JP3783526B2 - Method for producing castable refractories containing waste material aggregate - Google Patents
Method for producing castable refractories containing waste material aggregate Download PDFInfo
- Publication number
- JP3783526B2 JP3783526B2 JP2000151318A JP2000151318A JP3783526B2 JP 3783526 B2 JP3783526 B2 JP 3783526B2 JP 2000151318 A JP2000151318 A JP 2000151318A JP 2000151318 A JP2000151318 A JP 2000151318A JP 3783526 B2 JP3783526 B2 JP 3783526B2
- Authority
- JP
- Japan
- Prior art keywords
- refractory
- waste
- waste material
- refractories
- castable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Ceramic Products (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、キャスタブル耐火物、特に廃材となる耐火物(以下、廃材耐火物という)をリサイクルして配合したキャスタブル耐火物の製造方法に関する。
【0002】
ここに、キャスタブル耐火物は、製鋼用鋳造容器のタンディッシュや取鍋等の内張りに用いられ、あるいはブロック製品にて提供されるタンディッシュ堰、マスブロック、電炉蓋並びに溶銑、溶鋼の精練処理に使用されるランスパイプ、シュノーケル等の製造に用いられる不定形耐火物である。
【0003】
【従来の技術】
キャスタブル耐火物には、アルミナ超微粉やシリカ超微粉の結合材や分散剤が添加されており、それに伴うアルミナセメントの減少、添加水分量の減少により、焼成処理した定形耐火物とほぼ同等に高強度で緻密な組織となり耐熱性や耐食性が著しく向上したものとなっている。かかるキャスタブル耐火物は、現在においては、製鉄、製鋼の各工程において溶湯が直接に接触し、溶湯による侵食を受ける部材にも使用されるに至っている。
【0004】
また、近年開発されたカーボンを含有したキャスタブル耐火物はその優れた耐食性からキャスタブル耐火物の適用範囲をさらに拡大し、LFや取鍋のスラグライン部への採用や溶鋼精錬用の各種部材において使用されている。
【0005】
【発明の解決すべき課題】
しかし、緻密な組織形成のための結合材としての超微粉原料の添加や分散剤による低水分化はキャスタブル耐火物の優れた特徴である耐熱衝撃性を低下させるという不具合を生ずる結果となる。
【0006】
この原因としては、低水分化を得るために添加される5ミクロン以下のアルミナやシリカの超微粉原料が加熱されることで磁器化ならびにガラス化するためである。
【0007】
一方、カーボン含有キャスタブル耐火物の場合、流動性が極端に低下するために現在の技術において天然黒鉛の添加は困難で、そのために人工のピッチ粉末やカーボンブラックの添加が大勢を占め、そのために多量の酸化抑制剤を同時に添加する必要がある。そしてそのような酸化抑制剤として超微粉のSiC原料や金属Al、SiならびにB4C 等の高価な原料を多量に添加させざるを得ない状況が発生し、材料コストを引き上げる原因となっていた。
【0008】
ところで、地球環境的な観点から各種廃材のリサイクル化は、現在多種分野で最も真剣に検討されているテーマであり、現在まで廃棄するいっぽうであった使用済み耐火物の活用も今後メーカやユーザサイドが責任をもって取り組むべき問題点としてクローズアップされている。
【0009】
この点に関して、従来にあっても、特開平9−278541号、同9−278542号、同9−278549号各公報では、炭素含有廃材耐火物を1 〜50mmの粒径に加工したものを5〜30重量%添加するという提案がなされている。
【0010】
しかし、5〜30重量%添加量では、十分な有効活用とは言い難く、少なくとも30質量%、好ましくは50重量%以上の添加がなされてこそ初めて廃材の有効活用や耐火物コストの削減に実用上の意義を有することになる。
【0011】
ここに、カーボン含有キャスタブル耐火物の場合、廃材耐火物の添加量が増加するに従いキャスタブル耐火物の強度低下や耐用寿命の著しい低下を招く結果となり、十分な耐用寿命が得られるような対策が必要であることが判明した。
【0012】
したがって、本発明の課題は、キャスタブル耐火物の適用範囲を拡大するとともに、資源リサイクルの問題をも解決する新しい技術を開発することである。
より具体的には、本発明の課題は、廃材耐火物の原料としての有効活用を促すと共に、そのような廃材耐火物を多量に添加することにより、低コストでなおかつ従来のキャスタブル耐火物のもつ耐熱性や耐食性ならびに耐熱衝撃性を上回る特性を有するキャスタブル耐火物の製造方法を提供することである。
【0013】
【課題を解決すべき手段】
本発明者らは、廃材耐火物を原料として多量に利用したキャスタブル耐火物を提供するために種々検討を重ね次のような知見を得た。なお、以下において廃材耐火物は原料骨材として用いることから「廃材原料骨材」と称する。
(1) 0.25〜10mmの粒状に粉砕した廃材原料骨材の添加により、キャスタブル耐火物の耐熱衝撃性と耐食性を大きく向上させることが可能となる。
【0014】
廃材原料骨材中に含有されているカーボンは、溶鋼やスラグに濡れ難い特性があり耐熱衝撃性にも優れるという特性を有している。
通常、カーボン含有キャスタブル耐火物へ添加されるカーボン原料としては、微粉末状のピッチやカーボンブラックが使用されるが、本発明では使用後Al2O3-C 質耐火物廃材に含有されているカーボンをより好適な状態で再利用化するためとリサイクルされず廃棄される廃材耐火物の量を極力減少させるための手法として、0.25〜10mmの粒状に粉砕したものが添加される。好ましくは、0.25〜2mm の細粒と5〜10mmの粗粒とを混合したものが好ましい。
(2) しかし、そのようなカーボンの酸化による強度低下がみられるため酸化を抑制する必要がある。耐火物の骨材としてAl2O3-C 質廃材原料骨材を、前述したように粗粒の状態で添加すると、酸化抑制剤は0.1 〜0.5 質量%程度と微量の添加にて十分な効力を発揮できる。
【0015】
すなわち、ピッチやカーボンブラック等の粉末状のカーボンは、耐火物使用時に酸化してしまう傾向にあり、そのような酸化を防ぐために超微粉のSiC や金属Al、SiならびにB4C 等の高価な酸化抑制剤を多量添加する必要がある。その場合、酸化抑制剤の添加量が少なかったりまた無添加であった場合は酸化による強度低下が発生し極端な耐食性低下を来すという不具合が生ずる。
【0016】
しかし、本発明において耐火物の廃材原料骨材として添加されるAl2O3-C 質の廃材原料骨材は前述したように粗粒の状態で添加され、上述の酸化抑制剤は単独もしくは混合により0.1 〜0.5 重量%程度と微量の添加にて十分な効力を発揮できる。
(3) そのような微量の酸化抑制剤の添加により、キャスタブル耐火物が使用されている段階で、廃材原料骨材の表層面に耐食性に影響を来さない程度の酸化現象が起こり、かかる表面酸化によりキャスタブル耐火物のマトリックスと廃材原料骨材との間に空隙が作られ、この空隙が耐火物の弾性率を低下させ、使用時のキャスタブル耐火物に発生する熱応力を緩和し、亀裂の発生や伝播を減少させる作用を促し耐熱衝撃性に非常に優れるキャスタブル耐火物を提供することが可能となる。
【0017】
耐熱衝撃性が強く要求される用途においては、多量の廃材原料骨材の配合と微量の酸化抑制剤の配合というこの手法がより良好な効果を生むことは、実際に確認されている。
(4) カーボン含有廃材耐火物を用いることにより、廃材原料骨材中のカーボンが地金やスラグの浸潤防止に著しい作用をもたらし、外来成分の浸潤から発生する構造的スポーリングの防止や耐食性の向上に著しい効果をもたらす。
【0018】
本発明は、かかる知見に基づいて完成されたものであって、その趣旨は次の通りである。
(1)粒径5〜10mmの粗粒と、粒径0.25〜2mmの細粒とから成るAl 2 O 3 −C質廃材原料骨材を30〜70質量%配合することを特徴とするキャスタブル耐火物の製造方法。
(2)前記粗粒と細粒との混合比(質量比)は、細粒/粗粒=0.2〜1.5である上記(1)記載のキャスタブル耐火物の製造方法。
(3)酸化抑制剤を0.1〜0.5質量%配合する上記( 1 )または( 2 )記載のキャスタブル耐火物の製造方法。
(4)前記Al 2 O 3 −C質廃材原料骨材を50〜70質量%配合することを特徴とする上記(1)ないし(3)のいずれかに記載のキャスタブル耐火物の製造方法。
【0019】
ここに、本明細書において、カーボン含有廃材原料骨材とは、カーボンを含有する廃材耐火物に由来するものであればいずれであっても特に制限はしないが、より特定的には、廃材耐火物としては、製鋼鋳造時に流量調整のために使用されるAl2O3−C質のスライドゲート用耐火物を指し、使用後のフープ(金物枠)や断熱材を取り外した、場合によって付着している地金やスラグを除去したものである。「カーボン含有」の形態はカーボン含有耐火物に由来する廃材耐火物におけるそれであり、廃材耐火物に別途ピッチ粉末およびカーボンブラックを添加することによる「カーボン含有」を意味しない趣旨である。このときカーボン含有量も特に制限なく、例えば5〜20質量%であり、従来より使われているカーボン含有耐火物の廃材耐火物をそのまま使用すればよい。
【0020】
【発明の実施の形態】
次に、本発明においてキャスタブル耐火物の組成を上述のように規定した理由について説明する。
【0021】
廃材原料骨材は、例えば、使用後のスライドゲート用耐火物からフープ (金物枠) や断熱材を取り外した後、付着している地金やスラグを除去してから所定粒度に粉砕されて用意される。
【0022】
フープや断熱材の取り外しや地金、スラグの除去ならびに粉砕等に要する費用が必要となるものの、原料単価は同等の成分を有する原料と比較した場合、約1/2 〜1/3 程度で、これをリサイクル化して再びキャスタブル耐火物として用いた場合、廃材耐火物を用いずに調製したキャスタブル耐火物に比較して同等以上の耐用寿命が得られることが確認されていることから、本発明にかかる方法は廃材耐火物の非常に有効な活用方法の一例と言える。
【0023】
まず、このような廃材原料骨材を破砕して用いるが、そのとき、粒径10〜0.25mmに粉砕されたものが使用される。
上記の粒径に定めた理由は、粒径が0.25mm未満の骨材では、やはり使用中の酸化により耐食性の向上に良好な成果が得られないために、酸化抑制剤を多量に必要とする結果となり、低コストの製品を提供するという本発明の課題が達成されないからである。
【0024】
また、粒径が10mm超となるとキャスタブル耐火物の施工体中に、均一に分布させることが困難となり骨材の沈降や偏りにより良好な成果が得られにくいことと、ランス、シュノーケル等の施工の場合、成形体の補強材として用いる金属製丸棒や金網等に骨材が堆積して良好な充填性が得られないためである。
【0025】
廃材原料骨材は、上記粒径の何れかが単独もしくは混合にて使用され、その添加量は30〜70質量%、好ましくは50〜70質量%の範囲内にて添加される。
廃材原料骨材の添加量が30重量%未満では、前述した廃材耐火物の有効利用という効果が十分に発揮されず、耐食性と耐熱衝撃性に期待する効果が得られない。一方、70重量%超だと含有するカーボンの分散性が十分でなくなり流動性が著しく低下し、キャスタブル耐火物の特性を損ねるからである。
【0026】
さらに本発明の好適態様にあっては、上記廃材原料骨材の粒度構成を、粒径5〜10mmの粗粒と、粒径0.25〜2mmの細粒との混合物とする。このときの粗粒と細粒との混合比( 質量比) は、特に制限はないが、好ましくは細粒/粗粒=0.2 〜1.5 である。
【0027】
本発明においては廃材耐火物はカーボンを含有するものに制限されるが、それは、ピッチあるいはカーボンブラック等のカーボンを廃材利用の時点で原料に配合すると、すでに述べたように、耐衝撃性の低下をもたらすからである。
【0028】
このような廃材耐火物を原料として構成した骨材を用いたキャスタブル耐火物へは、同時に次のような材料が配合される。
つまり、アルミナ骨材のような追加の耐火性骨材、超微粉金属シリコンのような酸化抑制剤、アルミナセメントのような結合材、さらに分散材である。
【0029】
ここに、追加の耐火性骨材としては、アルミナ、シャモット、ムライト、マグネシア、炭化珪素等が例示される。追加の耐火性骨材の好適配合量は、10〜50質量%である。
【0030】
酸化抑制剤としては、金属シリコンや金属アルミニウムならびにSiC 超微粉、B4C が例示される。酸化抑制剤の好適配合量は、0.1 〜0.5 質量%である。
結合材としては、強度発現や流動性付与を目的としたアルミナセメントやマイクロシリカ、10μm以下の超微粉アルミナ原料が例示される。ただし、アルミナセメントだけでは900 ℃という高温での強度が低下することがあり、その場合には超微粉アルミナを配合することが好ましい。また、マイクロシリカの配合はガラス化をもたらし骨材を保護し強度上昇に寄与する。これらの結合材の好適配合量は、10〜30質量%である。
【0031】
これら原料の分散を促進させるための分散剤として縮合リン酸ソーダやポリカルボン酸塩等が微量添加される。この分散剤の好適配合量は、0.05〜0.2 質量%である。
【0032】
かくして、本発明によれば、廃材耐火物のリサイクル化が効率的に行われるのであって、しかもキャスタブル耐火物への配合量も30〜70質量%と比較的高く、大量の廃材耐火物のリサイクルが可能となるという優れた効果を発揮できる。
【0033】
【実施例】
表1に、本例において使用した、スライドゲートからの廃材耐火物の組成例を示す。
【0034】
表2は、実施例および比較例について、上記廃材耐火物を粉砕して得た廃材原料骨材を添加したキャスタブル耐火物の組成、粒径、特性評価の結果をそれぞれまとめて示す。
実施例1〜5
本例では、追加の耐火性骨材として、アルミナ、ムライト、シャモット、マグネシア、炭化珪素原料の1種以上を用いた。この耐火性骨材に結合材としてアルミナ微粉および/またはシリカ微粉配合し、さらに酸化抑制剤として金属シリコン、アルミニウム、超微粉SiC 原料を用い、これらの混合粉体に対する結合材としてさらにアルミナセメント添加した。
【0035】
得られた混合粉体には、粒径0.25〜10mmに粉砕した各割合の廃材原料骨材を組合せ、所定水量にて混練し供試体を得た。
各供試体に900 ℃、1300℃の加熱処理による焼成を行った後、気孔率、曲げ強さを測定した結果、従来と変わらぬ特性が得られると共に、1400℃加熱冷却によるスポーリング試験では15回以上繰り返し行っても試験片が剥離脱落することはなかった。
【0036】
本発明による廃材原料骨材の添加の効果を確認するために、実施例4に示した組成の耐火物を製鋼用精錬ランス耐火材として実際の使用に供した。
従来品が亀裂の発生とスラグライン部溶損により7〜10回程度で廃却されていたのに対し、本発明品の結果は20回、18回と2倍以上の耐用が得られ、本発明の効果を十分確認することができた。
比較例1〜5
比較例1〜5も実施例と同様の条件にて作成し供試体を得た。
【0037】
比較例1、2は、ピッチやカーボンブラックを添加したが、廃材原料骨材を添加していない、あるいは実質上添加していない場合を示す。これらの例では強度特性や耐スポーリング性ならびに耐食性において良好な結果が得られるものの、金属Alや超微粉の炭化珪素原料の添加を必要とすることから、製品コストが高くなり本発明例の結果と比較すると必ずしも満足のいく結果とは言えない。
【0038】
比較例3、4は、本発明例の場合と粒径が異なる廃材原料骨材を添加した場合を示す。
比較例3では流動特性に欠如し同時に耐スポーリング性と耐食性にも劣る結果となった。
【0039】
比較例4では、15回の耐スポーリング性が得られたものの耐食性に著しく劣る結果となった。
比較例5は、粒度構成の異なる廃材原料骨材を添加した場合を示す。比較例5では、耐スポーリング性には優れるものの耐食性は実施例と比較すると低位であった。
【0040】
【表1】
【0041】
【表2】
【0042】
【発明の効果】
本発明によれば、キャスタブル耐火物の優れた特性である強度特性や耐熱衝撃性を損なうことなく、耐食性を著しく向上させることが可能となり、低コストでありながらランスパイプやシュノーケルの耐用性が著しく向上、原単位の向上に著しく効果を得るという結果が得られた。
【0043】
さらに、何百トン/月と発生する廃棄物が有効に活用され、地球環境保護が叫ばれている昨今、廃材耐火物の再生使用比率が極めて大きい本発明は、環境汚染防止や資源の再生活用に十分な効果をもたらすものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a castable refractory, in which a refractory that becomes a waste material (especially, a waste refractory) is recycled and blended.
[0002]
Here, castable refractories are used for lining of tundish and ladle for casting containers for steel making, or for scouring of tundish weirs, mass blocks, electric furnace lids and hot metal and molten steel provided by block products. It is an irregular refractory used in the manufacture of lance pipes and snorkels.
[0003]
[Prior art]
Castable refractories are added with binders and dispersants of alumina ultrafine powder and silica ultrafine powder, and due to the decrease in alumina cement and the amount of added water, the castable refractories are almost as high as regular fired fixed refractories. The structure is strong and dense, and the heat resistance and corrosion resistance are significantly improved. At present, such castable refractories have come to be used for members that are directly in contact with the molten metal in the respective processes of iron making and steel making, and that are subject to erosion by the molten metal.
[0004]
In addition, recently developed castable refractories containing carbon expand the range of application of castable refractories due to their excellent corrosion resistance, and are used in LF and ladle slag line parts and in various steel refining parts. Has been.
[0005]
Problems to be Solved by the Invention
However, the addition of ultrafine powder raw material as a binder for forming a dense structure and the reduction of moisture by a dispersant result in a problem that the thermal shock resistance, which is an excellent feature of castable refractories, is lowered.
[0006]
This is because the ultrafine powder material of alumina or silica of 5 microns or less added to obtain low moisture is heated to become porcelain and vitrified.
[0007]
On the other hand, in the case of carbon-containing castable refractories, the addition of natural graphite is difficult in the current technology due to the extremely low fluidity. It is necessary to add the oxidation inhibitor simultaneously. And as such an oxidation inhibitor, a situation has arisen in which a large amount of ultrafine powdered SiC raw material and metal, Al, Si and B 4 C and other expensive raw materials have to be added, which has been the cause of raising the material cost. .
[0008]
By the way, the recycling of various waste materials from the viewpoint of the global environment is the theme that has been most seriously studied in various fields, and the use of used refractories that had been disposed of up to now will also be used by manufacturers and users in the future. Has been highlighted as a problem to be addressed responsibly.
[0009]
Regarding this point, even in the prior art, in Japanese Patent Laid-Open Nos. 9-278541, 9-278542, and 9-278549, a carbon-containing waste material refractory processed to a particle size of 1 to 50 mm is used. Proposals have been made to add ˜30% by weight.
[0010]
However, the addition amount of 5 to 30% by weight is not said to be sufficient effective use, and it is practical for effective use of waste materials and reduction of refractory costs only when addition of at least 30% by weight, preferably 50% by weight or more is made. It has the above significance.
[0011]
Here, in the case of carbon-containing castable refractories, as the amount of waste refractory added increases, the strength of castable refractories will be reduced and the service life will be significantly reduced, and measures must be taken to ensure sufficient service life. It turned out to be.
[0012]
Accordingly, an object of the present invention is to develop a new technique that expands the scope of application of castable refractories and solves the problem of resource recycling.
More specifically, the problem of the present invention is to promote effective utilization as a raw material for waste refractories, and to add a large amount of such waste refractories, so that the conventional castable refractories have low cost. It is to provide a method for producing a castable refractory having characteristics exceeding heat resistance, corrosion resistance and thermal shock resistance.
[0013]
[Means to solve the problem]
The present inventors have made various studies in order to provide a castable refractory that uses a large amount of waste refractory as a raw material, and have obtained the following knowledge. In the following, the waste refractory is referred to as “waste material aggregate” because it is used as the raw material aggregate.
(1) By adding waste material aggregates crushed to a particle size of 0.25 to 10 mm, the thermal shock resistance and corrosion resistance of castable refractories can be greatly improved.
[0014]
Carbon contained in the waste material aggregate has characteristics that it is difficult to get wet with molten steel and slag and has excellent thermal shock resistance.
Normally, fine powder pitch or carbon black is used as a carbon raw material to be added to a carbon-containing castable refractory, but in the present invention, it is contained in Al 2 O 3 -C quality refractory waste after use. As a technique for reusing carbon in a more favorable state and for reducing the amount of waste refractory that is not recycled and discarded as much as possible, pulverized 0.25 to 10 mm particles are added. A mixture of fine particles of 0.25 to 2 mm and coarse particles of 5 to 10 mm is preferable.
(2) However, it is necessary to suppress the oxidation because of such a decrease in strength due to the oxidation of carbon. Addition of raw material aggregate of Al 2 O 3 -C waste as a refractory aggregate in the state of coarse particles as mentioned above, the oxidation inhibitor is about 0.1 to 0.5% by mass, and a sufficient amount of addition is possible with a small amount of addition. Can be demonstrated.
[0015]
That is, powdery carbon such as pitch and carbon black tends to oxidize when using refractories, and in order to prevent such oxidation, expensive powders such as ultrafine SiC, metal Al, Si and B 4 C are used. It is necessary to add a large amount of an oxidation inhibitor. In that case, when the addition amount of the oxidation inhibitor is small or not added, there is a problem that the strength is reduced due to the oxidation and the corrosion resistance is extremely lowered.
[0016]
However, the Al 2 O 3 -C quality waste material aggregate added as a refractory waste material aggregate in the present invention is added in a coarse state as described above, and the above-mentioned oxidation inhibitor is used alone or in combination. Therefore, sufficient effects can be exhibited with addition of a small amount of about 0.1 to 0.5% by weight.
(3) By adding such a small amount of an oxidation inhibitor, an oxidation phenomenon that does not affect the corrosion resistance occurs on the surface layer of the waste material aggregate when the castable refractory is used, and this surface Oxidation creates a gap between the castable refractory matrix and the waste material aggregate, which reduces the elastic modulus of the refractory, relieves the thermal stress generated in the castable refractory during use, It becomes possible to provide a castable refractory that promotes the action of reducing generation and propagation and is extremely excellent in thermal shock resistance.
[0017]
In applications where thermal shock resistance is strongly required, it has been confirmed that this method of blending a large amount of waste material aggregate and a small amount of oxidation inhibitor produces a better effect.
(4) By using carbon-containing waste refractories, the carbon in the aggregate of waste materials has a significant effect on the prevention of infiltration of bullion and slag, and prevents structural spalling caused by infiltration of foreign components and corrosion resistance. Has a significant effect on improvement.
[0018]
The present invention has been completed based on such knowledge, and the gist thereof is as follows.
(1) 30 to 70% by mass of an Al 2 O 3 —C quality waste material aggregate composed of coarse particles having a particle size of 5 to 10 mm and fine particles having a particle size of 0.25 to 2 mm is characterized. Castable refractory manufacturing method .
(2) The method for producing a castable refractory according to the above (1), wherein a mixing ratio (mass ratio) of the coarse particles and fine particles is fine particles / coarse particles = 0.2 to 1.5.
(3) The method for producing a castable refractory according to ( 1 ) or ( 2 ) , wherein 0.1 to 0.5% by mass of an oxidation inhibitor is blended.
(4) The method for producing a castable refractory according to any one of (1) to (3) above , wherein 50 to 70% by mass of the Al 2 O 3 —C waste material aggregate is mixed .
[0019]
Here, in the present specification, the carbon-containing waste material aggregate is not particularly limited as long as it is derived from carbon-containing waste refractory, but more specifically, waste material refractory. As a thing, it refers to the refractory of Al 2 O 3 -C quality slide gate used for flow rate adjustment at the time of steelmaking casting, and the hoop (hardware frame) and the heat insulating material after use are removed. The bullion and slag are removed. The form of “carbon-containing” is that in waste refractories derived from carbon-containing refractories, and does not mean “carbon-containing” by adding pitch powder and carbon black separately to the waste refractories. At this time, the carbon content is not particularly limited, and is, for example, 5 to 20% by mass, and a conventionally used carbon refractory waste refractory may be used as it is.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reason why the composition of the castable refractory is specified as described above in the present invention will be described.
[0021]
For example, waste material aggregate is prepared by removing hoops (hardware frames) and heat insulating materials from slide gate refractories after use, then removing the attached metal and slag, and then pulverizing them to a predetermined particle size. Is done.
[0022]
Although the cost required for removal of hoops and insulation, bare metal, slag removal and grinding, etc. is required, the unit price of raw materials is about 1/2 to 1/3 compared to raw materials with equivalent components. When this is recycled and used again as a castable refractory, it has been confirmed that a service life equal to or greater than that of a castable refractory prepared without using waste refractories can be obtained. Such a method can be said to be an example of a very effective utilization method of waste refractories.
[0023]
First, such waste material raw material aggregate is crushed and used. At that time, a pulverized one having a particle size of 10 to 0.25 mm is used.
The reason for determining the above particle size is that aggregates with a particle size of less than 0.25 mm require a large amount of an oxidation inhibitor because good results in improving corrosion resistance cannot be obtained due to oxidation during use. As a result, the problem of the present invention of providing a low-cost product is not achieved.
[0024]
Also, if the particle size exceeds 10 mm, it will be difficult to distribute evenly in the castable refractory construction body, and it will be difficult to obtain good results due to sedimentation and bias of the aggregate, and construction of lances, snorkels, etc. In this case, the aggregate is deposited on a metal round bar or a wire net used as a reinforcing material of the molded body, and good filling properties cannot be obtained.
[0025]
Any of the above particle diameters is used alone or in mixture for the waste material aggregate. The addition amount is 30 to 70% by mass, preferably 50 to 70% by mass.
If the added amount of the waste material aggregate is less than 30% by weight, the above-mentioned effect of effectively using the waste refractory is not sufficiently exhibited, and the expected effect on the corrosion resistance and the thermal shock resistance cannot be obtained. On the other hand, if it exceeds 70% by weight, the dispersibility of the contained carbon becomes insufficient and the fluidity is remarkably lowered, and the characteristics of the castable refractory are impaired.
[0026]
Furthermore, in a preferred embodiment of the present invention, the above-mentioned waste material aggregate is composed of a mixture of coarse particles having a particle size of 5 to 10 mm and fine particles having a particle size of 0.25 to 2 mm. The mixing ratio (mass ratio) of the coarse particles and fine particles at this time is not particularly limited, but is preferably fine particles / coarse particles = 0.2 to 1.5.
[0027]
In the present invention, the waste refractories are limited to those containing carbon. However, as described above, when carbon such as pitch or carbon black is mixed with the raw material at the time of using the waste material, the impact resistance is lowered. Because it brings.
[0028]
The following materials are blended simultaneously with the castable refractory using the aggregate composed of such a waste refractory as a raw material.
That is, additional refractory aggregates such as alumina aggregates, oxidation inhibitors such as ultrafine metal silicon, binders such as alumina cement, and dispersions.
[0029]
Here, examples of the additional refractory aggregate include alumina, chamotte, mullite, magnesia, and silicon carbide. The preferred blending amount of the additional refractory aggregate is 10-50% by weight.
[0030]
Examples of the oxidation inhibitor include metallic silicon, metallic aluminum, SiC ultrafine powder, and B 4 C. A suitable blending amount of the oxidation inhibitor is 0.1 to 0.5% by mass.
Examples of the binder include alumina cement and microsilica for the purpose of strength development and fluidity imparting, and ultrafine alumina raw material of 10 μm or less. However, the strength at a high temperature of 900 ° C. may be lowered with only alumina cement, and in such a case, it is preferable to add ultrafine alumina. In addition, the compounding of microsilica causes vitrification, protects the aggregate and contributes to an increase in strength. A suitable blending amount of these binders is 10 to 30% by mass.
[0031]
A small amount of condensed sodium phosphate, polycarboxylate, or the like is added as a dispersant for promoting the dispersion of these raw materials. A suitable blending amount of this dispersant is 0.05 to 0.2% by mass.
[0032]
Thus, according to the present invention, the waste refractory is efficiently recycled, and the blended amount in the castable refractory is relatively high at 30 to 70% by mass, and a large amount of waste refractory is recycled. It is possible to exert an excellent effect that is possible.
[0033]
【Example】
Table 1 shows a composition example of waste refractories from the slide gate used in this example.
[0034]
Table 2 summarizes the composition, particle size, and property evaluation results of the castable refractories to which the waste raw material aggregate obtained by pulverizing the above waste refractory was added for the examples and comparative examples.
Examples 1-5
In this example, one or more of alumina, mullite, chamotte, magnesia, and silicon carbide raw material were used as the additional fireproof aggregate. This refractory aggregate is mixed with fine alumina powder and / or fine silica powder as a binder, further using metallic silicon, aluminum and ultrafine SiC raw materials as oxidation inhibitors, and further added with alumina cement as a binder for these mixed powders. .
[0035]
The obtained mixed powder was combined with the raw material aggregates of the respective proportions pulverized to a particle size of 0.25 to 10 mm, and kneaded with a predetermined amount of water to obtain a specimen.
Each specimen was baked by heat treatment at 900 ° C and 1300 ° C, and the porosity and bending strength were measured. As a result, the same characteristics as before were obtained, and in the spalling test by heating and cooling at 1400 ° C, 15% was obtained. The test piece was not peeled off even when the test was repeated more than once.
[0036]
In order to confirm the effect of the addition of the waste material aggregate according to the present invention, the refractory having the composition shown in Example 4 was subjected to actual use as a refining lance refractory for steelmaking.
Whereas the previous product was discarded about 7 to 10 times due to cracks and slag line melted, the results of the product of the present invention were 20 times and 18 times more than twice as long. The effect of the invention could be fully confirmed.
Comparative Examples 1-5
Comparative Examples 1 to 5 were also prepared under the same conditions as in the Examples to obtain specimens.
[0037]
Comparative Examples 1 and 2 show the case where pitch or carbon black was added, but no waste material aggregate was added or substantially added. These examples give good results in strength properties, spalling resistance and corrosion resistance, but require the addition of metal Al or ultrafine silicon carbide raw material, resulting in higher product costs and results of the present invention example. Is not always a satisfactory result.
[0038]
Comparative examples 3 and 4 show the case where waste material aggregates having different particle sizes from those of the present invention example are added.
In Comparative Example 3, the flow characteristics were lacking, and at the same time, the spalling resistance and the corrosion resistance were inferior.
[0039]
In Comparative Example 4, although 15 times spalling resistance was obtained, the corrosion resistance was remarkably inferior.
Comparative Example 5 shows a case where waste material aggregates having different particle size configurations are added. In Comparative Example 5, although the spalling resistance was excellent, the corrosion resistance was lower than that of the example.
[0040]
[Table 1]
[0041]
[Table 2]
[0042]
【The invention's effect】
According to the present invention, it is possible to remarkably improve corrosion resistance without impairing strength characteristics and thermal shock resistance, which are excellent characteristics of castable refractories, and the durability of lance pipes and snorkels is remarkably reduced at a low cost. The result that a remarkable effect was acquired in improvement and improvement of a basic unit was obtained.
[0043]
Furthermore, the waste generated at hundreds of tons / month has been used effectively, and the protection of the global environment has been screamed in recent years. The present invention has an extremely large recycling ratio of waste refractories. It has a sufficient effect.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000151318A JP3783526B2 (en) | 2000-05-23 | 2000-05-23 | Method for producing castable refractories containing waste material aggregate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000151318A JP3783526B2 (en) | 2000-05-23 | 2000-05-23 | Method for producing castable refractories containing waste material aggregate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001335377A JP2001335377A (en) | 2001-12-04 |
JP3783526B2 true JP3783526B2 (en) | 2006-06-07 |
Family
ID=18656898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000151318A Expired - Fee Related JP3783526B2 (en) | 2000-05-23 | 2000-05-23 | Method for producing castable refractories containing waste material aggregate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3783526B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4572521B2 (en) * | 2003-10-06 | 2010-11-04 | 住友金属工業株式会社 | Castable refractories, manufacturing method thereof and lance pipe |
JP5168080B2 (en) * | 2008-10-22 | 2013-03-21 | Jfeスチール株式会社 | Unshaped refractories for vertical furnaces |
-
2000
- 2000-05-23 JP JP2000151318A patent/JP3783526B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001335377A (en) | 2001-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017007901A (en) | Spinel-magnesia-carbonaceous brick | |
JP2018184315A (en) | Carbon-containing castable refractory and method for producing carbon-containing castable refractory | |
JP4572521B2 (en) | Castable refractories, manufacturing method thereof and lance pipe | |
JP3952332B2 (en) | Graphite-containing amorphous refractory material for chaotic vehicles | |
JP2920726B2 (en) | Cast refractories | |
JP5073791B2 (en) | Alumina-magnesia refractory brick and method for producing the same | |
JP2001114571A (en) | Castable refractory for trough of blast furnace | |
JP3783526B2 (en) | Method for producing castable refractories containing waste material aggregate | |
JP2874831B2 (en) | Refractory for pouring | |
JP2002201080A (en) | Using method of scrap refractory and castable refractory | |
JP5341135B2 (en) | Alumina-magnesia casting material and method for producing the same | |
KR100461737B1 (en) | Ramming refractories for molten trough cover of blast furnace | |
US20170081244A1 (en) | Unshaped refractory material | |
JPH08157267A (en) | Castable refractory for flow-in execution | |
JP4450423B2 (en) | Indeterminate refractories for casting construction | |
JPH068223B2 (en) | Casting refractory material for blast furnace tappipe | |
JP2018184313A (en) | Castable refractory and method for producing castable refractory | |
JPH09157043A (en) | Casting refractory for blast-furnace launder | |
JP2766624B2 (en) | Alumina / Spinel amorphous refractories | |
JP2000335980A (en) | Graphite-containing monolithic refractory | |
JP2005335966A (en) | Graphite-containing castable refractory | |
JPH0692272B2 (en) | Carbon-containing ladle lining Irregular refractory | |
JP2872670B2 (en) | Irregular refractories for lining of molten metal containers | |
JP5930227B2 (en) | Unshaped refractory for blast furnace | |
JP4484173B2 (en) | Indefinite refractory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060306 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3783526 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090324 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090324 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090324 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100324 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110324 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120324 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130324 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140324 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |