JPS5861660A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5861660A
JPS5861660A JP56160547A JP16054781A JPS5861660A JP S5861660 A JPS5861660 A JP S5861660A JP 56160547 A JP56160547 A JP 56160547A JP 16054781 A JP16054781 A JP 16054781A JP S5861660 A JPS5861660 A JP S5861660A
Authority
JP
Japan
Prior art keywords
layer
insulating
substrate
resist
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56160547A
Other languages
Japanese (ja)
Other versions
JPH02865B2 (en
Inventor
Hiroshi Sakuma
啓 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56160547A priority Critical patent/JPS5861660A/en
Publication of JPS5861660A publication Critical patent/JPS5861660A/en
Publication of JPH02865B2 publication Critical patent/JPH02865B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body

Abstract

PURPOSE:To fill elements with insulating layers and leave the insulating film on elements, by applying an even exposure from the substrate back surface and a pattern exposure from the surface on the resist layer coating insular elements on a transparent insulating substrate. CONSTITUTION:Insular Si n layer 2 and npn element part 8 are formed on the sapphire substrate 1, the insulating layer 3 approx. the same in thickness as the Si layer is deposited, and the resist 9 is applied. When evenly exposing 10 from the side of the substrate 1, the part 9 becomes sensitive. Subsequently, the part 9' is made sensitive by the mask 11 from the surface. It is developed, the insulator layer is corrosion-removed by the resist mask, the interval between layers 2 and 8 is filled flat with the insulator layer 3', and accordingly the thick insulator layer 3 is left on the layer 2. Next, when a gate oxide film 13, poly Si 6, 6', an insulating film 14 and metallic wirings 4, 5 are formed, an SOS type device is completed. Thus, in a process of burying the insulating layer, by leaving the part thereof on an insular layer, a thick and high withstand voltage insulating film can be formed resulting in the great simplification of the process of the manufacture of a device.

Description

【発明の詳細な説明】 本発明は、透明な絶縁基板上に設けられた島状半導体装
置、たとえば、シリコンオンサファイヤ基板を用いた半
導体装置の製造方法に関る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an island-shaped semiconductor device provided on a transparent insulating substrate, for example, a semiconductor device using a silicon-on-sapphire substrate.

絶縁体基板上の半導体膜、たとえば、シリコンオンサフ
ァイヤ(SOS)基板を用いた半導体装置では、素子間
分離が完全で寄生素子が出来ず、寄生容量も少ないため
、優れた特性を得ることが出来、特にこれを大規模集積
回路に応用することが行なわれている。これらの応用は
、もちろん低電圧、すなわち5〜IOVの電源を泪いる
回路であって、たとえば100vを越えるような高耐圧
絶縁膜を必要とすることは無い。ところで、シリコンオ
ンサファイヤ型の半導体装置はまさに上述の理由により
高電圧動作用集積回路1素子としても優れていることが
知られており、150〜500Vで動作する集積回路半
導体装置が開発されている。このような半導体装置にお
いては、当然、素子や配線のために高耐圧な絶縁膜が要
求される。
Semiconductor devices using semiconductor films on insulating substrates, such as silicon-on-sapphire (SOS) substrates, have perfect isolation between elements, no parasitic elements, and little parasitic capacitance, so they can achieve excellent characteristics. In particular, this is being applied to large-scale integrated circuits. These applications are, of course, circuits that require a low voltage power supply, that is, 5 to IOV, and do not require a high voltage insulating film exceeding, for example, 100V. By the way, silicon-on-sapphire type semiconductor devices are known to be excellent as integrated circuit elements for high-voltage operation for the reasons mentioned above, and integrated circuit semiconductor devices that operate at 150 to 500 V have been developed. . Such a semiconductor device naturally requires an insulating film with high breakdown voltage for elements and wiring.

高耐圧な絶縁膜を得るには、絶縁膜厚を厚くすればよい
。いわゆるバルクシリコン基板を用いる場合には基板シ
リコンを長時間酸化することにより容易に厚く良質な絶
縁酸化膜を得ることが出来るが、SOS基板の場合には
問屋が生ずる。第1図は一例としてSO8基板を直接酸
化して厚い酸化膜を設けた場合の高耐圧静電容量素子の
断面図を示したものであり、1はす7アイヤ基板、2は
シリコン薄膜、3はシリコン酸化膜、4,5は全編%h
である。絶縁膜3を介して、シリコン膜2と金IIJ4
SIL極4との間で静電容量が形成される。この−合、
(1)SO8基板上のシリコン層は一般に0.5〜1μ
m程度であるから、過度に酸化するとシリコン層が薄く
なり過ぎ、トランジスタ等の素子の特性劣化をもたらす
、C2)島状シリコン層を厚<i化するとシリコンとザ
7アイヤ界面の部分の形状が図中7の様になり耐圧劣化
の原因となる、等の欠点が生ずる。従って5osz半導
体装置において絶縁物厚膜を得るには、第2図に示すよ
うに、気相成長による絶縁膜3(たとえばCVD−8i
n、19を設けるのが一般的に行なわれている。しかし
、そのためには、従来の工程に加えて専用の酸化膜気相
成長工程と、レジスト工程が必要となる。又表面段差を
解消するためのLOCO&(モ法al 0xid−at
ion in 5ilicon)構造を有するsosg
半導体装置において、第4図に示すように、ポリシリコ
ン層6が厚いシリコン酸化膜3,14を介してシリコン
層2および全5titn層5で挾まれた三層電極構造の
高耐圧静電容量素子を得ようとする場合、酸化膜エツチ
ングの制御が難しいという問題があった。すなわち既に
LOCO8構造になっている808基板に、厚い酸化膜
3を気相成長等の方法により堆積し、必要部分のみを残
そうとする場合、LOCO8@造酸化膜上で酸化膜3の
エツチングを終了させる必要がある。しかし、醸化膜の
積層を途中で、精度良く、止めることは、困難であり、
LOCO8構造酸化膜をしばしばオーバーエッチする結
果となっていた。
In order to obtain an insulating film with high withstand voltage, it is sufficient to increase the thickness of the insulating film. When a so-called bulk silicon substrate is used, a thick and high-quality insulating oxide film can be easily obtained by oxidizing the substrate silicon for a long time, but in the case of an SOS substrate, a wholesaler is required. Figure 1 shows, as an example, a cross-sectional view of a high voltage capacitance element in which a thick oxide film is provided by directly oxidizing an SO8 substrate. is silicon oxide film, 4 and 5 are entire %h
It is. Silicon film 2 and gold IIJ4 are connected via insulating film 3.
A capacitance is formed between the SIL pole 4 and the SIL pole 4 . This - combination,
(1) The silicon layer on the SO8 substrate is generally 0.5 to 1μ
Since the silicon layer is about This results in disadvantages such as 7 in the figure, which causes deterioration of withstand voltage. Therefore, in order to obtain a thick insulating film in a 5osz semiconductor device, as shown in FIG.
It is common practice to provide the number n, 19. However, this requires a dedicated oxide film vapor phase growth process and a resist process in addition to the conventional process. In addition, LOCO & (mo method al Oxid-at
ion in 5ilicon) structure
In a semiconductor device, as shown in FIG. 4, a high voltage capacitance element has a three-layer electrode structure in which a polysilicon layer 6 is sandwiched between a silicon layer 2 and a total of five titan layers 5 via thick silicon oxide films 3 and 14. When attempting to obtain the same, there is a problem in that it is difficult to control the etching of the oxide film. In other words, when a thick oxide film 3 is deposited by a method such as vapor phase growth on an 808 substrate that already has a LOCO8 structure, and only the necessary parts are to be left, the oxide film 3 is etched on the LOCO8@formed oxide film. need to be terminated. However, it is difficult to accurately stop the layering of the fermentation film midway through.
This often resulted in overetching of the LOCO8 structure oxide film.

本発明の目的は、かかる従来のSO8型高耐圧半導体装
置製造上の問題点を解決せしめた半導体装置の製造方法
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the problems in manufacturing the conventional SO8 type high voltage semiconductor device.

本発明によれば、絶縁物理込み#I造のSOS@半導体
装置を得ると同時に、より少ない製造工程で、シリコン
層上の所望の部分に厚い絶縁物層を得ることが出来る。
According to the present invention, it is possible to obtain an SOS@semiconductor device with #I structure including physical insulation, and at the same time, to obtain a thick insulating layer at a desired portion on a silicon layer with fewer manufacturing steps.

本発明は、もちろん、従来一般に用いられているSO8
技術とまったく互換性のあるものであるから従来のSO
8型半導体装置に容易に適用することが可能である。す
なわち、本発明によれば、透明な絶縁物基板上の島状素
子間に絶縁物理込み層を持つ半導体装置の製造において
、島状素子を被った埋込み用絶縁物層上に塗布されたレ
ジスト層に、基板裏面から一様露光を基板表面からパタ
ーン露光を施し、該絶縁物理込み層を得ると同時に島状
素子上に所望の形状の絶縁物膜を得ることを特徴とする
半導体装置の製造方法が得られる。
Of course, the present invention is applicable to the conventionally commonly used SO8
Traditional SO because it is completely compatible with technology
It can be easily applied to an 8-type semiconductor device. That is, according to the present invention, in manufacturing a semiconductor device having an insulating physical embedding layer between island-shaped elements on a transparent insulating substrate, a resist layer coated on a embedding insulating layer covering the island-shaped elements. A method for manufacturing a semiconductor device, characterized in that uniform exposure is carried out from the back side of the substrate and pattern exposure is carried out from the front side of the substrate to obtain the insulating physical layer and at the same time obtain an insulating film having a desired shape on the island-shaped element. is obtained.

以下に、本発明を、図面を用いて詳細に説明する。第5
 wJ(a) 、 (b) 、 、 (c)は、本発明
の半導体装置の製造工程を説明するための図で高耐圧静
電容量素子を例に各主要工程における素子断面を示した
ものである。すなわち、第5図(a)において、1.2
はそれぞれサファイヤ基板とシリコン層(n+にドープ
しであるとする)、8は、他のトランジスタ素子25分
である。本発明においては、まず、島状に形成されたS
O8基板全面にシリコン層とほぼ同じ膜厚を有する埋込
み用絶縁物層3を、気相成長法綿により堆積する。次に
、その上からレジス □ト9を塗布する。次に、裏面の
サファイヤ基板側より基板全体に一様露光1oを施す。
The present invention will be explained in detail below using the drawings. Fifth
wJ(a), (b), , and (c) are diagrams for explaining the manufacturing process of the semiconductor device of the present invention, showing device cross sections in each main process using a high voltage capacitance device as an example. be. That is, in FIG. 5(a), 1.2
are the sapphire substrate and the silicon layer (assumed to be n+ doped), respectively, and 8 is the other transistor element 25. In the present invention, first, the island-shaped S
A buried insulator layer 3 having approximately the same thickness as the silicon layer is deposited over the entire surface of the O8 substrate by vapor deposition. Next, a resist □ mark 9 is applied over it. Next, uniform exposure 1o is applied to the entire substrate from the back side of the sapphire substrate.

この場合、島状シリコン層2および8の上側のレジスト
層は該シリコン層が露光を遮断するため感光しないがす
7アイヤ基板上のレジスト部分9′は、透明なt7アイ
ヤ基板と絶縁物層3を透過して来た光によって感光する
。続いて今度は基板表面から、厚い絶縁膜を残したい部
分を選択するフォトマスタ11により、レジストの9”
部分を感光させる。
In this case, the resist layer above the island-shaped silicon layers 2 and 8 is not exposed to light because the silicon layer blocks exposure. It is exposed to light that passes through it. Next, the photo master 11 selects the part from the substrate surface where a thick insulating film is to be left, and the resist is 9" thick.
Expose the part.

このレジスト層を現像し、レジストをマスクに、該絶縁
物層を、エツチングすれば、第5図缶)に示すような断
面m造が得られる。すなわち、島状シリコン層2,8等
の間は、絶縁物層3′によって平らに埋込まれ、高耐圧
静電容量素子素子を設けるためのシリコン層2の上には
、厚い絶縁物層3が残される。ここで、レジストへの露
光は、裏面からの一様露光を先にしても、表面からの選
択露光を先にしてもかまわない。第5図(b)の状態の
基板にゲート酸化膜13.ポリシリコン層6,6′を形
成し、更に、厚い絶縁膜14.金属配線4,5を形成す
れば、115図(c)に示すような断面構造のSO8型
半導体装置が完成する。ここにおいて、金−配線4に接
続されたポリシリコン層6は、上下の厚い絶縁膜14.
および3を介して、金gx極5およびそれに接続された
シリコン層3に挾まれており両者間で高耐圧の静電容量
素子が構成される。このような三層構造の静電容量素子
は、厚い絶縁膜を使わねばならないために単位面積当り
得られる容量の小さい高耐圧静電容量素子の場合に符に
有利である。それほど大きな容量を必要としない場合に
は第5図伽)の基板にゲート酸化工程および金属配線工
程を施すことにより、第3図に示すような高耐圧静電容
量素子を得ることが出来る。この場合、素子電極は、金
属電極4および、シリコン層2の二層となる。以上述べ
たように、本SO8型半導体装置の製造方法においては
所望の高耐圧絶縁膜が得られると同時に、す7アイヤ基
鈑上の全島状シリコン層が埋込み絶縁物層3′によって
平滑に、同一平面になるように埋込まれることになる。
By developing this resist layer and etching the insulating layer using the resist as a mask, a cross-sectional shape as shown in FIG. 5 can be obtained. That is, the space between the island-like silicon layers 2, 8, etc. is filled flat with an insulating layer 3', and a thick insulating layer 3 is formed on the silicon layer 2 for providing a high voltage capacitance element. is left behind. Here, the resist may be exposed to light either uniformly from the back side or selectively from the front side. A gate oxide film 13 is formed on the substrate in the state shown in FIG. 5(b). Polysilicon layers 6, 6' are formed, and a thick insulating film 14. Once the metal wirings 4 and 5 are formed, an SO8 type semiconductor device having a cross-sectional structure as shown in FIG. 115(c) is completed. Here, the polysilicon layer 6 connected to the gold wiring 4 is covered with upper and lower thick insulating films 14.
and 3, it is sandwiched between gold gx electrode 5 and silicon layer 3 connected thereto, and a high breakdown voltage capacitance element is formed between the two. Such a capacitive element having a three-layer structure is particularly advantageous in the case of a high-voltage capacitive element that can obtain a small capacitance per unit area because a thick insulating film must be used. If a very large capacitance is not required, a high breakdown voltage capacitance element as shown in FIG. 3 can be obtained by subjecting the substrate shown in FIG. 5 to a gate oxidation process and a metal wiring process. In this case, the device electrode has two layers: a metal electrode 4 and a silicon layer 2. As described above, in the present SO8 type semiconductor device manufacturing method, a desired high voltage insulating film can be obtained, and at the same time, the entire island-like silicon layer on the 7-layer substrate is smoothed by the buried insulating layer 3'. They will be embedded so that they are on the same plane.

この構造は従来よりバックフィル法等と呼称され、配線
断線や808 )ランジスタ特有の側W1漏れ電流の防
止に役立つ好ましい構造として知られている。すなわち
、本発明の製造方法によれば、絶縁物理込み層を設ける
工程時に同工程のためのレジストを兼用し、該埋込み用
絶縁物層の一部をそのまま島状シリコン層に残すことK
より、厚い−従って高耐圧の絶縁物膜を得ることが出来
るから、大いに製造工程の簡略化に寄与することができ
る。該高耐圧絶縁物膜は、実施例で説明した静電容量素
子の他、ポリシリコン層による高電圧配線等のクマスオ
ーバー用としても活用できることは言うまでもない。
This structure has been conventionally referred to as a backfill method, and is known as a preferable structure useful for preventing wire breakage and side W1 leakage current peculiar to 808) transistors. That is, according to the manufacturing method of the present invention, during the step of providing an insulating physical embedding layer, a resist for the same step is also used, and a part of the embedding insulator layer is left as it is in the island-like silicon layer.
Since it is possible to obtain an insulating film that is thicker and therefore has a higher breakdown voltage, it can greatly contribute to the simplification of the manufacturing process. Needless to say, the high-voltage insulating film can be used not only for the capacitance element described in the embodiments but also for masking over high-voltage wiring using a polysilicon layer.

【図面の簡単な説明】[Brief explanation of drawings]

第is、第2図は、従来の製造方法による高耐圧静電容
量素子の構造を示す模式断面図、第3図。 t44図は本発明の製造方法によって得られる高耐圧静
電容量素子の構造を示す模式断面図、第5図(a) 、
 (b) 、 (c)は本発明の製造方法を説明するた
めの各主要工程における素子断面図であり、各図におい
て、1は透明絶縁物基板、2は半導体層、3は絶縁物層
、4,5は金属電極層、6,6′は他の電極層、7はく
びれ部、8はトランジスタ素子、9はフォトレジスト層
、9’、9“はレジスト感光部、10は裏面一様露光、
11はフォトマスク、12は表面からのパターン露光、
13はゲート酸化膜、14は別な絶縁物層をそれぞれ示
す。
FIG. 2 is a schematic cross-sectional view showing the structure of a high voltage capacitance element manufactured by a conventional manufacturing method, and FIG. Figure t44 is a schematic cross-sectional view showing the structure of a high voltage capacitance element obtained by the manufacturing method of the present invention, Figure 5(a),
(b) and (c) are device cross-sectional views at each main step for explaining the manufacturing method of the present invention, and in each figure, 1 is a transparent insulator substrate, 2 is a semiconductor layer, 3 is an insulator layer, 4 and 5 are metal electrode layers, 6 and 6' are other electrode layers, 7 is a constriction, 8 is a transistor element, 9 is a photoresist layer, 9' and 9'' are resist exposed areas, and 10 is a back side uniformly exposed ,
11 is a photomask, 12 is pattern exposure from the surface,
Reference numeral 13 indicates a gate oxide film, and reference numeral 14 indicates another insulating layer.

Claims (1)

【特許請求の範囲】[Claims] 透明な絶縁物基板上の島状素子間に絶縁物理込み層を持
つ半導体装置の製造において、&状素子を被った埋込み
用絶縁物層上に塗布されたレジスト層に、基板裏面から
一様露光を、基板表面からパターン露光を施し、該絶縁
物理込み層を得ると同時に島状素子上に所望の形状の絶
縁物層を得ることを特徴とする半導体装置の製造方法。
In manufacturing semiconductor devices that have an insulating physical embedding layer between island-shaped elements on a transparent insulating substrate, the resist layer coated on the embedding insulating layer covering the &-shaped elements is uniformly exposed from the back side of the substrate. A method for manufacturing a semiconductor device, comprising performing pattern exposure from the surface of the substrate to obtain the insulating physical layer and at the same time obtaining an insulating layer having a desired shape on the island-shaped element.
JP56160547A 1981-10-08 1981-10-08 Manufacture of semiconductor device Granted JPS5861660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160547A JPS5861660A (en) 1981-10-08 1981-10-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160547A JPS5861660A (en) 1981-10-08 1981-10-08 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5861660A true JPS5861660A (en) 1983-04-12
JPH02865B2 JPH02865B2 (en) 1990-01-09

Family

ID=15717340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160547A Granted JPS5861660A (en) 1981-10-08 1981-10-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5861660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245560A (en) * 1985-04-23 1986-10-31 Agency Of Ind Science & Technol Capacitor for semiconductor integrated circuit
JP2011204792A (en) * 2010-03-24 2011-10-13 Toshiba Corp Capacitor, integrated device, high frequency switching device, and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245560A (en) * 1985-04-23 1986-10-31 Agency Of Ind Science & Technol Capacitor for semiconductor integrated circuit
JP2011204792A (en) * 2010-03-24 2011-10-13 Toshiba Corp Capacitor, integrated device, high frequency switching device, and electronic apparatus
US8324710B2 (en) 2010-03-24 2012-12-04 Kabushiki Kaisha Toshiba Capacitor, integrated device, radio frequency switching device, and electronic apparatus

Also Published As

Publication number Publication date
JPH02865B2 (en) 1990-01-09

Similar Documents

Publication Publication Date Title
JP3271094B2 (en) Laminated wiring board and method of manufacturing the same
GB1567808A (en) Semiconductor devices and method of manufacturing the same
WO2015096314A1 (en) Array substrate, manufacturing method therefor, and display device
JPH0689884A (en) Element isolation method of semiconductor device
US4404581A (en) ROM With redundant ROM cells employing a highly resistive polysilicon film for programming the cells
JPS6015944A (en) Semiconductor device
JPS58170065A (en) Manufacture of thin film field effect transistor
JPS5861660A (en) Manufacture of semiconductor device
JPH0823102A (en) Electronic component and manufacture thereof
US4504333A (en) Method of making field oxide regions
KR19980069868A (en) Multi-thickness silicon wafers on insulators that highly integrate mixed signal integrated circuit devices
KR100299664B1 (en) Method for manufacturing silicon short electron transistor using secondary electron approaching effect of electron beam picturing process and silicon oxidation process
JP3487724B2 (en) Method of forming tunnel junction
JPS6214095B2 (en)
JPS59178773A (en) Manufacture of semiconductor device
CN116567924A (en) LCD circuit structure capable of reducing photomask and manufacturing method
JP2538048B2 (en) Method for manufacturing semiconductor device
KR960008559B1 (en) Fine contact hall forming method of semiconductor device
JPH09172168A (en) Fabrication of semiconductor device
JPS58131773A (en) Semiconductor device and its manufacture
JP2993039B2 (en) Active layer stacked device
JPH0595048A (en) Manufacture of semiconductor integrated circuit device
JPS5918655A (en) Manufacture of semiconductor device
JPH08139274A (en) Semiconductor device
JPS59105339A (en) Manufacture of semiconductor device