JPS61245560A - Capacitor for semiconductor integrated circuit - Google Patents

Capacitor for semiconductor integrated circuit

Info

Publication number
JPS61245560A
JPS61245560A JP8728385A JP8728385A JPS61245560A JP S61245560 A JPS61245560 A JP S61245560A JP 8728385 A JP8728385 A JP 8728385A JP 8728385 A JP8728385 A JP 8728385A JP S61245560 A JPS61245560 A JP S61245560A
Authority
JP
Japan
Prior art keywords
film
capacitor
thickness
semiconductor integrated
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8728385A
Other languages
Japanese (ja)
Other versions
JPH0770684B2 (en
Inventor
Yutaka Hayashi
豊 林
Yoshio Hirai
平井 芳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Seiko Instruments Inc filed Critical Agency of Industrial Science and Technology
Priority to JP60087283A priority Critical patent/JPH0770684B2/en
Publication of JPS61245560A publication Critical patent/JPS61245560A/en
Publication of JPH0770684B2 publication Critical patent/JPH0770684B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase electrostatic capacitance per a unit occupying area by alternately superposing CVD insulating films in thickness of 200Angstrom or less and conductor films. CONSTITUTION:An n<+> layer 22 is formed to a p-type Si substrate 21, a high- temperature CVDSiO2 film 23 in thickness of 200Angstrom is deposited, a conductive poly Si film 24 in thickness of 2,000Angstrom is shaped, and a high-temperature CVDSiO2 film 25 is superposed again. A window is bored to the SiO2 film 25, and conductive poly Si 27 is formed. A high-temperature CVDSiO2 film 28 and conductive poly Si 29 are superposed and connected to the conductor film 24, and poly Si films and high-temperature CVDSiO2 films are similarly shaped alternately, thus manufacturing a capacitance. According to the constitution, a large electrostatic capacitance having high withstanding voltage and a small occupying area can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体集積回路用キャパシタの改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improvements in capacitors for semiconductor integrated circuits.

〔発明の概要〕[Summary of the invention]

この発明は、ダイナミック゛RAMのメモリセル等に用
いらnる半導体集積回路用キャパシタにおいて、厚さ2
00A以下のCVD絶縁展と導電体膜と七交互に積み重
ねた多層構造にすることにより、小さな占有面積で大き
な静電容量tもっようにしたものである。
The present invention provides a capacitor for semiconductor integrated circuits used in memory cells of dynamic RAM, etc.
By forming a multilayer structure in which seven CVD insulation layers of 00A or less and conductive films are stacked alternately, a large capacitance t can be achieved with a small occupied area.

〔従来の技術〕[Conventional technology]

・近年、半導体集積回路の高集積化に伴い、ダイナミッ
クRAMのメモリセル等に用いらnる半導体集積回路用
キャパシタにおいては、その平面で見た占有面積は小さ
く、シかもその静電容量のみは大きくすることが要求さ
nている。このためにはまず綽電体属厚を薄くすること
でおるが、ピンホールが発生するなど薄くするにも限界
がある。
・In recent years, with the increasing integration of semiconductor integrated circuits, the area occupied by semiconductor integrated circuit capacitors used in dynamic RAM memory cells, etc. is small, and the capacitance alone is small. There is a demand for it to be made larger. To achieve this, the first step is to reduce the thickness of the electric conductor, but there are limits to how thin it can be, as pinholes may occur.

そこで、半導体基板上に導電体膜と誘電体膜とt、交互
に積み重ねた多層構造とすrLば、キャバシ夕電極の実
効的な対向面積を増すことにより静電容tを大きくする
ことができる。このような構造は導電体膜に多結晶シリ
コン膜を用い、その表面ヲ熟酸化して得らnる多結晶シ
リコン酸化膜を誘電体膜とすることにより実現できる。
Therefore, if a multilayer structure is adopted in which conductor films and dielectric films are alternately stacked on a semiconductor substrate, the capacitance t can be increased by increasing the effective facing area of the cavity electrodes. Such a structure can be realized by using a polycrystalline silicon film as a conductive film and using a polycrystalline silicon oxide film obtained by subjecting its surface to a mature oxidation as a dielectric film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしこの方法では、次のような欠点があった。まず、
多結晶シリコン酸化層は薄くすると絶縁耐圧が非常に低
下し、かつもn電流が大きいために、実用上1000A
以上の膜厚としなけ3ばない。また、多結晶シリコン膜
は表面の熱酸化後にそn自体が消失してしまうことを防
ぎ、一定の膜厚を確保するために、実用上2000ム以
上の膜厚としなけnばならない。従って多層構造にする
とキャパシタの全体の厚みが非常に厚くなってしまい、
その上を通すムを配線等の段切n、′t−引き起こす。
However, this method had the following drawbacks. first,
When the polycrystalline silicon oxide layer is thinned, its dielectric strength drops significantly, and the n-current is large, so in practice it is only 1000 A.
The film thickness must be greater than 3. Further, in order to prevent the polycrystalline silicon film from disappearing after thermal oxidation of the surface and to ensure a constant film thickness, the film thickness must be practically 2000 μm or more. Therefore, when using a multilayer structure, the overall thickness of the capacitor becomes extremely thick.
The wires, etc., to be passed over it are cut n,'t-.

逆に段切−rL+防ぐために積層数を減らせば静電容i
金十分に大きくすることができないし、各層を薄くすn
ば前述の通り絶縁耐圧やもn電流が劣化する。
On the other hand, if the number of laminated layers is reduced to prevent step-cutting -rL+, the capacitance i
The gold cannot be made large enough and each layer must be made thin.
In this case, as described above, the dielectric strength voltage and current deteriorate.

〔問題t−解決するための手段〕[Problem t-Means for solving]

この発明は上記半導体集積回路用キャパシタを多層構造
とする際の欠点を除去し、単位占有面積あたりの静電容
量を天きくしたものである。
The present invention eliminates the disadvantages of forming the capacitor for semiconductor integrated circuits into a multilayer structure, and increases the capacitance per unit occupied area.

このために、この発明ではキャパシタを厚さ200A以
下のCVD絶縁膜と導電体膜とを交互に積み重ねた多層
構造としたことを特徴とするものである。
For this reason, the present invention is characterized in that the capacitor has a multilayer structure in which CVD insulating films and conductive films each having a thickness of 200 Å or less are stacked alternately.

〔作用〕[Effect]

この発明では、キャパシタの誘電体膜に多結晶シ11コ
ン酸化膜ではなく OV DP!IRmk用いているた
めに、例えば700℃以上の温度で形成される高温CV
Dシリコン酸化膜は薄くしても絶縁耐圧に優n、かつも
2″L電流が少ないことがら導電体膜厚t−200A以
下にすることができる。なおかつ導電体膜t−酸化する
方法ではないので、導電体膜にCVD多結晶シリコン膜
?用いても、膜厚を2000A以下にすることができる
。また、回路抵抗を下げることを目的として、高融点金
属やそ1′− の硅化物を導電体膜を用いることができる。そこ1で、
厚さ2oo’h以下のCVD絶縁膜を用いることにより
、キャパシタを多層構造としても全体の厚みがあまり厚
くならないために、その上を通すムを配線等の段切nを
引さ起こさない。従って多層構造にできることから、平
面で見たキャパシタの占育面積を増やすことなしに、積
層数に増やすととにより静電容iを数倍に増すことがで
きる。
In this invention, the dielectric film of the capacitor is not a polycrystalline silicon oxide film but an OV DP! Due to the use of IRmk, high-temperature CVs are formed at temperatures of 700°C or higher, for example.
D Even if the silicon oxide film is thinned, it has excellent dielectric strength, and since the 2"L current is small, the conductor film thickness can be reduced to t-200A or less. Furthermore, it is not a method of oxidizing the conductor film. Therefore, even if a CVD polycrystalline silicon film is used as the conductor film, the film thickness can be reduced to 2000A or less.Also, for the purpose of lowering the circuit resistance, high melting point metals and silicides are used. A conductive film can be used.
By using a CVD insulating film with a thickness of 2 oo'h or less, even if the capacitor has a multilayer structure, the overall thickness does not become too thick, so that no step cutting of wiring or the like is caused when passing over the capacitor. Therefore, since a multilayer structure can be formed, the capacitance i can be increased several times by increasing the number of laminated layers without increasing the area occupied by the capacitor in plan view.

また、絶縁耐圧やもrLjFli流に優nることは前述
の通りである。
Furthermore, as described above, the dielectric strength is superior to the rLjFli flow.

〔実施例〕〔Example〕

以下、この発明の詳細を実施例で説明する。 The details of this invention will be explained below with reference to Examples.

第1図は、この発明に係る半導体集積回路用キャパシタ
の断面図である。導電体膜13および14は、CVD絶
縁膜15ヲ間にはさんで、例えばP型シリコン基板11
上に交互に積層さnている。また、等電体膜13はそn
Zn電極16に電気的に接続さし、導電体膜14はそr
Lぞn電極17に電気的に接続されること全通して基板
11の表面に設けらnfcn+拡散層12に電気的に接
続される−ごとにより、多層構造の中ヤバシタを形成し
ている。この構造では1導電体膜と基板にはさまし九〇
’VD絶縁展の合計した面積によって静電容量が決まる
ので、積層数(この例では5層ンを増やすことにより単
層のときに較べて静電容量をその積層数倍にすることが
できる。例えば、キャパシタの上を通すAj配線の厚さ
金1μ脩とすnば、導電体膜厚′fc2000Aとして
5層積層しても、キャパシタ全体の厚さはムを厚程度に
しかならない。
FIG. 1 is a sectional view of a capacitor for semiconductor integrated circuits according to the present invention. The conductive films 13 and 14 are sandwiched between the CVD insulating film 15 and are placed on, for example, a P-type silicon substrate 11.
They are layered alternately on top. In addition, the isoelectric film 13 is
It is electrically connected to the Zn electrode 16, and the conductor film 14 is connected to it.
The L, N, and n electrodes 17 are electrically connected to the n-electrode 17, and the nfcn, which is electrically connected to the diffusion layer 12, is formed on the surface of the substrate 11, thereby forming the middle layer of the multilayer structure. In this structure, the capacitance is determined by the total area of the 90'VD insulation sandwiched between one conductor film and the substrate. For example, if the thickness of the Aj wiring that passes over the capacitor is 1 μm, even if 5 layers are laminated with a conductor film thickness of 2000 A, the capacitance will be The overall thickness is only about the same thickness as the thickness of the shell.

次に、この発明に係るキャパシタを製造する方法を第2
図−〜(ロ)を用いて説明する。まず例えばP型シリコ
ン基板21の表面にイオン注入によりn+拡散層22ヲ
設けた後、第1層目の誘電体膜とな゛る700℃以上の
温度で形成される高温CVDシリコン酸化膜23(例え
ば厚さ200A)’に堆積する(第2図(ロ)参照〕。
Next, a second method of manufacturing a capacitor according to the present invention will be described.
This will be explained using Figures--(b). First, for example, an n+ diffusion layer 22 is provided on the surface of a P-type silicon substrate 21 by ion implantation, and then a high-temperature CVD silicon oxide film 23 (formed at a temperature of 700° C. or higher), which becomes the first dielectric film, is formed. For example, it is deposited to a thickness of 200 A) (see FIG. 2 (b)).

続いて、その上に多結晶シリコン膜(例えば厚さ200
0ム)t−堆積し、と′r′L′fCバターニングして
第1層目の導電体膜24t−形成した後、第2層目の高
温0.V Dシリコン酸化膜25を堆積する(第2図の
)参照〕。
Next, a polycrystalline silicon film (for example, 200 mm thick) is deposited on top of it.
After forming the first conductor film 24t by depositing the conductor film 24t and 'r'L'fC, the second layer is deposited at a high temperature of 0m). Deposit a VD silicon oxide film 25 (see FIG. 2).

続いて、第2層目の導電体膜がn生鉱散層と電気的接続
ができるように、しかも第1層目の導電体膜列と電気的
接続上しないような部分あの高温CVDシリコン酸化N
’t−選択的に除去し、外生拡散層22の一部を露出さ
せた後、多結晶シリコン膜を堆積し、バターニングして
導電体膜27ヲ形成する(第2図(C)参照〕。
Next, high-temperature CVD silicon oxidation was applied to the parts of the second layer conductor film so that it could be electrically connected to the n-type mineral dispersion layer, and which would not be electrically connected to the first layer conductor film array. N
't- After selectively removing and exposing a part of the exogenous diffusion layer 22, a polycrystalline silicon film is deposited and buttered to form a conductor film 27 (see FIG. 2(C)). ].

以降、高温CVDシリコン酸比膜28ヲ堆積した後、第
8層目の導電体膜四は第1層目の導電体膜あと電気的に
接続しく第2図(イ)参照〕、第4層目の導電体膜は第
2層目の導電体膜nl!−電気的接疏するように、多結
晶シリコン膜と高温CVDシリコン酸化膜とを交互に形
成していくことによりこの発明に係るキャパシタ金製造
できる。この例では、各層の導電体膜の電気的接続をと
りながら層を積んでいったが、層を積む際には導電体膜
のバターニングだけをしておいて、最後に全部の導電体
膜の電気的接続をとることもできる。また、高温CVD
シリコン酸化酸化炎結晶シリコン展ヲ例にして説明した
が、CVD絶R腹としては他にCVD法により形成さ扛
るシリコン窒化膜およびオキシ。ナイトライド膜等を、
導電体膜としては、高融点金属あるいはその硅化物等を
用いることができる。
Thereafter, after depositing the high-temperature CVD silicon acid ratio film 28, the eighth layer conductor film 4 is electrically connected to the first layer conductor film (see FIG. 2(a)), and the fourth layer The conductive film for the eyes is the second conductive film nl! - The capacitor gold according to the present invention can be manufactured by alternately forming polycrystalline silicon films and high-temperature CVD silicon oxide films so as to be electrically connected. In this example, the layers were stacked while making electrical connections between the conductive films of each layer. However, when stacking the layers, only the conductive film was patterned, and finally all the conductive films were An electrical connection can also be made. In addition, high temperature CVD
The explanation has been given using silicon oxide oxidation flame crystalline silicon film as an example, but there are also silicon nitride films and oxidation films formed by the CVD method as examples of CVD resistance. Nitride film etc.
As the conductive film, a high melting point metal or its silicide can be used.

第8図は、この発明の半導体集積回路用キャパシタ全ダ
イナミックRAMのメモリセルに用いた実施例の断面図
である。第8図において31は例えばP型シリコン基板
、32は素子分離領域の酸化膜テアル。′!!:り33
,34および謳はそnぞ−njio日トランジスタのゲ
ート電極と2つのn生鉱散層であり、ワード@36、ビ
ット線およびキャパシタ37の電極38にそrしぞn電
気的接続している。係るダイナミックRAMのメモリセ
ルは、キャパシタの占有面積を小さくでき、しかもその
静電容量のみは大きくできることから、高集積化できし
かも記憶保持特性に優nる。
FIG. 8 is a cross-sectional view of an embodiment of a capacitor for a semiconductor integrated circuit according to the present invention used in a memory cell of a fully dynamic RAM. In FIG. 8, 31 is, for example, a P-type silicon substrate, and 32 is an oxide film in the element isolation region. ′! ! :ri33
, 34 and 3 are the gate electrode of the transistor and the two raw mineral dispersion layers, respectively electrically connected to the word @ 36, the bit line and the electrode 38 of the capacitor 37. . In such a dynamic RAM memory cell, the area occupied by the capacitor can be reduced, and only its capacitance can be increased, so that it can be highly integrated and has excellent memory retention characteristics.

〔効果〕〔effect〕

以上の通り、この発明によrLば絶縁耐圧が高く小さな
占有面積で大きな静電容量をもつ多層構造から成る半導
体集積回路用キャパシタを、その上全通すAt配線等の
段切R’を引き蔵こすことなく実現できる。従ってこの
発明に係る半導体集積回路用キャパシタ全ダイナミック
RAMのメモリセル等に用いわば、その高集積化が可能
である。
As described above, according to the present invention, a capacitor for a semiconductor integrated circuit consisting of a multilayer structure with high dielectric strength, a small footprint, and a large capacitance can be provided with a step-cut R' such as an At wiring that is completely passed through the capacitor. This can be achieved without any hassle. Therefore, when the capacitor for a semiconductor integrated circuit according to the present invention is used in a memory cell or the like of a fully dynamic RAM, it is possible to achieve high integration.

【図面の簡単な説明】 第1図はこの発明に係る半導体集積回路用キャパシタの
断面図、第2図n)〜(財)はこの発明に係る半導体集
積回路用キャパシタの製造方法の工程順断面図、第8図
はこの発明に係る半導体集積回路用キャパシタを応用し
たダイナミックRAMのメモリセルの断面図である。 以上 第1図 87キヤパシタ 第3図 二の界咀のAマノψシタQ製造え式1射幻1区j喬図第
2図
[Brief Description of the Drawings] Fig. 1 is a cross-sectional view of a capacitor for semiconductor integrated circuits according to the present invention, and Fig. 2 n) to (F) are cross-sectional views in the order of steps of a method for manufacturing a capacitor for semiconductor integrated circuits according to this invention. 8 are cross-sectional views of a memory cell of a dynamic RAM to which the capacitor for semiconductor integrated circuits according to the present invention is applied. Above Figure 1 87 Capacitor Figure 3 A mano ψshita Q manufacturing formula of the second world Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上に形成された薄膜キャパシタにおい
て、厚さ200Å以下のCVD絶縁膜と導電体膜とを交
互に積み重ねた多層構造から成ることを特徴とする半導
体集積回路用キャパシタ。
(1) A capacitor for a semiconductor integrated circuit, which is a thin film capacitor formed on a semiconductor substrate and has a multilayer structure in which CVD insulating films and conductive films each having a thickness of 200 Å or less are stacked alternately.
(2)前記CVD絶縁膜が700℃以上の温度で形成さ
れる高温CVDシリコン酸化膜であることを特徴とする
特許請求の範囲第1項記載の半導体集積回路用キャパシ
タ。
(2) The capacitor for a semiconductor integrated circuit according to claim 1, wherein the CVD insulating film is a high temperature CVD silicon oxide film formed at a temperature of 700° C. or higher.
(3)前記導電体膜が2000Å以下の膜厚であること
を特徴とする特許請求の範囲第1項または第2項記載の
半導体集積回路用キャパシタ。
(3) A capacitor for a semiconductor integrated circuit according to claim 1 or 2, wherein the conductor film has a thickness of 2000 Å or less.
(4)前記導電体膜が多結晶シリコン膜であることを特
徴とする特許請求の範囲第1項から第3項までいづれか
記載の半導体集積回路用キャパシタ。
(4) A capacitor for a semiconductor integrated circuit according to any one of claims 1 to 3, wherein the conductor film is a polycrystalline silicon film.
JP60087283A 1985-04-23 1985-04-23 Capacitors for semiconductor integrated circuits Expired - Lifetime JPH0770684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087283A JPH0770684B2 (en) 1985-04-23 1985-04-23 Capacitors for semiconductor integrated circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087283A JPH0770684B2 (en) 1985-04-23 1985-04-23 Capacitors for semiconductor integrated circuits

Publications (2)

Publication Number Publication Date
JPS61245560A true JPS61245560A (en) 1986-10-31
JPH0770684B2 JPH0770684B2 (en) 1995-07-31

Family

ID=13910459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087283A Expired - Lifetime JPH0770684B2 (en) 1985-04-23 1985-04-23 Capacitors for semiconductor integrated circuits

Country Status (1)

Country Link
JP (1) JPH0770684B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252160A (en) * 1990-02-28 1991-11-11 Nec Corp Capacitor, capacitor network, and r-c network
JPH0917970A (en) * 1995-06-30 1997-01-17 Nec Corp Ferroelectrics capacity structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142642A (en) * 1980-04-07 1981-11-07 Fujitsu Ltd Manufacture of semiconductor device
JPS5861660A (en) * 1981-10-08 1983-04-12 Nec Corp Manufacture of semiconductor device
JPS59104156A (en) * 1982-12-07 1984-06-15 Toshiba Corp Multilayer capacitor
JPS59188963A (en) * 1983-04-12 1984-10-26 Nec Corp Semiconductor device
JPS609154A (en) * 1983-06-29 1985-01-18 Hitachi Ltd Semiconductor memory and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142642A (en) * 1980-04-07 1981-11-07 Fujitsu Ltd Manufacture of semiconductor device
JPS5861660A (en) * 1981-10-08 1983-04-12 Nec Corp Manufacture of semiconductor device
JPS59104156A (en) * 1982-12-07 1984-06-15 Toshiba Corp Multilayer capacitor
JPS59188963A (en) * 1983-04-12 1984-10-26 Nec Corp Semiconductor device
JPS609154A (en) * 1983-06-29 1985-01-18 Hitachi Ltd Semiconductor memory and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252160A (en) * 1990-02-28 1991-11-11 Nec Corp Capacitor, capacitor network, and r-c network
JPH0917970A (en) * 1995-06-30 1997-01-17 Nec Corp Ferroelectrics capacity structure

Also Published As

Publication number Publication date
JPH0770684B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US6146939A (en) Metal-polycrystalline silicon-N-well multiple layered capacitor
JP2826149B2 (en) Capacitor structure and monolithic voltage multiplier
US5420449A (en) Capacitor for a semiconductor device
JPS60153158A (en) Manufacture of semiconductor device
JPH0558266B2 (en)
JP2002184946A (en) Mim capacitor and its manufacturing method
JP2982855B2 (en) Semiconductor device and manufacturing method thereof
US7531862B2 (en) Semiconductor device having ferroelectric substance capacitor
JPH09260645A (en) Semiconductor device
JP2805765B2 (en) Semiconductor memory device
JPS61245560A (en) Capacitor for semiconductor integrated circuit
JPS5890755A (en) Semiconductor device
JPS6195563A (en) Semiconductor memory device
JPH02263467A (en) Storage device
JPH03142966A (en) Manufacture of semiconductor device
JPH0722578A (en) Laminated integrated semiconductor device and its manufacture
JPS59188963A (en) Semiconductor device
JP2891242B2 (en) Method for manufacturing semiconductor device
JPH0247862A (en) Semiconductor integrated circuit device
JPH0456264A (en) Semiconductor integrated circuit device
JPH02114532A (en) Semiconductor device
JPH02170462A (en) Semiconductor device
JPH07221271A (en) Passive element for semiconductor integrated circuit and its manufacture
JPS62174926A (en) Semiconductor device
JPS6022355A (en) Silicon gate mos integrated circuit device and manufacture of the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term