の(2)項またはO)項記載の工具用高硬度焼結体
の製造方法。
[Claims] (1) High-pressure phase type boron nitride containing 75% or more by volume of 95-
The remainder is made of an alloy of iron group metals and Mu4Gu, and the content of iron group metals in the remainder is 25-90 or more per lid.
Is or less, the Mut content is 5% or more and 50% or less by weight, and the Ou content is 5% or more and 4% or less by weight.
l1i1i hardness sintered body for tools characterized by being less than 5-threshold The above-mentioned high pressure phase type boron nitride is cubic crystal nitride 4#
The high hardness sintered body for tools according to claim (1), which is I element. <3) High-pressure phase type nitrided slate powder and iron group metal powder or mixed powder of two or more powders or compound powder and Ou powder are mixed, and this is made into powder form or after extrusion molding. When sintered using a high-pressure device at a pressure of 20 It or higher and a temperature of 900C or higher, a characteristic high-pressure phase is produced!
! ! ! A high-hardness sintered body for tools, which contains 75% or more and 95% or less of wood by volume, and the content of iron group metals in the remainder is 5162 or more and 4591 or less by weight. manufacturing method. (4) The method for producing a high-hardness sintered body for tools according to claim 0), wherein the high-pressure phase boron nitride is cubic boron nitride. (Xun) Mix high pressure phase type nitrided borium powder and powder.
Pressure 2 using ultra-ultra high pressure equipment for powder or Fi type extrusion molding
Claim (2) or O in which the sintered body is sintered at a temperature of 900°C or higher and the iron group metal and Cu or the alloy of the iron group metal and O are infiltrated into the sintered body from the outside of the sintered body. ) A method for manufacturing a high-hardness sintered body for tools.
JP56162781A 1981-10-14 1981-10-14 High hardness sintered body for tool and its manufacture Pending JPS5864342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56162781A JPS5864342A (en) 1981-10-14 1981-10-14 High hardness sintered body for tool and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56162781A JPS5864342A (en) 1981-10-14 1981-10-14 High hardness sintered body for tool and its manufacture

Publications (1)

Publication Number Publication Date
JPS5864342A true JPS5864342A (en) 1983-04-16

Family

ID=15761082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56162781A Pending JPS5864342A (en) 1981-10-14 1981-10-14 High hardness sintered body for tool and its manufacture

Country Status (1)

Country Link
JP (1) JPS5864342A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133511A (en) * 1977-04-26 1978-11-21 Sumitomo Electric Ind Ltd Sintered product having high hardness for tools and its preparation
JPS5496511A (en) * 1978-01-18 1979-07-31 Kuratomi Tatsuro Cubic boron nitride solidified body and method of making same
JPS54102315A (en) * 1978-01-31 1979-08-11 Kuratomi Tatsuro Cubic boron nitride solidified body and fabrication thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133511A (en) * 1977-04-26 1978-11-21 Sumitomo Electric Ind Ltd Sintered product having high hardness for tools and its preparation
JPS5496511A (en) * 1978-01-18 1979-07-31 Kuratomi Tatsuro Cubic boron nitride solidified body and method of making same
JPS54102315A (en) * 1978-01-31 1979-08-11 Kuratomi Tatsuro Cubic boron nitride solidified body and fabrication thereof

Similar Documents

Publication Publication Date Title
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
US6287489B1 (en) Method for making a sintered composite body
JPS62228451A (en) Sintered compact for high hardness tool and its production
BRPI0619322A2 (en) method to produce a powder composition and method to produce a polycrystalline cbn compact
JPS6184303A (en) Manufacture of composite sintered body
JPS627149B2 (en)
JPS5864342A (en) High hardness sintered body for tool and its manufacture
JPS6020457B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPH06198504A (en) Cutting tool for high hardness sintered body
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPS5861254A (en) High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPS6241306B2 (en)
JPS6141873B2 (en)
JPH02236253A (en) High hardness sintered body for tool
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JPS5935423B2 (en) Sintered material for cutting tools containing cubic boron nitride
JPS62983B2 (en)
JPS6242989B2 (en)
JPS5929666B2 (en) Sintered material for cutting tools with excellent toughness and wear resistance
JPS58107468A (en) Sintered material for high hardness tool and preparation thereof
JPS6247940B2 (en)
JPS59131582A (en) High hardness sintered body for tool and manufacture
JPH0463607A (en) Cutting tool having cutting edge part formed of cubic boron nitride sintered substance
JPH0377151B2 (en)