JPS5842247B2 - Method for manufacturing high-strength cold-rolled steel sheets with excellent formability and bake hardenability - Google Patents

Method for manufacturing high-strength cold-rolled steel sheets with excellent formability and bake hardenability

Info

Publication number
JPS5842247B2
JPS5842247B2 JP6528679A JP6528679A JPS5842247B2 JP S5842247 B2 JPS5842247 B2 JP S5842247B2 JP 6528679 A JP6528679 A JP 6528679A JP 6528679 A JP6528679 A JP 6528679A JP S5842247 B2 JPS5842247 B2 JP S5842247B2
Authority
JP
Japan
Prior art keywords
strength
bake hardenability
rolled steel
steel
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6528679A
Other languages
Japanese (ja)
Other versions
JPS55158227A (en
Inventor
克巳 亀野
益弘 佐藤
一郎 小久保
坦 平野
伸吾 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6528679A priority Critical patent/JPS5842247B2/en
Publication of JPS55158227A publication Critical patent/JPS55158227A/en
Publication of JPS5842247B2 publication Critical patent/JPS5842247B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Description

【発明の詳細な説明】 本発明は高強度冷延鋼板の製法に関し、特に良好なプレ
ス成形性を有し且つ卓越した焼付硬化性を有する高強度
冷延鋼板の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high-strength cold-rolled steel sheet, and particularly to a method for manufacturing a high-strength cold-rolled steel sheet having good press formability and excellent bake hardenability.

近年自動車用高強度冷延鋼板は、自動車の衝突事故等に
おける乗員保護を目的とした強度向上と同時に、排ガス
規制や燃費改善に伴なう車体重量の軽減等の複合的要請
に対処すべく、板材の薄肉化を期して積極的に研究が進
められている。
In recent years, high-strength cold-rolled steel sheets for automobiles have been developed to meet the complex demands of increasing strength to protect occupants in automobile collisions, as well as reducing vehicle weight in line with exhaust gas regulations and improving fuel efficiency. Research is being actively carried out with the aim of making plate materials thinner.

これらの材料に要求される特性としては、まず破壊等を
生じることなく良好な寸法精度のもとに複雑な形状に成
形し得る優れた加工性を有し、また溶接構造物として組
立てられた状態で良好な強度、耐衝撃性、疲労強度等が
必要であることから溶接性。
The characteristics required of these materials include excellent workability, which allows them to be formed into complex shapes with good dimensional accuracy without causing damage, and also to be able to be assembled into welded structures. Good strength, impact resistance, fatigue strength, etc. are required for weldability.

就中スポット溶接性に優れていることが要求される。Among other things, it is required to have excellent spot weldability.

かかる要請のもとで従来高Mn系高強度冷延鋼板が用い
られているが、加工性及び強度と延性のバランス等の点
では尚不十分であった。
In response to such demands, high-Mn-based high-strength cold-rolled steel sheets have been used in the past, but they were still unsatisfactory in terms of workability and balance between strength and ductility.

そこで本出願人は先に高Si系高強度冷延鋼板を提供し
上記要請に応じてきた(特開昭51−38220号、特
開昭52−86919号)、これら冷延鋼板の強度レベ
ルは40キロ以上、その多くハ45キロ以上の引張強さ
を有している。
Therefore, the present applicant has responded to the above request by providing high-Si high-strength cold-rolled steel sheets (Japanese Patent Laid-Open Nos. 51-38220 and 1986-86919), but the strength level of these cold-rolled steel sheets is It has a tensile strength of 40 kg or more, and many of them have a tensile strength of 45 kg or more.

ところでこれらの材料に要求される特性としては、先に
述べた成形性や溶接性のほか、耐テント性を付与する為
に成形加工及び塗装焼付後は高い降伏点を有するという
特殊な性質が必要になる。
By the way, in addition to the formability and weldability mentioned earlier, the properties required of these materials include the special property of having a high yield point after forming and painting and baking in order to provide tent resistance. become.

従って45キロ級以上の引張強さを有する従来の高強度
冷延鋼板についても、塗装焼付処理後の降伏点の上昇即
ち焼付硬化性を改良すれば鋼板の薄肉化を一層促進する
ことが可能である。
Therefore, even for conventional high-strength cold-rolled steel sheets that have a tensile strength of 45 kg or more, it is possible to further promote thinning of the steel sheet by increasing the yield point after paint baking treatment, that is, improving the bake hardenability. be.

しかし45キロ級程度以上の強度を有する鋼板について
の焼付硬化性の検討は殆んどなされておらず、従来では
この種の高強度冷延鋼板の焼付硬化性は乏しいという認
識が大勢を占めていた。
However, there has been almost no study on the bake hardenability of steel sheets with a strength of around 45 kg class or higher, and the majority of people have previously believed that this type of high-strength cold-rolled steel sheet has poor bake hardenability. Ta.

もつとも最近比較的優れたものとして汎用されている連
続焼鈍法で得た高強度冷延鋼板は、優れた強度と焼付硬
化性を有してはいるものの、ランクフォード値(7値)
で代表される深絞り成形性は極めて悪く、前記の目的を
達成することができない。
High-strength cold-rolled steel sheets obtained by the continuous annealing method, which has recently been widely used as a relatively superior method, have excellent strength and bake hardenability, but have a low Lankford value (7 values).
The deep drawability represented by is extremely poor, making it impossible to achieve the above objective.

本発明者等は前述の様な事情に着目し、殊に成形性、強
度及び焼付硬化性のすべてを満足し得る様な高強度冷延
鋼板の開発を期して、鋼材の化学成分や焼鈍条件等の製
造条件について種々研究を進めてきた。
The present inventors focused on the above-mentioned circumstances, and with the aim of developing a high-strength cold-rolled steel sheet that can satisfy all of the requirements of formability, strength, and bake hardenability, the present inventors investigated the chemical composition of the steel material and the annealing conditions. We have been conducting various research on manufacturing conditions such as

その結果以下に示す方法を採用すれば上記の目的が兄事
に達成されることを確認し、鼓に本発明の完成をみた。
As a result, it was confirmed that the above objectives could be achieved by adopting the method shown below, and the present invention was finally completed.

即ち本発明に係る高強度冷延鋼板の製法とは、C:0.
01〜0.20%(重量:以下同じ)、Si:0.7〜
3.0%、Mn≦0.7%、残部:鉄及び不可避不純物
からなり、且つ(Si /Mn )≧1,0である溶鋼
を、造塊工程、分塊工程もしくは連鋳工程でスラブとし
た後A13変態点以上の温度で熱延し400〜750℃
で巻取った後、脱スケール及び冷延の後バッチ焼鈍炉内
にて650〜800℃で焼鈍を施こし、次いで80〜b 速度で急冷するところに要旨が存在する。
That is, the method for producing a high-strength cold-rolled steel sheet according to the present invention includes C:0.
01~0.20% (weight: same below), Si: 0.7~
3.0%, Mn≦0.7%, balance: iron and unavoidable impurities, and (Si /Mn)≧1.0, the molten steel is made into a slab in an ingot-making process, a blooming process, or a continuous casting process. After that, hot rolling at a temperature above A13 transformation point to 400-750℃
The gist is that after winding, descaling and cold rolling, annealing is performed at 650 to 800°C in a batch annealing furnace, and then quenching is performed at a rate of 80 to 80°C.

このとき、溶鋼中に更にP:0.03〜0.20%及び
/又はA1:0.015〜0.15%を含有させてやれ
ば、高強度冷延鋼板の性能を一段と高めることができる
At this time, if the molten steel further contains P: 0.03-0.20% and/or A1: 0.015-0.15%, the performance of the high-strength cold-rolled steel sheet can be further improved. .

Cは鋼の強度を高めるのに不可欠の元素で、含有率が0
.01%未満では十分な強度が得られず、しかも満足な
スポット溶接性が得られない。
C is an essential element for increasing the strength of steel, and its content is 0.
.. If it is less than 0.01%, sufficient strength and satisfactory spot weldability cannot be obtained.

一方含有率が0.20%を越えると鋼組織中に巨大なセ
メンタイトが生成してプレス成形性が低下し、スポット
溶接性も低下するのでこれ以下に抑えるべきである。
On the other hand, if the content exceeds 0.20%, giant cementite will form in the steel structure, reducing press formability and spot weldability, so it should be kept below this range.

特に好ましいCの含有率は0.03〜0.15%である
A particularly preferable C content is 0.03 to 0.15%.

Siは強度付与の為の不可欠の主要元素で、Siによる
引張強さの増加率はMnの添加効果の約2倍に相当する
Si is an indispensable main element for imparting strength, and the rate of increase in tensile strength due to Si is approximately twice the effect of adding Mn.

従ってMnによって強度付与を図る場合に比べて合金添
加量を半減でき、材料費の面でも極めて有効である。
Therefore, compared to the case where strength is imparted by Mn, the amount of alloy added can be reduced by half, which is extremely effective in terms of material costs.

しかも高Si系鋼板は、高Mn系鋼板に比べて熱延板硬
度に対する冷延・焼鈍後の硬度の低下が少なく、優れた
強度、強度と延性のバランス、伸びフランジ性、深絞り
性を有しており、更には本発明の特徴の1つである焼付
硬化性においても卓越している。
Moreover, compared to high-Mn steel sheets, high-Si steel sheets have less decrease in hardness after cold rolling and annealing compared to hot-rolled sheet hardness, and have excellent strength, a balance between strength and ductility, stretch flangeability, and deep drawability. Moreover, it is also excellent in bake hardenability, which is one of the characteristics of the present invention.

これらの諸効果を有意に発揮させる為には少なくとも0
.7%以上必要であり、一方3.0%を越えると製鋼操
業上の支障が生じるほか冷間加工性も著しく劣化するの
でこれ以下に止めるべきである。
In order to exhibit these effects significantly, at least 0
.. A content of 7% or more is required; on the other hand, if it exceeds 3.0%, problems occur in steelmaking operations and cold workability is significantly degraded, so it should be kept below this range.

Mnは強度の向上と熱間圧延時の赤熱脆化の防止に有効
な元素である。
Mn is an element effective in improving strength and preventing red heat embrittlement during hot rolling.

またSiのみで高強度化を図る場合、往々にして変態点
が過度に上昇して熱間圧延時に種々のトラブルが生じた
り、或はスポット溶接性が低下するから、高Si系鋼と
いえどもSiの含有率には限度があるが、Mnを併用す
るとその固溶強化によって強度を効果的に高め、更には
Cとの共存下でスポット溶接部の組織を微細化する効果
を発揮する。
Furthermore, when trying to increase the strength using only Si, the transformation point often rises excessively, causing various troubles during hot rolling or reducing spot weldability, so even if it is a high-Si steel, Although there is a limit to the content of Si, when Mn is used in combination, the strength is effectively increased through its solid solution strengthening, and furthermore, in the coexistence with C, the microstructure of the spot weld is refined.

これらの効果を発揮させる為には少なくとも0.2%が
必要であるが、0.7%以上含有させる必要はない。
In order to exhibit these effects, at least 0.2% is required, but it is not necessary to contain 0.7% or more.

尚強度、延性のバランス及び焼付硬化性に寄与するMn
の効果はSiはど顕著ではなく、本発明の場合のMnの
役割はあくまで従属的である。
In addition, Mn contributes to the balance of strength and ductility and bake hardenability.
The effect of Si is not as remarkable as that of Si, and the role of Mn in the present invention is only subordinate.

即ち本発明ではSi/Mnの比率が1以上の高Si系鋼
にしておくことが不可欠で、それにより卓越した焼付硬
化性及び機械的緒特性を確保することができる。
That is, in the present invention, it is essential to use a high-Si steel with a Si/Mn ratio of 1 or more, thereby ensuring excellent bake hardenability and mechanical properties.

このほか本発明ではAl及びPの一方又は双方を適量含
有させて物性を高めることもできる。
In addition, in the present invention, one or both of Al and P can be contained in appropriate amounts to improve physical properties.

従来AIは脱酸効果のみが注目されており、高強度冷延
鋼板に対するAlの添加効果は殆ん♂議論されておらず
、材質に対する影響も明確にされていない。
Conventionally, attention has been paid to only the deoxidizing effect of AI, and the effect of adding Al to high-strength cold-rolled steel sheets has hardly been discussed, nor has the effect on the material been clarified.

また本発明の前記組成範囲ではSi及びMnの効果で実
質的にキルド鋼となり、脱酸の目的からすればAlの添
加は不要である。
Further, in the above composition range of the present invention, the steel becomes substantially killed steel due to the effects of Si and Mn, and the addition of Al is unnecessary for the purpose of deoxidation.

ところが前記組成の鋼材に適量のAIを含有させると、
プレス成形性及び焼付硬化性が大幅に向上することが確
認された。
However, when a steel material with the above composition contains an appropriate amount of AI,
It was confirmed that press formability and bake hardenability were significantly improved.

ここでプレス成形性の向上はAlキルド軟鋼板の場合と
同様A1窒化物が重要な役割を果していると考えられる
が、焼付硬化性に対するAIの効果はAlキルド軟鋼板
の場合とまったく正反対である。
Here, it is thought that Al nitride plays an important role in improving press formability as in the case of Al-killed mild steel sheets, but the effect of AI on bake hardenability is completely opposite to that in the case of Al-killed mild steel sheets. .

この様な高強度冷延鋼板の焼付硬化性に及ぼすAlの添
加効果の詳細な機構は必ずしも明確でないが、少なくと
も先に説明した含有元素の種類及び量並びに後述する製
造条件のもとではA1の添加によってプレス成形性及び
焼付硬化性は著しく向上することは明確である。
Although the detailed mechanism of the effect of Al addition on the bake hardenability of such high-strength cold-rolled steel sheets is not necessarily clear, at least under the types and amounts of the contained elements explained earlier and the manufacturing conditions described later, It is clear that press formability and bake hardenability are significantly improved by addition.

この様なAIの効果を有効に発揮させる為には0.01
5%以上添加する必要があるが、多すぎるとスリパー疵
等の表面欠陥が表われるので0.15%以下に、特に製
品の表面性状が厳しく要求される場合は、0,08%以
上に夫々抑えることが望まれる。
In order to effectively demonstrate the effect of such AI, 0.01
It is necessary to add 5% or more, but if it is too high, surface defects such as slipper scratches will appear, so it should be added to 0.15% or less, and if the surface quality of the product is particularly strict, it should be added to 0.08% or more. It is desirable to suppress this.

Pは、Si及びMnを主要強化元素とする基体に適量含
有させることにより、鋼材の強度及び加工性を高め更に
は焼付硬化性を高める効果があり好ましい含有率は0.
03〜(12%の範囲である。
P is effective in increasing the strength and workability of the steel material, as well as the bake hardenability, by including it in an appropriate amount in a substrate whose main reinforcing elements are Si and Mn, and the preferable content is 0.
The range is from 03 to 12%.

しかして0.03%未満では上記の効果が有意に発揮さ
れず、一方0.2%を越えると衝撃2次加工性が劣化す
るからである。
However, if it is less than 0.03%, the above effects will not be exhibited significantly, while if it exceeds 0.2%, impact secondary workability will deteriorate.

特に好ましい含有率は0.03〜0.15%である。A particularly preferable content is 0.03 to 0.15%.

尚Pの添加により焼付硬化性が向上する機構については
必ずしも十分に解明し得た訳ではないが、確認実験の結
果から、Pが焼鈍後の炭化物の存在状態(大きさ、量等
)に影響を及ぼしていること、またこの炭化物が、パー
ライト状である程度大きな形状として存在する高Mn系
鋼よりも、微細なセメンタイトとして存在する高Si系
鋼に対する場合の方がより有効に作用した為と考えられ
る。
Although the mechanism by which bake hardenability is improved by the addition of P has not necessarily been fully elucidated, the results of confirmation experiments suggest that P influences the state (size, amount, etc.) of carbides after annealing. It is thought that this is because this carbide acts more effectively on high Si steel, which exists as fine cementite, than on high Mn steel, which exists in a pearlite-like and somewhat large shape. It will be done.

尚鋼中の酸素は殆んどが非金属介在物として存在し、強
度付与及び焼付硬化性に寄与するC1Si、Mn、P等
の効果を減するので、酸素量は0.015%以下に抑え
ることが望まれる。
Most of the oxygen in steel exists as nonmetallic inclusions, which reduces the effects of C1Si, Mn, P, etc. that contribute to strength and bake hardenability, so the amount of oxygen is kept to 0.015% or less. It is hoped that

この他事可避的に混入するS等の不純物は、伸びフラン
ジ性に代表される材料特性を劣化させるので可及的に少
ない方がよく、例えばSは0.03%以下にするのがよ
い。
Impurities such as S, which are unavoidably mixed in, deteriorate material properties such as stretch flangeability, so it is better to keep them as low as possible. For example, S should be kept at 0.03% or less. .

更に本発明において極めて重要なことは、鋼材成分中の
Crを実質的に零にしなげればならないことである。
Furthermore, what is extremely important in the present invention is that Cr in the steel components must be reduced to substantially zero.

即ちCrは、後記実施例でも明らかにする如く少量でも
混入していると焼付硬化性が極端に低下し、焼付条件等
を適正に設定し或はPやAlを適量配合したとしても本
発明の目的を達成することはできない。
That is, as will be made clear in the Examples below, if Cr is mixed in even a small amount, the bake hardenability will be extremely reduced, and even if the baking conditions are set appropriately or P and Al are mixed in appropriate amounts, the present invention will not work. cannot achieve the goal.

本発明で使用する鋼材の成分組成は概略以上の通りであ
るが、本発明の目的を達成する為には更に処理条件を以
下の如く設定しなげればならず、それによってはじめて
優れた成形加工性と焼付硬化性を得ることができる。
The composition of the steel used in the present invention is roughly as described above, but in order to achieve the purpose of the present invention, the processing conditions must be further set as shown below. properties and bake hardenability.

まず上記の諸元素を含む溶鋼を、通常の方法或は今後開
発されるであろう様な方法で造塊1分塊した後、Ar3
変態点以上の温度及び400〜750℃の巻取り温度で
仕上げ熱延を行なう。
First, molten steel containing the above elements is made into an ingot by a conventional method or a method that will be developed in the future, and then Ar3
Finish hot rolling is performed at a temperature above the transformation point and a winding temperature of 400 to 750°C.

尚熱延時の該巻取り温度範囲自体は格別特殊なものでは
なく、一般的な巻取り条件と実質的に同一であるが、本
発明においても、形状の良好な熱延鋼板を確保すると共
に、熱延後の酸洗能率を高め且つ炭化物の存在状態を適
正に保つ為には、上記の温度範囲で巻取らなげればなら
ない。
The coiling temperature range itself during hot rolling is not particularly special and is substantially the same as general coiling conditions, but in the present invention as well, while ensuring a hot rolled steel sheet with a good shape, In order to increase the pickling efficiency after hot rolling and to maintain the proper state of carbides, the coiling must be carried out within the above temperature range.

その後脱スケール及び冷延を行なう。ここで冷延率は、
引張強さ及び加工性を最大限有効に発揮させるうえで4
0%以上にすることが望ましい。
After that, descaling and cold rolling are performed. Here, the cold rolling rate is
4 to maximize tensile strength and workability
It is desirable to set it to 0% or more.

また冷延後のバッチ焼鈍に当っては、650℃〜SOO
℃で焼鈍した後80〜b の速度で急冷しなげればならない。
In addition, for batch annealing after cold rolling, 650℃~SOO
After annealing at 80 DEG C., it must be rapidly cooled at a rate of 80 DEG C.

しかしてこの様なバッチ焼鈍条件を設定することによっ
て、成形性に好ましい結晶配列が確保され、同時に炭化
物の存在状態、固溶N量及び固溶C量等を最も適正な状
態にすることができ、引張強さ、成形性及び焼付硬化性
の卓越した冷延鋼板を得ることができる。
However, by setting such batch annealing conditions, it is possible to ensure a crystal arrangement favorable for formability, and at the same time to make the presence of carbides, the amount of solute N, the amount of solute C, etc. in the most appropriate state. A cold rolled steel sheet with excellent tensile strength, formability and bake hardenability can be obtained.

尚焼鈍温度を上記の様に定めたのは、650℃未満では
焼鈍工程で十分に再結晶を行なわせることができない他
鋼板に十分な延性を与えることができず、一方800℃
を越えると結晶粒の成長が不十分になって優れた成形性
を保障する結晶配列が得られ難くなるからである。
The annealing temperature was determined as above because if it is less than 650°C, sufficient recrystallization will not occur during the annealing process, and sufficient ductility cannot be imparted to the steel plate.
This is because, if it exceeds this, the growth of crystal grains becomes insufficient and it becomes difficult to obtain a crystal alignment that ensures excellent formability.

又焼鈍後の冷却条件は本発明の目的を達成するうえで極
めて重要であり、成形性及び焼付硬化性を高めるべく鋼
中に固溶N及び固溶Cを残留させる為には遅くとも80
℃/時間以上の速度で急冷しなげればならない。
In addition, the cooling conditions after annealing are extremely important in achieving the purpose of the present invention, and in order to leave solute N and C in the steel to improve formability and bake hardenability, the cooling conditions should be at least 80%.
It must be rapidly cooled at a rate of at least ℃/hour.

一方冷却速度の上限は特に存在しないが、設備的な制約
を考慮すれば150℃/時間程度の上限と考えられる。
On the other hand, there is no particular upper limit to the cooling rate, but if equipment constraints are taken into consideration, the upper limit is considered to be about 150° C./hour.

次に実施例を挙げて本発明の構成及び作用効果を説明す
るが、下記は本発明を限定する性質のものではなく、前
・後記の趣旨に沿って含有元素の量や焼鈍条件等を変化
することも可能であり、それらはすべて本発明技術の範
囲に含まれる。
Next, the structure and effects of the present invention will be explained with reference to Examples, but the following does not limit the present invention, and the amount of contained elements, annealing conditions, etc. are changed in accordance with the spirit of the above and below. It is also possible to do so, all of which are within the scope of the present technology.

実施例 第1表に示す化学成分の供試鋼を、通常の造塊、分塊工
程の後、仕上温度900°Cで熱延し巻取温度550℃
で巻取って2.7關厚の熱延板を得た。
Example A test steel having the chemical composition shown in Table 1 was hot rolled at a finishing temperature of 900°C after the usual ingot making and blooming process, and was rolled at a coiling temperature of 550°C.
A hot-rolled sheet with a thickness of 2.7 mm was obtained.

次いで酸洗した後冷間圧延し0.8朋厚の鋼板を得た。Next, the steel plate was pickled and then cold rolled to obtain a steel plate having a thickness of 0.8 mm.

該鋼板を660℃にて3時間焼鈍し、100℃/時間の
速度で冷却し、更に1%の調質圧延を施こして冷延鋼板
を得た。
The steel plate was annealed at 660°C for 3 hours, cooled at a rate of 100°C/hour, and further subjected to 1% temper rolling to obtain a cold rolled steel plate.

各鋼板の加工前の機械的性質及び焼付硬化性能(BH値
)をまとめて第2表及び第1〜3図に示す。
The mechanical properties and bake hardening performance (BH value) of each steel plate before processing are summarized in Table 2 and Figures 1 to 3.

但し第2表中の各記号は下記の通りである。However, each symbol in Table 2 is as follows.

BH値: JI85号の引張試験片に2%の引張り予歪
を与えた後、該試験片を170℃で30分間熱処理しく
焼付条件に対応させる為)、再度引張試験を行ない、こ
のときの降伏応力から2%引張り時の変形応力を差し引
いた値とし、焼付硬化性の目安とする。
BH value: After applying a 2% tensile prestrain to a tensile test piece of JI85, the test piece was heat-treated at 170°C for 30 minutes (in order to correspond to the baking conditions), and the tensile test was performed again, and the yield at this time was The value obtained by subtracting the deformation stress at 2% tension from the stress is used as a measure of bake hardenability.

尚第1図は各供試鋼板をAI有、AI無、高Si系、高
Mn系及び高Mn ・高Si系に区分し、夫々につい
てBH値との関係をグラフ化したもの、第2図はAlの
有・無とBH値の関係を示したもの、第3図は、高Si
系か高Mn系かによるBH値に及ぼす影響を比較して示
すグラフである。
Figure 1 is a graph of the relationship between each test steel plate and the BH value, dividing each test steel plate into AI, non-AI, high-Si, high-Mn, and high-Mn/high-Si systems. Figure 3 shows the relationship between the presence/absence of Al and the BH value.
It is a graph showing a comparison of the effects on the BH value depending on whether it is a high-Mn type or a high-Mn type.

第2表及び第1〜3図の結果から以下の如く考察するこ
とができる。
The following considerations can be made from the results shown in Table 2 and Figures 1 to 3.

■ 第1図からも明らかな様に、高Si系鋼及び高地系
鋼業適量のPを含有させることにより、またP量を増加
することによりBH値は向上する。
(2) As is clear from FIG. 1, the BH value can be improved by containing an appropriate amount of P or by increasing the amount of P.

これらPの添加効果は特に高Si系鋼の場合に顕著であ
る。
These effects of adding P are particularly noticeable in high-Si steels.

しかし少量のCrが混入すると何れの場合もBH値は極
端に低下する。
However, if a small amount of Cr is mixed, the BH value decreases extremely in either case.

■ 第2図は、AI以外は類似した成分の材料を用い、
Alの有・無を比較したデータであるが、Alを含有さ
せることにより何れもBH値は向上している。
■ Figure 2 uses materials with similar components except for AI.
The data compares the presence and absence of Al, and the BH value is improved in both cases by including Al.

しかしその効果は高地系鋼の場合より高Si系鋼の方が
はるかに大きい。
However, the effect is much greater for high-Si steel than for high-altitude steel.

■ 第3図は高Si系鋼又は高Mn系鋼に対するPの添
加とBH値との関係を比較したデータであるが、この図
からも高Si系鋼の方がはるかに優れたBH値を示して
いる。
■ Figure 3 shows data comparing the relationship between the addition of P and the BH value for high-Si steel or high-Mn steel. This figure also shows that high-Si steel has a much better BH value. It shows.

■ また第2表には、一部の供試鋼板について〒値の測
定結果を示したが、Alの有無による比較を類似成分鋼
について行なうと、例えばAとF、BとG、DとJの比
較からも明らかな如<AIを含有させた方が7値は高(
なっており、Alは焼付硬化性のみならず深絞り加工性
の向上にも極めて有効に作用する。
■ Table 2 shows the measurement results of the 〒 values for some of the test steel sheets, but when comparing similar component steels based on the presence or absence of Al, for example, A and F, B and G, D and J It is clear from the comparison that <7 value is higher when AI is included (
Therefore, Al is extremely effective in improving not only bake hardenability but also deep drawing workability.

比較例 第1表に示した鋼種F、G、H,J、K及びLを選択し
、焼鈍後の冷却速度を20℃/時間とした他は実施例と
同様に処理して冷延鋼板を得た。
Comparative Example Steel types F, G, H, J, K, and L shown in Table 1 were selected, and cold-rolled steel sheets were prepared in the same manner as in the example except that the cooling rate after annealing was 20°C/hour. Obtained.

各鋼板の加工前の機械的性質及び焼付硬化性能を測定し
た結果を第3表に示す。
Table 3 shows the results of measuring the mechanical properties and bake hardening performance of each steel plate before processing.

第3表の結果からも明らかな如く、冷却速度を80℃/
時間以下とした場合、加工前の物性は優れているものの
焼付硬化性(BH値)が低く、本発明の目的を達成でき
ない。
As is clear from the results in Table 3, the cooling rate was increased to 80℃/
If it is less than 1 hour, the physical properties before processing are excellent, but the bake hardenability (BH value) is low, and the object of the present invention cannot be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は実験結果を示すグラフである。 1 to 3 are graphs showing experimental results.

Claims (1)

【特許請求の範囲】 I C:0.01〜0.20%(重量%:以下同じ)
、Si : 0.7〜3.0%、Mn≦0.7%、残
部:鉄及び不可避不純物からなり、且つ(S i /M
n )≧1.0である溶鋼を、造塊工程、分塊工程もし
くは連鋳工程でスラブとした後Ar3変態点以上の温度
で熱延し400〜750℃の温度で巻取った後脱スケー
ル及び冷延の後バッチ焼鈍炉内にて650〜800℃で
焼鈍を施こし、次いで80〜b性及び焼付硬化性の優れ
た高強度冷延鋼板の製法。 2 C:0.01〜0.20%(重量:以下同じ)、
Si:0.7〜3.0%、馳≦0.7%、P及び/又は
At(Pは0.03〜0.20%、Alは0.015〜
0.15%)、残部:鉄及び不可避不純物からなり且つ
(S i /Mn )≧1.0である溶鋼を、造塊工程
、分塊工程もしくは連鋳工程でスラブとした後Ar3変
態点以上の温度で熱延し400〜750℃の温度で巻取
った後、脱スケール及び冷延の後バッチ焼鈍炉内にて6
50〜800℃で焼鈍を施こし、次いで80〜b ることを特徴とする成形性及び焼付硬化性の優れた高強
度冷延鋼板の製法。
[Claims] IC: 0.01 to 0.20% (weight %: the same below)
, Si: 0.7 to 3.0%, Mn≦0.7%, balance: iron and inevitable impurities, and (S i /M
n)≧1.0 is made into a slab in the ingot making process, blooming process or continuous casting process, then hot rolled at a temperature above the Ar3 transformation point, coiled at a temperature of 400 to 750°C, and then descaled. and a method for producing a high-strength cold-rolled steel sheet, which is annealed at 650-800°C in a batch annealing furnace after cold rolling, and then has excellent 80-b properties and bake hardenability. 2 C: 0.01 to 0.20% (weight: same below),
Si: 0.7 to 3.0%, 0.7%, P and/or At (P is 0.03 to 0.20%, Al is 0.015 to
0.15%), balance: molten steel consisting of iron and unavoidable impurities and (S i /Mn )≧1.0 is made into a slab in an ingot making process, blooming process or continuous casting process, and then the Ar3 transformation point or higher is obtained. After hot rolling at a temperature of 400 to 750°C, descaling and cold rolling were carried out in a batch annealing furnace for 6
A method for producing a high-strength cold-rolled steel sheet with excellent formability and bake hardenability, characterized by annealing at 50 to 800°C and then annealing at 80 to 80°C.
JP6528679A 1979-05-26 1979-05-26 Method for manufacturing high-strength cold-rolled steel sheets with excellent formability and bake hardenability Expired JPS5842247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6528679A JPS5842247B2 (en) 1979-05-26 1979-05-26 Method for manufacturing high-strength cold-rolled steel sheets with excellent formability and bake hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6528679A JPS5842247B2 (en) 1979-05-26 1979-05-26 Method for manufacturing high-strength cold-rolled steel sheets with excellent formability and bake hardenability

Publications (2)

Publication Number Publication Date
JPS55158227A JPS55158227A (en) 1980-12-09
JPS5842247B2 true JPS5842247B2 (en) 1983-09-19

Family

ID=13282530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6528679A Expired JPS5842247B2 (en) 1979-05-26 1979-05-26 Method for manufacturing high-strength cold-rolled steel sheets with excellent formability and bake hardenability

Country Status (1)

Country Link
JP (1) JPS5842247B2 (en)

Also Published As

Publication number Publication date
JPS55158227A (en) 1980-12-09

Similar Documents

Publication Publication Date Title
EP2415893B1 (en) Steel sheet excellent in workability and method for producing the same
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JP2005528519A5 (en)
WO2001023625A1 (en) Sheet steel and method for producing sheet steel
JPS5942742B2 (en) High strength cold rolled steel plate for deep drawing with low yield ratio
JPH0123530B2 (en)
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
JP2001303175A (en) Ferritic thin steel sheet excellent in shape freezability and its producing method
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH0559970B2 (en)
JP2682327B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in bake hardenability and deep drawability
JP2671726B2 (en) Manufacturing method of cold rolled steel sheet for ultra deep drawing
JPS6369923A (en) Production of cold rolled steel sheet for deep drawing having excellent baking hardenability
JPH01184227A (en) Production of alloyed and galvanized steel sheet for drawing
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JP3023014B2 (en) Cold rolled mild steel sheet for ultra deep drawing
JPS5842247B2 (en) Method for manufacturing high-strength cold-rolled steel sheets with excellent formability and bake hardenability
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
JPH0238647B2 (en) CHOKOCHORYOKUKOHANNOSEIZOHOHO
JPH0657336A (en) Production of high strength galvannealed steel sheet for high working
JPH10130780A (en) Cold rolled steel sheet reduced in inplane anisotropy and excellent in formability, and its production
JP3750600B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JPH0545652B2 (en)
JPS6261664B2 (en)