JPH0791112B2 - SiC refractory - Google Patents

SiC refractory

Info

Publication number
JPH0791112B2
JPH0791112B2 JP2229586A JP22958690A JPH0791112B2 JP H0791112 B2 JPH0791112 B2 JP H0791112B2 JP 2229586 A JP2229586 A JP 2229586A JP 22958690 A JP22958690 A JP 22958690A JP H0791112 B2 JPH0791112 B2 JP H0791112B2
Authority
JP
Japan
Prior art keywords
sic
weight
aggregate particles
particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2229586A
Other languages
Japanese (ja)
Other versions
JPH04114970A (en
Inventor
茂 半澤
寿治 木下
日出男 斎藤
敏之 伊藤
勝 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2229586A priority Critical patent/JPH0791112B2/en
Publication of JPH04114970A publication Critical patent/JPH04114970A/en
Publication of JPH0791112B2 publication Critical patent/JPH0791112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主にSiCからなるSiC質耐火物に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a SiC refractory material mainly composed of SiC.

〔従来の技術〕[Conventional technology]

SiC質耐火物は、優れた耐火性及び耐熱性を有し工業上
重要な地位を占めている。例えば、陶磁器焼成用の敷
板、棚板や、その他の焼成治具及びサヤ等に多用されて
いる。
SiC refractories have excellent fire resistance and heat resistance and occupy an important position industrially. For example, it is often used as a floor plate, shelf plate for firing ceramics, and other firing jigs and sheaths.

従来のSiC質耐火物は、SiCを主成分原料としその他に結
合剤として粘土鉱物等の珪酸塩鉱物や有機バインダを混
合、混練・焼成することにより、主成分のSiC粒子、結
合部及び気孔部とから構成され、機械的強度と共に耐熱
強度の高いものが得られている。しかし、結合部に珪酸
塩鉱物を用いた場合は、高温での軟化変形や酸化が生じ
易かった。
Conventional SiC-based refractories are mainly composed of SiC as a main ingredient, and in addition to this, by mixing, kneading and firing a silicate mineral such as clay mineral and an organic binder as a binder, SiC particles of the main ingredient, a bonding portion and a pore portion. Which has high heat resistance as well as mechanical strength. However, when a silicate mineral is used for the joint, soft deformation and oxidation are likely to occur at high temperatures.

近年の材料革新やニューセラミック製品の開発により、
更により高強度を有し、より高耐熱性のものが要求さ
れ、SiC粒子と微量の金属酸化物等との混合物を原料と
することにより結合物が窒化珪素や二酸化珪素で形成さ
れたSiC質耐火物が提案され、例えば特開昭62−21762号
公報や特開昭62−83371号公報等では、結合部が二酸化
珪素で形成されるSiC質耐火物の改良が提案されてい
る。
Due to recent material innovation and development of new ceramic products,
Further, it is required to have higher strength and higher heat resistance, and a SiC material in which a bond is formed of silicon nitride or silicon dioxide by using a mixture of SiC particles and a trace amount of metal oxide as a raw material. Refractory materials have been proposed. For example, in JP-A-62-21762 and JP-A-62-83371, there have been proposed improvements in SiC-based refractory materials in which a joint portion is formed of silicon dioxide.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、機械的強度も高く、熱変形を起こさず十分な耐
熱性を有し、且つ耐熱衝撃性に優れたものは未だ得られ
ていない。
However, a material having high mechanical strength, sufficient heat resistance without causing thermal deformation, and excellent thermal shock resistance has not yet been obtained.

本発明は、従来のSiC質耐火物の熱強度、耐熱衝撃性の
改良として、主に結合部形成材料や添加物等の研究開発
が中心であったのに対し、更により優れた耐熱性等を得
るためSiC原料骨材粒子をミクロ的な観点から見直すこ
とにより本発明を完成し、高温における熱変形が少なく
耐熱性が高く、耐熱衝撃性が高く急激な温度変化や温度
勾配の大きい部材等に使用できるSiC質耐火物を提供す
るものである。
The present invention mainly focuses on research and development of bonding part forming materials and additives as an improvement in thermal strength and thermal shock resistance of conventional SiC refractories, but further excellent heat resistance etc. To complete the present invention by reviewing the SiC raw material aggregate particles from a micro viewpoint in order to obtain, high thermal resistance with little thermal deformation at high temperatures, high thermal shock resistance, high temperature shock and large temperature gradients, etc. It provides a SiC refractory that can be used for.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明によれば、主にSiCからなるSiC質耐火物であっ
て、原料SiC粒子は1000〜5000μmが10〜45重量%、500
〜1000μmが10〜35重量%、500μm未満が20〜80重量
%の粒度分布を有し、粒度500μm以上の原料SiC粒子の
少なくとも65重量%がエッジ部を丸め処理されたものか
らなることを特徴とする炭化珪素質耐火物が提供され
る。
According to the present invention, a SiC-based refractory material mainly made of SiC, wherein the raw material SiC particles have a particle size of 1000 to 5000 μm of 10 to 45% by weight,
~ 1000μm has a particle size distribution of 10-35% by weight, less than 500μm 20-80% by weight, at least 65% by weight of raw SiC particles having a particle size of 500μm or more is rounded edge A silicon carbide refractory is provided.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明のSiC質耐火物は、例えばSiCを82〜94重量%、カ
オリン、ベントナイト等粘土鉱物の珪酸塩鉱物またはSi
O2、Fe2O3、Al2O3、V2O3、CaO、K2O等の金属酸化物を基
とするSiC粒界相(ガラス相、クリストバライト相ある
いはアルミノシリケート相等からなる。)を18〜6重量
%含有するものや、SiCを約60〜90重量%、窒化珪素(S
i3N4)の4〜36重量%及び金属酸化物の4〜15重量%を
基とするSiC粒界相からなるものが挙げられるが、主成
分としてSiCを約60重量%以上含有するものであれば特
に限定されるものでない。これらSiC質耐火物は主成分
である所定の粒度分布のSiC原料骨材粒子に珪酸塩鉱物
及び金属酸化物や金属Siを添加混合して、混練・成形・
焼成することにより得ることができる。
The SiC refractory of the present invention includes, for example, 82 to 94% by weight of SiC, kaolin, bentonite, and other clay minerals such as silicate minerals or Si.
A SiC grain boundary phase (consisting of a glass phase, a cristobalite phase, an aluminosilicate phase, etc.) based on a metal oxide such as O 2 , Fe 2 O 3 , Al 2 O 3 , V 2 O 3 , CaO and K 2 O. Containing 18 to 6% by weight, about 60 to 90% by weight of SiC, silicon nitride (S
i 3 N 4 ), which includes a SiC grain boundary phase based on 4 to 36% by weight of i 3 N 4 ) and 4 to 15% by weight of a metal oxide, and containing about 60% by weight or more of SiC as a main component. If it is, it will not be specifically limited. These SiC-based refractory materials are the main components of the raw material particles of SiC raw material with a predetermined particle size distribution, mixed with silicate minerals and metal oxides and metal Si, and then kneaded, molded and
It can be obtained by firing.

本発明において、SiC原料骨材粒子として通常1000〜500
0μmが10〜45重量%、500〜1000μmが10〜35重量%、
500μm未満が20〜80重量%の粒度分布を有するものを
使用する。
In the present invention, usually 1000 to 500 as the SiC raw material aggregate particles
0-μm is 10-45% by weight, 500-1000 μm is 10-35% by weight,
Those having a particle size distribution of 20 to 80% by weight less than 500 μm are used.

本発明のSiC原料骨材粒子は、上記粒度分布を有すると
共に、500μm以上の粒子の約65重量%以上がエッジ部
を有さないように丸め処理されたものである。なお、本
発明におけるエッジ部とは、電子顕微鏡的な観察でSiC
骨材粒子の外周面において、切断面等面と面との境界線
や突起部等の角張った部分をいう。
The SiC raw material aggregate particles of the present invention have the above-mentioned particle size distribution and are rounded so that about 65% by weight or more of particles of 500 μm or more do not have an edge portion. Incidentally, the edge portion in the present invention, SiC by observation with an electron microscope
On the outer peripheral surface of the aggregate particle, it means an angular portion such as a boundary line between a cut surface and a surface or a projection.

従来SiC原料骨材粒子は、粒度分布を調整して用いられ
ているが、原料によって得られるSiC質耐火物の耐熱衝
撃性や曲げ強さ等に差が生じ、バラツキがあった。本発
明は、これらバラツキの原因が原料粒子の形態に基づく
ことを知見したもので、耐熱衝撃性等が劣るSiC質耐火
物を与える原料SiC骨材粒子は、目視観察ではほぼ粒子
形状であっても顕微鏡または電子顕微鏡観察によればエ
ッジ部を有し、また得られた耐火物は、走査型電子顕微
鏡(SEM)によりエッジ部を有する骨材粒子が観察さ
れ、気孔分布が不均一で、良好なものに比し気孔率も多
く観察された。
Conventionally, SiC raw material aggregate particles have been used by adjusting the particle size distribution, but there were variations due to differences in the thermal shock resistance and bending strength of the SiC-based refractory material obtained depending on the raw material. The present invention has found that the cause of these variations is based on the morphology of the raw material particles, and the raw material SiC aggregate particles that give SiC quality refractory having poor thermal shock resistance and the like are almost particle shapes by visual observation. Also has an edge part under a microscope or electron microscope observation, and in the obtained refractory, aggregate particles with an edge part are observed by a scanning electron microscope (SEM), and the pore distribution is non-uniform, which is good. A large amount of porosity was also observed in comparison with that of N.

これらSiC原料骨材粒子のエッジ部はマクロ的にはSiC質
耐火物成形体を得るのに支障とならないものであるが、
上記したように耐熱衝撃性、曲げ強さ、更には嵩比重も
小さくなり好ましくない。本発明においては、粒度500
μm以上のSiC骨材粒子のこれらエッジ部を丸め処理し
て除去したSiC骨材粒子を原料にするものである。
Although the edge portion of these SiC raw material aggregate particles does not hinder the obtaining of a SiC-based refractory molded body in a macroscopic view,
As described above, the thermal shock resistance, the bending strength, and the bulk specific gravity are small, which is not preferable. In the present invention, a particle size of 500
The SiC aggregate particles obtained by rounding and removing the edge portions of the SiC aggregate particles having a size of μm or more are used as a raw material.

上記のエッジ部除去の丸め処理は、粒度分布調整された
SiC骨材粒子のうち、特に500μm以上の粒子のエッジ部
を除去するのが好ましい。500μm未満のSiC骨材粒子は
500μm以上の粒子と共に丸め処理してもよいが、500μ
m未満のSiC骨材粒子でのエッジ部は得られるSiC質耐火
物に与える影響が少なく、エッジ部を有したまま使用し
ても支障がない。
The rounding process for removing the above edge part was adjusted for particle size distribution.
Of the SiC aggregate particles, it is preferable to remove the edge portion of the particles of 500 μm or more. SiC aggregate particles less than 500 μm
It may be rounded with particles of 500 μm or more,
The edge portion of the SiC aggregate particles of less than m has little effect on the obtained SiC-based refractory material, and there is no problem even if it is used with the edge portion.

また、上記500μm以上のSiC骨材粒子の丸め処理は、少
なくともその約65重量%が丸め処理されているのが好ま
しく、更に好ましくは1000μm以上のSiC骨材粒子の少
なくとも約65重量%がエッジ部除去の丸め処理されたも
のを用いるのがよい。500μm以上のSiC骨材粒子の丸め
処理比率が65重量%より少ない場合は、得られるSiC質
耐火物の耐熱衝撃性等が十分でない。また、500μm以
上のSiC骨材粒子のエッジ部の丸め処理は65重量%以上
であれば最大100重量%でもよく、目的とするSiC質耐火
物の性状、製造条件等に応じて適宜選択すればよい。
The rounding treatment of the above 500 μm or more SiC aggregate particles is preferably such that at least about 65% by weight thereof is rounded, and more preferably at least about 65% by weight of the 1000 μm or more SiC aggregate particles is the edge portion. It is preferable to use the one that has been rounded for removal. When the rounding ratio of SiC aggregate particles of 500 μm or more is less than 65% by weight, the thermal shock resistance of the obtained SiC-based refractory is insufficient. Further, the rounding treatment of the edge portion of the SiC aggregate particles of 500 μm or more may be up to 100% by weight as long as it is 65% by weight or more. Good.

本発明において、上記丸め処理はSiC骨材粒子のエッジ
部の大半を研磨、摩耗等により除去できればいずれの方
法、装置で処理してもよく、好ましくはフレットミルま
たはボールミルで処理するのがよい。
In the present invention, the rounding treatment may be performed by any method and device as long as most of the edge portion of the SiC aggregate particles can be removed by polishing, abrasion, etc., and preferably by a fret mill or a ball mill.

本発明における500μm以上のSiC骨材粒子の少なくとも
その約65重量%が丸め処理されているSiC骨材粒子を用
いた場合には、成形時の充填性もよくなり、得られるSi
C質耐火物は気孔の分散が均一となり嵩比重が大きくな
ると共に、耐熱衝撃性が高く、曲げ強さも大きくなり、
高温使用での軟化変形も極めて少ない。
When at least about 65% by weight of the SiC aggregate particles of 500 μm or more in the present invention are rounded, the filling property at the time of molding is improved and the obtained Si
In C-type refractory, the distribution of pores becomes uniform and the bulk specific gravity increases, and the thermal shock resistance and bending strength also increase.
Very little softening deformation at high temperature.

〔実施例〕〔Example〕

以下、本発明を実施例により詳細に説明する。但し、本
発明は下記実施例により制限されるものでない。
Hereinafter, the present invention will be described in detail with reference to Examples. However, the present invention is not limited to the following examples.

実施例1〜3及び比較例1〜4 SiC骨材粒子原料として第1図(1)及び(2)に電子
顕微鏡写真で一例を示したフレットミルで丸め処理した
丸め処理SiC骨材粒子と、第2図(1)及び(2)に電
子顕微鏡写真で一例を示した未処理SiC骨材粒子を用い
た。第1図及び第2図から明らかなように、丸め処理し
たSiC骨材粒子は、未処理SiC骨材粒子が有する角張った
部分が摩耗され、全体的に丸みを帯びて均された状態と
なっている。
Examples 1 to 3 and Comparative Examples 1 to 4 Rounded SiC aggregate particles rounded by a fret mill, one example of which is shown in the electron micrographs of FIGS. 1 (1) and (2), as SiC aggregate particle raw material, Untreated SiC aggregate particles, an example of which is shown in an electron micrograph in FIGS. 2 (1) and (2), were used. As is clear from FIG. 1 and FIG. 2, the rounded treated SiC aggregate particles are in a state of being rounded and evened out due to the abrasion of the angular portions of the untreated SiC aggregate particles. ing.

第1表に示した粒度分布の上記丸め処理SiC骨材粒子と
未処理SiC骨材粒子とに、ベントナイトを10重量%調合
し、これに水分を外配量で6重量%添加・混練し、400
×350×10(厚さ)(mm)に成形した。この成形体を窒
素ガス雰囲気中1400℃で10時間焼成した。なお、昇温速
度及び降温速度はそれぞれ100℃/時で行った。
10% by weight of bentonite was added to the rounded SiC aggregate particles and untreated SiC aggregate particles having the particle size distribution shown in Table 1, and 6% by weight of water was added and kneaded to the bentonite. 400
It was molded into × 350 × 10 (thickness) (mm). This compact was fired at 1400 ° C. for 10 hours in a nitrogen gas atmosphere. The heating rate and the cooling rate were each 100 ° C./hour.

得られた焼成体について、耐熱衝撃性、嵩比重及び曲げ
強さを測定した。その結果を第1表に示した。
The thermal shock resistance, bulk specific gravity, and bending strength of the obtained fired body were measured. The results are shown in Table 1.

なお、耐熱衝撃性(ΔT700-RT)は、1200℃の炉で50時
間使用後の焼成体を700℃と室温とに繰返し配置した時
の割れの発生した繰返し回数により示した。
The thermal shock resistance (ΔT 700-RT ) was shown by the number of repetitions of cracking when the fired body after being used for 50 hours in a 1200 ° C furnace was repeatedly placed at 700 ° C and room temperature.

室温曲げ強さは、JIS 2205により測定した。The room temperature bending strength was measured according to JIS 2205.

実施例4〜5及び比較例5〜6 第1表に示した粒度分布及びボールミルで丸め処理し
た、または未処理のSiC骨材粒子にカオリンを5重量%
調合した以外は、実施例1と同様にして焼成体を得た。
Examples 4 to 5 and Comparative Examples 5 to 6 5 wt% of kaolin is added to the particle size distribution shown in Table 1 and SiC aggregate particles which have been rounded by a ball mill or untreated.
A fired body was obtained in the same manner as in Example 1 except that the ingredients were mixed.

得られた焼成体について、耐熱衝撃性、嵩比重及び曲げ
強さを測定した。その結果を第1表に示した。
The thermal shock resistance, bulk specific gravity, and bending strength of the obtained fired body were measured. The results are shown in Table 1.

上記の実施例及び比較例より明らかなように、500μm
以上のSiC骨材粒子の65重量%以上が丸め処理されたも
のを使用した焼成体は、耐熱衝撃性に優れ、曲げ強さも
大きい。一方、丸め処理した500μm以上のSiC骨材粒子
が、65重量%より少ない場合は耐熱衝撃性も、曲げ強さ
も小さい。また、丸め処理したものは充填性がよく、特
に500μm以上のSiC骨材粒子の65重量%以上が丸め処理
されたものを使用して得た実施例の焼結体は、比較例の
ものに比し嵩比重が高くなっている。
As is clear from the above examples and comparative examples, 500 μm
The fired body using 65% by weight or more of the above-mentioned SiC aggregate particles rounded has excellent thermal shock resistance and high bending strength. On the other hand, when the amount of rounded 500 μm or more SiC aggregate particles is less than 65% by weight, both thermal shock resistance and bending strength are small. Further, the rounded product has a good filling property, and in particular, the sintered body of the example obtained by using the rounded product of 65% by weight or more of SiC aggregate particles of 500 μm or more is the same as that of the comparative example. The bulk specific gravity is higher.

〔発明の効果〕〔The invention's effect〕

本発明は、SiC質耐火物の主成分を構成する原料SiC骨材
粒子として、所定比率で丸め処理した500μm以上の粒
子を使用することにより耐熱衝撃性、曲げ強さの優れた
SiC質耐火物を得ることができる。
INDUSTRIAL APPLICABILITY The present invention has excellent thermal shock resistance and bending strength by using, as the raw material SiC aggregate particles constituting the main component of the SiC refractory, particles of 500 μm or more rounded at a predetermined ratio.
SiC refractories can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の丸め処理SiC骨材粒子の一例の粒子構
造を示す電子顕微鏡写真であり、第2図は本発明の未処
理SiC骨材粒子の一例の粒子構造を示す電子顕微鏡写真
である。
FIG. 1 is an electron micrograph showing the particle structure of an example of the rounded SiC aggregate particles of the present invention, and FIG. 2 is an electron micrograph showing the particle structure of an example of the untreated SiC aggregate particles of the present invention. is there.

フロントページの続き (72)発明者 伊藤 敏之 愛知県尾張旭市旭ケ丘町旭ケ丘5668番地の 81 (72)発明者 長谷川 勝 岐阜県可児郡御嵩町井尻65番地 (56)参考文献 特開 昭55−60070(JP,A)Front Page Continuation (72) Inventor Toshiyuki Ito 81, 5668 Asahigaoka, Asahigaoka-cho, Owariasahi-shi, Aichi 81 (72) Inventor Katsu Hasegawa 65, Ijiri, Mitake-cho, Kani-gun, Gifu (56) References JP-A-55-6070 JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】主にSiCからなるSiC質耐火物であって、原
料SiC粒子は1000〜5000μmが10〜45重量%、500〜1000
μmが10〜35重量%、500μm未満が20〜80重量%の粒
度分布を有し、粒度500μm以上の原料SiC粒子の少なく
とも65重量%がエッジ部を丸め処理されたものからなる
ことを特徴とするSiC質耐火物。
1. A SiC-based refractory material mainly composed of SiC, wherein the raw material SiC particles have a particle size of 1000 to 5000 μm of 10 to 45% by weight, and 500 to 1000.
characterized by having a particle size distribution of 10 to 35% by weight of μm, 20 to 80% by weight of less than 500 μm, and at least 65% by weight of raw SiC particles having a particle size of 500 μm or more having rounded edges. SiC quality refractory.
【請求項2】粒度1000μm以上の原料SiC粒子の少なく
とも65重量%がエッジ部を丸め処理されたものからなる
請求項(1)記載のSiC質耐火物。
2. The SiC refractory material according to claim 1, wherein at least 65% by weight of the raw SiC particles having a particle size of 1000 μm or more have a rounded edge portion.
【請求項3】前記丸め処理がフレットミルまたはボール
ミルを用いて行なわれてなる請求項(1)または(2)
記載のSiC質耐火物。
3. The rounding process is performed by using a fret mill or a ball mill.
SiC-based refractory described.
JP2229586A 1990-08-31 1990-08-31 SiC refractory Expired - Lifetime JPH0791112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2229586A JPH0791112B2 (en) 1990-08-31 1990-08-31 SiC refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229586A JPH0791112B2 (en) 1990-08-31 1990-08-31 SiC refractory

Publications (2)

Publication Number Publication Date
JPH04114970A JPH04114970A (en) 1992-04-15
JPH0791112B2 true JPH0791112B2 (en) 1995-10-04

Family

ID=16894506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229586A Expired - Lifetime JPH0791112B2 (en) 1990-08-31 1990-08-31 SiC refractory

Country Status (1)

Country Link
JP (1) JPH0791112B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857391B2 (en) * 1978-10-24 1983-12-20 新日本製鐵株式会社 Silicon carbide refractory mixture
JPS6330366A (en) * 1986-07-23 1988-02-09 株式会社日立製作所 Manufacture of silicon nitride-silicon carbide base composite material

Also Published As

Publication number Publication date
JPH04114970A (en) 1992-04-15

Similar Documents

Publication Publication Date Title
TW201100351A (en) Unburned alumina-carbon brick and kiln facility utilizing same
CN1950313A (en) Ceramic batch and associated product for fireproof applications
US20050176864A1 (en) Silicon composition
JPH10500095A (en) Reaction bonded silicon carbide refractory products
JPH0791112B2 (en) SiC refractory
JPH0244067A (en) Bn no-pressure sintered ceramic having excellent melting flacture resistance
JPH0747507B2 (en) Nitride-bonded SiC refractory
JPS62212258A (en) Manufacture of casting nozzle
JP3368960B2 (en) SiC refractory
JP3142360B2 (en) SiC refractory raw material, method of preparing the same, and SiC refractory obtained using the refractory raw material
JP3111741B2 (en) High strength porcelain and its manufacturing method
JP3929263B2 (en) Multi-porous refractory and method for firing ceramics using the same
JPH06191944A (en) Sic refractory
JPH0733283B2 (en) Method for producing inorganic fired body
CN110818396B (en) High-temperature-resistant material and preparation method thereof
JP2524716B2 (en) Amorphous refractory containing finely divided zirconium diboride
JP2867652B2 (en) Method for manufacturing ceramic molded body
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JPS6120511B2 (en)
JPH02141480A (en) Castable refractory
JP2846930B2 (en) Ceramic material firing method
JPH03164462A (en) Ceramics product
JPH0437454A (en) Nozzle for casting wide and thin slab
JP3026883B2 (en) SiC refractory
JPS63156061A (en) Cordierite base refractories

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 15

EXPY Cancellation because of completion of term