JPS5857391B2 - Silicon carbide refractory mixture - Google Patents

Silicon carbide refractory mixture

Info

Publication number
JPS5857391B2
JPS5857391B2 JP53130721A JP13072178A JPS5857391B2 JP S5857391 B2 JPS5857391 B2 JP S5857391B2 JP 53130721 A JP53130721 A JP 53130721A JP 13072178 A JP13072178 A JP 13072178A JP S5857391 B2 JPS5857391 B2 JP S5857391B2
Authority
JP
Japan
Prior art keywords
silicon carbide
porosity
refractory
raw material
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53130721A
Other languages
Japanese (ja)
Other versions
JPS5560070A (en
Inventor
晃 井上
輝行 西谷
信一 田村
利之 保木井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP53130721A priority Critical patent/JPS5857391B2/en
Publication of JPS5560070A publication Critical patent/JPS5560070A/en
Publication of JPS5857391B2 publication Critical patent/JPS5857391B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は化学成分が主として5iC80〜95wt%と
Si3〜17wt%かつSiCとSiの合量が92wt
%以上からなり、気孔率が8%以下の緻密質の炭化珪素
(以下特殊炭化珪素原料と称す)を配合してなり、不定
形耐火物として又は焼成耐火物として用い低気孔率で熱
間強度、耐食性および耐アルカリ性に優れた炭化珪素質
耐火混合物に関する。
DETAILED DESCRIPTION OF THE INVENTION The chemical components of the present invention are mainly 80 to 95 wt% of 5iC and 3 to 17 wt% of Si, and the total amount of SiC and Si is 92 wt%.
% or more and has a porosity of 8% or less (hereinafter referred to as special silicon carbide raw material), and is used as a monolithic refractory or as a fired refractory with low porosity and hot strength. , relates to a silicon carbide refractory mixture having excellent corrosion resistance and alkali resistance.

従来の炭化珪素質耐火物に用いられる炭化珪素原料は珪
砂、コークス等の配合物をアーチンソン抵抗電気炉で2
200〜2500℃に加熱し、SiO2+3C→SiC
+2CO↑の反応式で表わされる気相反応にて生成され
るもので、化学成分が主としてSiC80〜99wt%
、Si3〜17wt%、その他の不純物8wt%以下で
あり、8〜25%の気孔率を有する緻細結晶集合塊であ
る。
The silicon carbide raw material used for conventional silicon carbide refractories is a mixture of silica sand, coke, etc.
Heating to 200-2500℃, SiO2+3C→SiC
It is produced by a gas phase reaction expressed by the reaction formula +2CO↑, and the chemical component is mainly SiC80-99wt%.
, 3 to 17 wt% of Si, 8 wt% or less of other impurities, and a fine crystal aggregate having a porosity of 8 to 25%.

このような多孔質の従来炭化珪素原料では、3間以上の
SiC単結晶の粗大粒子が殆んど得られず、したがって
これを骨材として用いる炭化珪素質耐火物は粗粒子配合
の粒度構成が出来ずまた原料自体の気孔率も高いことか
ら、耐火物全体の気孔率を14%以下にすることは至難
である。
With such porous conventional silicon carbide raw materials, coarse particles of SiC single crystals with a size of 3 or more can hardly be obtained, and therefore, silicon carbide refractories using this as an aggregate have a particle size composition of coarse particles. Moreover, since the porosity of the raw material itself is high, it is extremely difficult to reduce the porosity of the entire refractory to 14% or less.

このため、従来の炭化珪素質耐火物の配合には一般に金
属珪素を添加し、炭化珪素原料中の遊離の炭素や、同時
に添加した炭素粉およびバインダーとしてのタール、ピ
ッチ類、フェノール樹脂などの炭素物質と還元雰囲気中
の焼成でマトリックス部をSi+C→βSiC化させて
強化を図っているが、骨材自体の特性は変らないことか
ら、本質的な改善には至っていない。
For this reason, metallic silicon is generally added to the formulation of conventional silicon carbide refractories, and free carbon in the silicon carbide raw material, carbon powder added at the same time, and carbon such as tar, pitch, and phenolic resin as binders are added. Although attempts have been made to strengthen the matrix by converting Si+C to βSiC using a substance and sintering in a reducing atmosphere, no substantial improvement has been achieved as the characteristics of the aggregate itself remain unchanged.

本発明は上記従来の問題を解決すべく種々研究を重ねた
結果、化学成分が主として5iC80〜95wt%とS
i 3〜17wt%とからなり、気孔率が8%以下の
低気孔率で、かつ粗大粒子が得られる特殊炭化珪素原料
を見出し本発明を完成するに至った。
The present invention was developed as a result of various researches to solve the above-mentioned conventional problems.
The present inventors have discovered a special silicon carbide raw material that has a low porosity of 8% or less and can produce coarse particles, and has completed the present invention.

本発明に用いるこの特殊炭化珪素原料は珪石をコークス
と混合して5i02+2cm+si+2co↑の還元反
応によって金属珪素を製造する電気炉の炉底に堆積する
副生品から得ることができる。
This special silicon carbide raw material used in the present invention can be obtained from a by-product deposited at the bottom of an electric furnace that mixes silica stone with coke and produces metallic silicon through the reduction reaction of 5i02+2cm+si+2co↑.

この副生品は炭素や金属珪素を含む雑多品であるため、
従来ではSiの多い部分は金属珪素の2級品に、その他
は溶銑、溶鋼の脱酸剤や加炭剤として使用されているに
すぎず、耐火物原料として使用された例はなかった。
This by-product is a miscellaneous product containing carbon and metal silicon, so
Conventionally, the Si-rich portion has been used only as a second grade silicon metal, and the rest has only been used as a deoxidizer or carburizer for hot metal or molten steel, and has never been used as a raw material for refractories.

本発明ではこの副生品のうちから、化学成分が主として
SiC80〜95wt%と、Si3〜17wt%とから
なり、1m1rL以上の粗大粒子の気孔率が8%以下の
ものを選択して用いる。
In the present invention, from among these by-products, those whose chemical components mainly consist of 80 to 95 wt% of SiC and 3 to 17 wt% of Si, and whose coarse particles of 1 m1 rL or more have a porosity of 8% or less are selected and used.

その選択方法は、電気炉中でこの化学成分割合の副生品
が生成する部位を一度確認すれば、次からは同じ部位か
ら採取することで容易に行える。
The selection method can be easily carried out by once confirming the location in the electric furnace where a by-product with this chemical component ratio is produced, and then collecting it from the same location next time.

また、色、結晶の発達度合を視覚的に判断することでも
行える。
It can also be done by visually judging the color and degree of crystal development.

本発明で用いる特殊炭化珪素は上記の副生品に限らず、
従来の炭化珪素に高温下で溶融した金属珪素を含浸する
ことによっても得られる。
The special silicon carbide used in the present invention is not limited to the above-mentioned byproducts,
It can also be obtained by impregnating conventional silicon carbide with molten metallic silicon at high temperatures.

この含浸は、例えば2000℃以下で溶融させた金属珪
素中に、炭化珪素の塊を浸漬して行う。
This impregnation is performed, for example, by immersing a lump of silicon carbide in metal silicon melted at 2000° C. or lower.

浸漬時間は塊の大きさにもよるが、例えば10Cr71
で約1時間とする。
The soaking time depends on the size of the lump, but for example, 10Cr71
It will take about 1 hour.

含浸後、冷却し塊を所望の粒度に粉砕して使用する。After impregnation, the mass is cooled and ground to the desired particle size for use.

従来の炭化珪素原料は、前記したとおり、その製造方法
により、気孔率が8%以上の集合塊であり、しかもその
ために1mm以上の状態では、SiC単結晶の粗大粒子
が得られず、粗大粒子を11n11L以下に粉砕しても
気孔率は8%以上になる。
As mentioned above, conventional silicon carbide raw materials are aggregates with a porosity of 8% or more due to the manufacturing method, and for this reason, when the porosity is 1 mm or more, coarse particles of SiC single crystal cannot be obtained, and coarse particles Even if it is crushed to 11n11L or less, the porosity will be 8% or more.

本発明で用いる特殊炭化珪素原料はSiを3〜17wt
%と多量に含有し、このSiがSiC結晶粒間の空隙部
を充填していることによって気孔率を下げ、1mm以上
の粗大粒子を得ることを可能にし、しいてはこれを配合
する炭化珪素質耐火物の耐食性、耐アルカリ性および熱
間強度等の特性を向上させるものである。
The special silicon carbide raw material used in the present invention contains 3 to 17 wt of Si.
%, and this Si fills the voids between SiC crystal grains, lowering the porosity and making it possible to obtain coarse particles of 1 mm or more. It improves properties such as corrosion resistance, alkali resistance, and hot strength of refractories.

なお、従来の炭化珪素原料もSiを含有しているが、こ
のSiはSiC化が出来ずに残留したもので、炭化珪素
原料の品質制御を意図したものではない。
Note that conventional silicon carbide raw materials also contain Si, but this Si remains because it cannot be converted into SiC, and is not intended for quality control of silicon carbide raw materials.

したがって、その割合も2.0wt%以下と微量であり
、この程度では本発明の耐火物の特性は当然得られない
Therefore, the proportion thereof is as small as 2.0 wt% or less, and the characteristics of the refractory of the present invention cannot be obtained at this level.

本発明で特殊炭化珪素の化学成分の割合と気孔率を限定
した理由はつぎのとおりである。
The reason why the ratio of chemical components and the porosity of special silicon carbide are limited in the present invention is as follows.

SiCが80wt%以下ではSiCのもつ耐食性、耐ア
ルカリ性および熱間強度を十分に発揮できず、95wt
%以上ではSiが所望の割合に達しない。
If SiC is less than 80wt%, the corrosion resistance, alkali resistance and hot strength of SiC cannot be fully exhibited;
% or more, Si will not reach the desired proportion.

Siが3wt%以下ではSiC結晶粒間の空隙を充填す
るのに不十分な量であり、また17wt%以上ではSi
がSiC結晶粒間から流出して溶損を促進することにな
り好ましくなく、最も適当なのは10〜14wt%であ
る。
If Si is less than 3wt%, it is insufficient to fill the voids between SiC grains, and if it is more than 17wt%, Si
is undesirable because it flows out from between the SiC crystal grains and promotes melting loss, and the most suitable content is 10 to 14 wt%.

1間以上の粗大粒子の気孔率を8%以下としたのは、そ
れ以上では効果が従来のものと変らなくなる。
The reason why the porosity of the coarse particles of 1 pore or more is set to 8% or less is that if the porosity is more than 8%, the effect will not be different from that of the conventional one.

1間以上の粗大粒子を20〜60wt%配合するのは炭
化珪素質耐火物の充填性を高め気孔率を低下させて強度
を高めるためである。
The reason for blending 20 to 60 wt % of coarse particles with a size of 1 mm or more is to increase the filling properties of the silicon carbide refractory, lower the porosity, and increase the strength.

20wt%以下および60wt%以上では密充填が得ら
れず耐食性が低下するためである。
This is because if the content is less than 20 wt% or more than 60 wt%, close packing cannot be obtained and the corrosion resistance decreases.

本発明の炭化珪素質耐火物は定形、不定形を問わず用い
られ、例えば高炉内張用レンガ、高炉用樋材、高炉出銑
口閉塞用マッド、高炉内張用不定形耐火物、熱風炉用内
張レンガ、均熱炉・加熱炉用耐火物および各種炉の補修
材等に適応できる。
The silicon carbide refractories of the present invention can be used regardless of whether they are fixed or unshaped, such as bricks for lining blast furnaces, gutter materials for blast furnaces, mud for closing tapholes in blast furnaces, monolithic refractories for lining blast furnaces, and hot blast furnaces. It can be applied to lining bricks, refractories for soaking furnaces and heating furnaces, and repair materials for various furnaces.

したがって、特殊炭化珪素原料に組合せる他の原料およ
び結合剤も、公知のものから耐火物に合せて調整する。
Therefore, other raw materials and binders to be combined with the special silicon carbide raw material are also adjusted from known ones to suit the refractory.

特殊炭化珪素と組合せて用いることができる他の耐火原
料の割合は、80%以下で、それ以上だと、特殊炭化珪
素原料配合による顕著な効果が得られない。
The proportion of other refractory raw materials that can be used in combination with special silicon carbide is 80% or less, and if it is more than that, no significant effect can be obtained by blending the special silicon carbide raw material.

他の耐火原料としては通常の炭化珪素、アルミナ、アル
ミナ−シリカ、マグネシア、ジルコン、ジルコニアの1
種以上が用いられる。
Other refractory raw materials include ordinary silicon carbide, alumina, alumina-silica, magnesia, zircon, and zirconia.
More than one species is used.

また、タール、ピッチ、フェノール樹脂、水、パルプ廃
液等の有機結合剤の添加量は10〜2wt%、カーボン
、メタルシリコン、フェロシリコン等その他の添加物は
20〜5wt%とする。
Further, the amount of organic binders such as tar, pitch, phenol resin, water, and pulp waste liquid added is 10 to 2 wt%, and the amount of other additives such as carbon, metal silicon, and ferrosilicon is 20 to 5 wt%.

本発明における耐火混合物は、カーボン、メタルシリコ
ン、フェロシリコン等の添加物のうち炭素粉を単独ある
いは他の耐火原料と組合せて配合することにより、この
炭素粉が特殊炭化珪素原料中のSi十C→βSiC反応
によってマl−IJラックス骨材との結合を強固にし、
耐火物の強度を高めると共にスラグ及びアルカリ蒸気に
対する抵抗性を向上させるものである。
The refractory mixture of the present invention is produced by blending carbon powder among additives such as carbon, metal silicon, ferrosilicon, etc. alone or in combination with other refractory raw materials, so that this carbon powder can be added to the Si + C in the special silicon carbide raw material. → Strengthen the bond with Mar-IJ lux aggregate by βSiC reaction,
It increases the strength of refractories and improves their resistance to slag and alkali vapor.

好ましい例としては炭素粉に加えてメタルシリコン、フ
ェロシリコン等を添加することにより、上記の反応をさ
らに高めて耐火物の物性値を一層向上させたものである
A preferred example is one in which metal silicon, ferrosilicon, etc. are added in addition to carbon powder to further enhance the above reaction and further improve the physical properties of the refractory.

次に、本発明の実施例を比較のための従来例とともに示
し、それぞれについて物性値を測定した結果を示す。
Next, examples of the present invention will be shown together with conventional examples for comparison, and the results of measuring physical property values for each will be shown.

本実施例および従来例で使用した炭化珪素の品質は次表
のとおりである。
The quality of silicon carbide used in this example and the conventional example is shown in the following table.

第2表に示す実施例1,2.3および従来例1は配合を
混練後500 kg/cI!の圧力にて114×230
X65間にプレス成形し、自然乾燥24hrs、加熱乾
燥140℃X24hrsして得た素地レンガをサヤに入
れてコークスで充填密閉し、1450℃の還元焼成を行
った。
In Examples 1, 2.3 and Conventional Example 1 shown in Table 2, the mixing ratio was 500 kg/cI! 114×230 at the pressure of
The green bricks obtained by press molding between X65 and air drying for 24 hrs and heat drying at 140° C. for 24 hrs were placed in a pod, filled with coke and sealed, and subjected to reduction firing at 1450° C.

その結果、本発明の実施例1,2.3は共に従来例1に
比較して低気孔率となり、圧縮強さおよび熱間曲げ強さ
の組織強度が大で、耐食性、耐アルカリ性にも優れた結
果を示した。
As a result, both Examples 1 and 2.3 of the present invention have lower porosity than Conventional Example 1, have higher structural strength in compressive strength and hot bending strength, and have excellent corrosion resistance and alkali resistance. The results were shown.

実施例3は特殊炭化珪素を20wt%配合し7たもので
あり、若干の効果は認められる。
Example 3 contains 20 wt% of special silicon carbide, and some effects are observed.

第3表に示す実施例4,5および従来例2,3は、振動
成形用不定形耐火物であり、物性値を測定するためにこ
の配合を混練i114X230X65mmの成形体が得
られる金型で振動成形し、自然乾燥120 hrs、加
熱乾燥115℃X 48 hrsを行なった後、サヤに
詰めてコークス充填して密閉し、1450℃の還元焼成
を行なって試験片を得た。
Examples 4 and 5 and Conventional Examples 2 and 3 shown in Table 3 are monolithic refractories for vibration molding, and in order to measure the physical properties, these formulations were kneaded and vibrated in a mold to obtain a molded product of 114 x 230 x 65 mm. After molding, air drying for 120 hrs, and heating drying at 115° C. for 48 hrs, it was packed in a pod, filled with coke, sealed, and subjected to reduction firing at 1450° C. to obtain a test piece.

物性値は同表に示すとおり、本発明実施例4は従来例2
に比べて低気孔率でしかも圧縮強さ、曲げ強さが大であ
り、耐食性、耐アルカリ性においても好結果が得られた
As shown in the table, the physical properties of Example 4 of the present invention are those of Conventional Example 2.
It has a lower porosity and higher compressive strength and bending strength than that of the steel, and good results were obtained in terms of corrosion resistance and alkali resistance.

以上のように、本発明の炭化珪素質耐火物は従来の炭化
珪素原料を使用して製造したものに比較して各種の物性
値が優れていることは明らかである。
As described above, it is clear that the silicon carbide refractory of the present invention has various physical property values superior to those manufactured using conventional silicon carbide raw materials.

すなわち、従来のものはその原料である炭化珪素がSi
C結晶粒間に空隙部を有し、外来侵入成分によって侵食
を受は易い組織となっている。
In other words, in conventional products, the raw material, silicon carbide, is Si.
It has a structure that has voids between the C crystal grains and is easily attacked by foreign components.

またこのように気孔率が高いことから31nN以上の粗
大粒子が得られず、粗粒子配合の粒度構成を組めないこ
とからも緻密質の耐火物が得られない。
In addition, due to the high porosity, coarse particles of 31 nN or more cannot be obtained, and a dense refractory cannot be obtained because a particle size structure containing coarse particles cannot be obtained.

これに対して本発明の耐火物は配合した特殊炭化珪素が
SiC結晶粒間の空隙部を金属珪素が充填し緻密質であ
り外来成分の侵食を防止し、さらに特殊炭化珪素が気孔
率8%以下の緻密質であることから3間以上の粗大粒子
が得られ、粗粒子配合の緻密な粒度構成が可能となり、
そのため熱間強度、耐食性、耐アルカリ性気孔率の低下
等は従来質のものに比べて著しく向上した。
On the other hand, the refractory of the present invention has a special silicon carbide compound that fills the voids between SiC crystal grains with metallic silicon, making it dense and preventing erosion of foreign components, and the special silicon carbide has a porosity of 8%. Due to the following denseness, coarse particles with a size of 3 or more can be obtained, making it possible to create a dense particle size structure with a coarse particle mixture.
As a result, hot strength, corrosion resistance, alkali-resistant porosity reduction, etc. are significantly improved compared to conventional materials.

以上の実施例では骨材として特殊炭化珪素原料のみを使
用しているが、従来の炭化珪素原料および他の公知の耐
火原料と組合せてもよい。
Although only the special silicon carbide raw material is used as the aggregate in the above embodiments, it may be combined with conventional silicon carbide raw materials and other known refractory raw materials.

さらに金属珪素、炭素粉などの添加剤、あるいは結合剤
も実施例のものに伺んら限定されるものではない。
Further, additives such as metal silicon and carbon powder, and binders are not limited to those in the examples.

Claims (1)

【特許請求の範囲】[Claims] 11皿以上の緻密質炭化珪素20〜60wt%と、残部
が耐火物原料からなる炭化珪素質耐火混合物において、
前記1ml!以上の緻密質炭化珪素の粒子の気孔率が8
%以下でかつ化学成分が5iC80〜95wt%、Si
3〜17wt%でSiCとSiの合量が92wt%以上
であることを特徴とする炭化珪素質耐火混合物。
In a silicon carbide refractory mixture consisting of 11 or more plates of 20 to 60 wt% of dense silicon carbide and the remainder being a refractory raw material,
Said 1ml! The porosity of the dense silicon carbide particles is 8
% or less and the chemical components are 5iC80-95wt%, Si
A silicon carbide refractory mixture characterized in that the total amount of SiC and Si is 92 wt% or more in a range of 3 to 17 wt%.
JP53130721A 1978-10-24 1978-10-24 Silicon carbide refractory mixture Expired JPS5857391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53130721A JPS5857391B2 (en) 1978-10-24 1978-10-24 Silicon carbide refractory mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53130721A JPS5857391B2 (en) 1978-10-24 1978-10-24 Silicon carbide refractory mixture

Publications (2)

Publication Number Publication Date
JPS5560070A JPS5560070A (en) 1980-05-06
JPS5857391B2 true JPS5857391B2 (en) 1983-12-20

Family

ID=15041033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53130721A Expired JPS5857391B2 (en) 1978-10-24 1978-10-24 Silicon carbide refractory mixture

Country Status (1)

Country Link
JP (1) JPS5857391B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03228871A (en) * 1990-01-31 1991-10-09 Ngk Insulators Ltd Starting material for silicon carbide-based refractory
JPH0791112B2 (en) * 1990-08-31 1995-10-04 日本碍子株式会社 SiC refractory
JPH0611272A (en) * 1992-06-25 1994-01-21 Ngk Insulators Ltd Si-sic sintered shelf board
JPH0782042A (en) * 1993-09-16 1995-03-28 Ngk Insulators Ltd Stay and shelf structure for baking furnace for ceramic article

Also Published As

Publication number Publication date
JPS5560070A (en) 1980-05-06

Similar Documents

Publication Publication Date Title
JPH0420871B2 (en)
JPS5857391B2 (en) Silicon carbide refractory mixture
JPH0463032B2 (en)
JP2617086B2 (en) Silicon carbide casting material
JP3617765B2 (en) Slide gate plate and manufacturing method thereof
JPH05262559A (en) Unburned carbon-containing brick
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JP3661958B2 (en) Refractory for casting
JPH068223B2 (en) Casting refractory material for blast furnace tappipe
RU2148049C1 (en) Spinel-periclase-carbonic refractory material
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use
JP2633018B2 (en) Carbon containing refractories
KR830001463B1 (en) Manufacturing method of fire brick
JP3783526B2 (en) Method for producing castable refractories containing waste material aggregate
JP3681673B2 (en) Unshaped refractory for blast furnace
JPS606305B2 (en) Manufacturing method of sialon matrix refractories
JPS5827232B2 (en) Monolithic refractories with excellent corrosion resistance
JPH0450178A (en) Ladle-lining carbon-containing amorphous refractories
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
SU881075A1 (en) Refractory mass for monolithic lining
JP3696149B2 (en) Blocking material for blast furnace exit hole
JP2000191364A (en) Shaped magnesia-chrome refractory
RU2223247C2 (en) Method of production of high-strength carbon- containing refractory material
JPH0421625B2 (en)
JPH10314904A (en) Continuous casting nozzle