JP3681673B2 - Unshaped refractory for blast furnace - Google Patents

Unshaped refractory for blast furnace Download PDF

Info

Publication number
JP3681673B2
JP3681673B2 JP2001334940A JP2001334940A JP3681673B2 JP 3681673 B2 JP3681673 B2 JP 3681673B2 JP 2001334940 A JP2001334940 A JP 2001334940A JP 2001334940 A JP2001334940 A JP 2001334940A JP 3681673 B2 JP3681673 B2 JP 3681673B2
Authority
JP
Japan
Prior art keywords
blast furnace
sio
weight
spinel
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334940A
Other languages
Japanese (ja)
Other versions
JP2003137666A (en
Inventor
正和 飯田
信昭 室井
征二郎 田中
Original Assignee
Jfe炉材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe炉材株式会社 filed Critical Jfe炉材株式会社
Priority to JP2001334940A priority Critical patent/JP3681673B2/en
Publication of JP2003137666A publication Critical patent/JP2003137666A/en
Application granted granted Critical
Publication of JP3681673B2 publication Critical patent/JP3681673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Blast Furnaces (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、耐火物分野におけるもので、高炉樋の損耗速度が低減し、樋材原単位の削減、樋修理頻度の低減がはかれる高炉樋用不定形耐火物に関するものである。
【0002】
【従来の技術】
従来、高炉樋には、アルミナ−SiC−C質の流し込み材やスタンプ材、吹付け材が使用されてきた。そして、これにスピネルを含有させることにより損耗速度の低減が図られてきた。一方、ごみ処理用熱分解ガス溶融システムに使用される耐火物として、NiO−Al2O3 系の耐火物が実用化
されつつある。
【0003】
【発明が解決しようとする課題】
しかし、さらなるコストダウンや省力化のため、損耗速度の低減により樋の寿命を向上し、樋材原単位の削減、樋修理頻度の低減を図る必要がある。これに対して上記NiO−Al2O3 系の材料は、高炉樋の使用環境では耐食性が悪く、適用不可能であった。
【0004】
【課題を解決するための手段】
発明者らは、NiO粉末をSiC質原料とともに使用することで、高炉樋の条件下でも大きく耐食性が向上することを発見した。そして、これにスピネル質原料を配合することで、さらに大きく耐食性が向上することも見い出したもので、高炉樋の高熱状態下でのCO雰囲気でSiO(g)やNi(g)の蒸気となって気相で直接反応して
SiO 2 −NiO系のガラス相を均一に分散させるとともにC(s)の析出を促進させて材質を緻密化するために、高炉樋用のアルミナ質骨材やスピネル質骨材にSiOガスを発生させるSiC質原料を1重量%以上とNiガスを発生させる0.5mm以下のNiO粉末を0.01〜10.0重量%含有することを特徴とする高炉樋用不定形耐火物を提供するにある。
【0005】
【発明の実施の形態】
本発明の高炉樋用不定形耐火物は、高炉樋の高熱状態下でのCO雰囲気でSiO(g)やNi(g)の蒸気となって気相で直接反応してSiO 2 −NiO系のガラス相を均一に分散させるとともにC(s)の析出を促進させて材質を緻密化するために、高炉樋用のアルミナ質骨材やスピネル質骨材にSiOガスを発生させるSiC質原料を1重量%以上とNiガスを発生させる0.5mm以下のNiO粉末を0.01〜10.0重量%含有することを特徴としている。
【0006】
高炉樋用の不定形耐火物は、SiCとともに粒径が0.5mm以下のNiO粉末を0.01〜10重量%含有させることができる。SiCとしては、粉末または粗粒を1重量%以上とするのが好ましい。高炉樋には、Cを含有させているため、材質内部はCO雰囲気であり、SiCやNiOはSiO(g)やNi(g)といった蒸気となる。
【0007】
このSiO(g)とNi(g)が気相で直接反応することで、材質内部にSiO2 −NiO系のガラスを均一に分散させる。このガラスは気相から生成するものなので、気孔を選択的に充填し、組織の緻密化が図られる。
【0008】
さらに、SiCの蒸発、SiO2 とCの析出が行われる。SiCは、まず下記の(1)式にしたがってCO(g)と反応し、SiO(g)となる。このSiO(g)は材質の外に流出するが、(2)式の反応が続いて起こると、SiO2 とCとして材質内部に留まる。
SiC(s)+CO(g)→SiO(g)+2C(s)・・・(1)
SiO(g)+CO(g)→SiO2 (s)+C(s)・・(2)
【0009】
SiCを1重量%以上、NiOを0.01〜10.0重量%含ませて十分にSiO2 −NiO系のガラスを生成させることで、(2)式の反応を進めることによりC(s)の析出も促進される。このような気孔へのCの析出によっても緻密化が促進される。材質が緻密化することによって、スラグの侵入を抑制し、スラグと反応する表面積が減少するので、耐食性の向上が図られる。
【0010】
上記アルミナ質の粉末や粗粒は5重量%以上含ませるのが好ましく、さらにスピネル質の粉末や粗粒を併用することで大幅に耐食性を向上させることができる。このためスピネルの使用が望ましいが、原料コストが高くなるため、アルミナと併用して用いられるのが好ましい。
【0011】
また、C質原料としては、1重量%以上含有させることができ、土状黒鉛、鱗片状黒鉛、カーボンブラックのような無機物やこれを2次処理したもの、またピッチやレジンといった有機物をC源としてもよい。
【0012】
また、バインダーとしては、アルミナセメントが好適であるが、その他の特性を鑑みて、シリカゾルやアルミナゾルといった無機バインダーやレジンのような有機物であっても同様な耐食性向上効果が得られる。
【0013】
その際、従来から使用されているように分散剤や硬化調整剤を添加することで、低水分で施工時の流動性を確保し、さらに施工に好適な硬化時間を調整することができる。また、乾燥時の爆裂を防止するための、アルミニウム粉末や有機繊維の添加をすることもできる。
【0014】
以上は流し込み材の例であるが、公知の技術で粒度配合、粘土、バインダーを調整し、スタンプや、乾式または湿式の吹付けで施工できるようにすることもできる。
【0015】
このようなNiO粉末の添加量であるが、0.01重量%より少ないと、SiO(g)を固定するのに添加量が不十分で、目的とする組織向上効果が得られない。一方、10重量%を超えて添加しても、それ以上の効果は得られない。NiOは比重が6.7と重いため、微粉末での添加量が多すぎると、粒度設計の体積バランスがくずれ、流し込みにおいても、スタンプにおいても、吹付けにおいても施工に支障をきたす。
【0016】
粒径に関しては、反応性の高い微細なものが好適であるが、前述の施工性確保のために粗くしてもよい。しかし、十分な効果を得るためには0.5mm以下、好ましくは0.1mm以下の量が前述の0.01重量%より多く含まれるように設計するのが好ましい。
【0017】
本発明に係わるその他の成分としては、公知の設計技術を用いることができる。すなわち、骨材としてはアルミナ質、シリカ質の天然原料や人工原料、またマグネシアやカルシア、ドロマイトといった塩基性物質も配合可能である。さらに、粘土等の可塑性付与材、シリカヒュームも使用可能である。加えて、シリコンやアルミニウム等の金属粉末との併用も可能である。
【0018】
【実施例】
本発明の実施例として、NiO粉末添加の効果を例示して説明する。表1は、実施テストした高炉樋不定形耐火物の配合である。本実施例は、流し込み材を使用した。これらの配合4Kgをそれぞれ万能混練機で3分間混練した。その後、所定形状の金型に流し込み成型した。常温で24時間養生し、硬化を確認した後に脱型し、110℃の乾燥機中で24h乾燥した。その後、コークスブリーズを充填した炭化珪素質のサガーに入れ、電気炉を用い、500℃で加熱し、ピッチの揮発分を除去した。その後、高周波炉を用い、内張法にて耐食性を比較した。その結果を図1に示している。
【0019】
表1 本発明の実施例と比較例の配合表
【表1】

Figure 0003681673
【0020】
表1のようにNiO粉末を多量に添加した比較例k、lは流動性が不良で実用的でなく、また図1のようにNiO粉末を含まない比較例mのアルミナ質と比較例nのスピネル質のものに比べて、NiO粉末を0.01〜10重量%を添加した本発明のアルミナ質、スピネル質の実施例a〜jのものはそれぞれ溶損比が低減し、NiOを添加することでアルミナ骨材においても、スピネル骨材においても、0.01〜10重量%、好ましくは0.1〜10重量%の添加で耐食性が向上する効果が認められた。
【0021】
さらに、図1のようにスピネル材質の方が耐食性が良好であることがわかる。このため、原料コスト等を考え、スピネルとアルミナを適当な比で同時に使用することが実用的であり、アルミナ質骨材とスピネル質骨材を90〜10対10〜90の比率で配合するのが好ましい。
【0022】
【発明の効果】
以上のように本発明にあっては、高炉樋用のアルミナ質骨材やスピネル質骨材に
SiOガスを発生させるSiC質原料を1重量%以上とNiガスを発生させる0.5mm以下のNiO粉末を0.01〜10.0重量%含有することによって高炉樋は、高熱状態下で材質内部はCO雰囲気であり、SiCやNiOはSiO(g)やNi(g)といった蒸気となり、このSiO(g)とNi(g)が気相で直接反応することで材質内部にSiO 2 −NiO系のガラスを均一に分散させる。このガラスは気相から生成するものなので、気孔を選択的に充填し、組織の緻密化が図られる。同時にCの析出が行われるため、緻密化に寄与する。このように材質が緻密化することによって、スラグの侵入を抑制し、スラグと反応する表面積が減少するので、耐食性の向上が図られる。そのため、高炉樋の損耗速度の低減が図られ、樋の寿命が向上し、耐火物原単位の削減が図られ、樋修理頻度の低減による省力化が図られる。
【0023】
また、上記アルミナ質の粉末や粗粒は5重量%以上含ませるのが好ましく、さらに
スピネル質の粉末や粗粒を併用することで大幅に耐食性を向上させることができる。このためスピネルの使用が望ましいが、原料コストが高くなるため、アルミナと併用して用いられるのが好ましい。またさらに、アルミナ質原料とスピネル質原料を90〜10対10〜90の比率のように併用するのが、原料コスト等の低減がはかれて経済的に耐食性の向上がはかれて好ましい。
【図面の簡単な説明】
【図1】本発明の実施例と比較例のNiO粉末添加量と溶損比の比較図。[0001]
[Technical field to which the invention belongs]
The present invention is in the field of refractories, and relates to an irregular refractory for a blast furnace slag that reduces the wear rate of the blast furnace slag, reduces the basic unit of slag, and reduces the frequency of repair of slag.
[0002]
[Prior art]
Conventionally, an alumina-SiC-C casting material, a stamp material, and a spray material have been used for a blast furnace. Further, the wear rate has been reduced by adding spinel thereto. On the other hand, NiO—Al 2 O 3 refractories are being put into practical use as refractories used in pyrolysis gas melting systems for waste treatment.
[0003]
[Problems to be solved by the invention]
However, for further cost reduction and labor saving, it is necessary to improve the life of the kite by reducing the wear rate, reduce the basic unit of the kite, and reduce the frequency of kite repair. On the other hand, the NiO—Al 2 O 3 based material has poor corrosion resistance in the environment where the blast furnace is used, and is not applicable.
[0004]
[Means for Solving the Problems]
The inventors have found that the use of NiO powder together with the SiC raw material greatly improves the corrosion resistance even under conditions of blast furnace. And it was also found that by adding a spinel raw material to this, the corrosion resistance was further improved, and it became a vapor of SiO (g) or Ni (g) in a CO atmosphere under the high heat condition of the blast furnace. React directly in the gas phase
SiO 2 -SiC that generates SiO gas in alumina aggregates and spinel aggregates for blast furnace iron in order to uniformly disperse the NiO-based glass phase and to promote the precipitation of C (s), thereby densifying the material. The present invention provides an amorphous refractory for a blast furnace fired containing 0.01 to 10.0% by weight of a NiO powder of 0.5 mm or less for generating Ni gas and 1% by weight or more of a raw material .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Blast furnace trough for monolithic refractories of the present invention, SiO 2 reacts directly in the gas phase in a vapor of SiO (g) and Ni (g) in a CO atmosphere under high heat conditions of the blast furnace trough -SiC that generates SiO gas in alumina aggregates and spinel aggregates for blast furnace iron in order to uniformly disperse the NiO-based glass phase and to promote the precipitation of C (s), thereby densifying the material. It is characterized by containing 0.01 to 10.0% by weight of NiO powder of 0.5 mm or less for generating Ni gas and 1% by weight or more of raw material .
[0006]
The amorphous refractory for the blast furnace can contain 0.01 to 10% by weight of NiO powder having a particle size of 0.5 mm or less together with SiC. As SiC, it is preferable that a powder or a coarse grain shall be 1 weight% or more. Since the blast furnace iron contains C, the inside of the material has a CO atmosphere, and SiC and NiO become steam such as SiO (g) and Ni (g).
[0007]
This SiO (g) and Ni (g) react directly in the gas phase, so that SiO 2 —NiO glass is uniformly dispersed inside the material. Since this glass is produced from the gas phase, the pores are selectively filled and the structure is densified.
[0008]
Further, SiC is evaporated and SiO 2 and C are deposited. SiC first reacts with CO (g) according to the following formula (1) to become SiO (g). This SiO (g) flows out of the material, but if the reaction of the formula (2) occurs subsequently, it remains inside the material as SiO 2 and C.
SiC (s) + CO (g) → SiO (g) + 2C (s) (1)
SiO (g) + CO (g) → SiO 2 (s) + C (s) (2)
[0009]
By making the SiO 2 —NiO glass sufficiently containing 1 wt% or more of SiC and 0.01 to 10.0 wt% of NiO, C (s) Is also promoted. Densification is also promoted by such precipitation of C into the pores. The densification of the material suppresses the intrusion of slag and reduces the surface area that reacts with the slag, thereby improving the corrosion resistance.
[0010]
The alumina powder and coarse particles are preferably contained in an amount of 5% by weight or more, and the corrosion resistance can be greatly improved by using the spinel powder and coarse particles in combination. For this reason, it is desirable to use spinel, but since the raw material cost increases, it is preferable to use it together with alumina.
[0011]
Further, as the C-type raw material, it can be contained in an amount of 1% by weight or more, and inorganic materials such as earth graphite, flaky graphite, carbon black and the like, and organic materials such as pitch and resin are used as the C source. It is good.
[0012]
As the binder, alumina cement is preferable. However, in view of other characteristics, the same corrosion resistance improvement effect can be obtained even with an inorganic binder such as silica sol or alumina sol or an organic material such as resin.
[0013]
At that time, by adding a dispersing agent or a curing regulator as conventionally used, it is possible to secure fluidity at the time of construction with low moisture and further to adjust a curing time suitable for construction. In addition, aluminum powder or organic fiber can be added to prevent explosion during drying.
[0014]
The above is an example of a casting material. However, it is possible to adjust the particle size blending, clay and binder by a known technique so that it can be constructed by stamping or dry or wet spraying.
[0015]
Although the amount of NiO powder added is less than 0.01% by weight, the amount added is insufficient to fix SiO (g), and the intended effect of improving the structure cannot be obtained. On the other hand, even if added over 10% by weight, no further effect can be obtained. Since NiO has a heavy specific gravity of 6.7, if the amount of fine powder added is too large, the volume balance of the particle size design will be lost, and the construction will be hindered in casting, stamping and spraying.
[0016]
As for the particle size, a fine one having high reactivity is suitable, but it may be coarsened to ensure the above-mentioned workability. However, in order to obtain a sufficient effect, it is preferable to design so that the amount of 0.5 mm or less, preferably 0.1 mm or less, is included more than 0.01% by weight.
[0017]
As other components according to the present invention, known design techniques can be used. That is, as the aggregate, alumina or siliceous natural raw materials or artificial raw materials, and basic substances such as magnesia, calcia and dolomite can be blended. Furthermore, plasticizers such as clay and silica fume can be used. In addition, it can be used in combination with metal powders such as silicon and aluminum.
[0018]
【Example】
As an example of the present invention, the effect of adding NiO powder will be described as an example. Table 1 shows the composition of the blast furnace fired amorphous refractories tested. In this example, a casting material was used. 4 kg of these blends were each kneaded for 3 minutes with a universal kneader. Thereafter, it was cast into a predetermined shape mold. It was cured at room temperature for 24 hours, demolded after confirming curing, and dried in a dryer at 110 ° C. for 24 hours. Then, it put into the silicon carbide-like sagar filled with coke breeze, and heated at 500 degreeC using the electric furnace, and the volatile matter of the pitch was removed. Thereafter, the corrosion resistance was compared by a lining method using a high frequency furnace. The result is shown in FIG.
[0019]
Table 1 Formulation Table of Examples and Comparative Examples of the Present Invention [Table 1]
Figure 0003681673
[0020]
Comparative examples k and l in which a large amount of NiO powder was added as shown in Table 1 were impractical because of poor fluidity, and the alumina material of Comparative Example m that does not contain NiO powder and Comparative Example n as shown in FIG. Compared to the spinel material, the alumina material of the present invention to which NiO powder is added in an amount of 0.01 to 10% by weight, and the spinel materials of Examples a to j have a reduced erosion ratio, and NiO is added. Thus, in both alumina aggregate and spinel aggregate, the effect of improving the corrosion resistance was confirmed by the addition of 0.01 to 10% by weight, preferably 0.1 to 10% by weight.
[0021]
Furthermore, it can be seen that the spinel material has better corrosion resistance as shown in FIG. For this reason, considering the raw material costs, it is practical to use spinel and alumina at an appropriate ratio at the same time, and the alumina aggregate and the spinel aggregate are blended at a ratio of 90 to 10 to 10 to 90. Is preferred.
[0022]
【The invention's effect】
As described above, in the present invention, the alumina aggregate and the spinel aggregate for the blast furnace are used.
By containing 0.01 to 10.0 wt% of NiO powder of 0.5 mm or less that generates 1 wt% or more of SiC material that generates SiO gas and 0.5 wt% or less that generates Ni gas, Is a CO atmosphere, and SiC or NiO becomes a vapor such as SiO (g) or Ni (g), and this SiO (g) and Ni (g) react directly in the gas phase, so that SiO 2 is contained inside the material. -Disperse NiO-based glass uniformly. Since this glass is produced from the gas phase, the pores are selectively filled and the structure is densified. At the same time, C is deposited, which contributes to densification. By densifying the material in this manner, the penetration of slag is suppressed and the surface area that reacts with the slag is reduced, so that the corrosion resistance is improved. Therefore, the wear rate of the blast furnace slag is reduced, the life of the slag is improved, the refractory unit consumption is reduced, and labor saving is achieved by reducing the frequency of slag repair.
[0023]
The alumina powder and coarse particles are preferably included in an amount of 5% by weight or more.
Corrosion resistance can be significantly improved by using spinel powder and coarse particles in combination. For this reason, it is desirable to use spinel, but since the raw material cost increases, it is preferable to use it together with alumina. Furthermore, it is preferable to use the alumina raw material and the spinel raw material in a ratio of 90 to 10 to 10 to 90 because the cost of the raw material is reduced and the corrosion resistance is improved economically.
[Brief description of the drawings]
FIG. 1 is a comparison diagram of the amount of NiO powder added and the erosion ratio in Examples and Comparative Examples of the present invention.

Claims (4)

高炉樋の高熱状態下でのCO雰囲気でSiO(g)やNi(g)の蒸気となって気相で直接反応してSiO 2 −NiO系のガラス相を均一に分散させるとともにC(s)の析出を促進させて材質を緻密化するために、高炉樋用のアルミナ質骨材やスピネル質骨材にSiOガスを発生させるSiC質原料を1重量%以上とNiガスを発生させる0.5mm以下のNiO粉末を0.01〜10.0重量%含有することを特徴とする高炉樋用不定形耐火物。 In a CO atmosphere under high heat conditions of the blast furnace trough becomes steam SiO (g) and Ni (g) react directly in a gas phase SiO 2 -SiC that generates SiO gas in alumina aggregates and spinel aggregates for blast furnace iron in order to uniformly disperse the NiO-based glass phase and promote the precipitation of C (s) to make the material dense. An amorphous refractory for a blast furnace containing 1 to 10% by weight of a raw material and 0.01 to 10.0% by weight of NiO powder of 0.5 mm or less for generating Ni gas . 主成分としてアルミナ質の粉末や粗粒を5重量%以上含有する請求項1に記載の高炉樋用不定形耐火物。  The amorphous refractory for a blast furnace firewood according to claim 1, containing 5% by weight or more of alumina powder or coarse particles as a main component. 主成分としてスピネル質の粉末や粗粒を5重量%以上含有する請求項1に記載の高炉樋用不定形耐火物。  The amorphous refractory for blast furnaces according to claim 1, which contains 5% by weight or more of spinel powder or coarse particles as a main component. アルミナ質原料とスピネル質原料を90〜10対10〜90の比率で含有する請求項1ないし3のいずれかに記載の高炉樋用不定形耐火物。  The refractory material for blast furnace firewood according to any one of claims 1 to 3, comprising an alumina raw material and a spinel raw material in a ratio of 90 to 10 to 10 to 90.
JP2001334940A 2001-10-31 2001-10-31 Unshaped refractory for blast furnace Expired - Fee Related JP3681673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334940A JP3681673B2 (en) 2001-10-31 2001-10-31 Unshaped refractory for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334940A JP3681673B2 (en) 2001-10-31 2001-10-31 Unshaped refractory for blast furnace

Publications (2)

Publication Number Publication Date
JP2003137666A JP2003137666A (en) 2003-05-14
JP3681673B2 true JP3681673B2 (en) 2005-08-10

Family

ID=19149991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334940A Expired - Fee Related JP3681673B2 (en) 2001-10-31 2001-10-31 Unshaped refractory for blast furnace

Country Status (1)

Country Link
JP (1) JP3681673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004296764B2 (en) 2003-12-02 2011-04-28 The Ohio State University Research Foundation Zn2+ -chelating motif-tethered short -chain fatty acids as a novel class of histone deacetylase inhibitors

Also Published As

Publication number Publication date
JP2003137666A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
CN115991597A (en) Self-flowing castable for sol combined hearth
JP3681673B2 (en) Unshaped refractory for blast furnace
JP4166760B2 (en) Silicon iron nitride powder, manufacturing method thereof and refractory
JPS6311312B2 (en)
WO2019049992A1 (en) Monolithic refractory
WO2001068555A1 (en) Monolithic refractory for waste pyrolysis furnace and waste pyrolysis furnace using the same
JPS58190876A (en) Carbon-containing castable refractories
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JP3617765B2 (en) Slide gate plate and manufacturing method thereof
JP4384351B2 (en) Refractory for blast furnace tuyere
KR100508521B1 (en) A castable refractories composition containing carbon
JP2909582B2 (en) Surface-treated aluminum powder, amorphous refractory containing the same and molded product thereof
WO2019049815A1 (en) Monolithic refractory
JP3395108B2 (en) Method of manufacturing slide gate plate
JP3696149B2 (en) Blocking material for blast furnace exit hole
JP4703087B2 (en) Water-based castable refractories
JP2005047757A (en) Graphite-containing castable refractory
JPH068223B2 (en) Casting refractory material for blast furnace tappipe
JP2005075671A (en) Monolithic refractory for blast furnace iron spout
JP4470372B2 (en) Graphite-containing amorphous refractory material
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use
JPS59107961A (en) Carbon-containing refractories
JPH0437454A (en) Nozzle for casting wide and thin slab
JP2947390B2 (en) Carbon containing refractories
JPS6024072B2 (en) Blast furnace gutter material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050518

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees