JPS6261664B2 - - Google Patents

Info

Publication number
JPS6261664B2
JPS6261664B2 JP56030058A JP3005881A JPS6261664B2 JP S6261664 B2 JPS6261664 B2 JP S6261664B2 JP 56030058 A JP56030058 A JP 56030058A JP 3005881 A JP3005881 A JP 3005881A JP S6261664 B2 JPS6261664 B2 JP S6261664B2
Authority
JP
Japan
Prior art keywords
steel
amount
bake hardenability
less
bake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56030058A
Other languages
Japanese (ja)
Other versions
JPS57143464A (en
Inventor
Ichiro Kokubo
Shingo Nomura
Katsumi Kameno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3005881A priority Critical patent/JPS57143464A/en
Publication of JPS57143464A publication Critical patent/JPS57143464A/en
Publication of JPS6261664B2 publication Critical patent/JPS6261664B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、焼付硬化性にすぐれた高強度冷延鋼
板及びその製造方法に関する。 従来の技術 近年、自動車用高強度冷延鋼板に関して、自動
車の衝突事故時等における乗員保護を目的とした
強度向上と同時に、排ガス規制や燃費改善に伴う
車体重量の軽減等の要請に応えるべく、その薄肉
化を図るために積極的に研究が展開されている。
これらの材料に要求される特性としては、先ず、
破断等を生じることなく、良好な寸法精度のもと
に複雑な形状に成形し得るすぐれた加工性と、溶
接構造物として組立てられた状態での良好な強度
及び耐衝撃性とが挙げられる。 しかし、最近、これらの材料に要求される特性
として、上記に加えて、新たに焼付硬化性が注目
されるに至つている。この焼付硬化性とは、塗料
の焼付け時の熱によつて鋼板が時効硬化し、降伏
点が上昇する現象をいう。この焼付硬化性につい
ては、従来、主として、リムド鋼とアルミキルド
鋼について研究されており、リムド鋼の方が焼付
硬化性の高いことが一般的に認識されているが、
リムド鋼とアルミキルド鋼における焼付硬化性
は、従来、引張強さが40キロ程度、高々45キロま
での強度クラスの鋼板を対象として研究されてい
るにすぎず、45キロ級程度以上の強度を有する鋼
板については、その焼付硬化性は殆ど研究されて
おらず、従来では、この種の高強度冷延鋼板は、
焼付硬化性に乏しいという認識が大勢を占めてい
る。 もつとも、最近、焼付硬化性が比較的すぐれた
ものとして汎用されている連続焼鈍法による高強
度冷延鋼板は、すぐれた強度と焼付硬化性を有し
てはいるものの、ランクフオード値(r値)で代
表される深絞り変形性が極めて悪いという難点が
ある。 発明が解決しようとする問題点 本発明らは、高強度冷延鋼板における焼付硬化
性についての上述した事情に鑑み、鋭意研究した
結果、焼付硬化性にすぐれた高強度冷延鋼板、即
ち、アルミキルド鋼と同じ程度若しくはそれ以上
の成形性を有すると同時に、アルミキルド鋼を遥
かに凌ぎ、リムド鋼に匹敵する焼付硬化性を有す
る鋼板を得、かくして、一層の薄肉化を可能とす
る高強度冷延鋼板を得て、本発明を完成したもの
である。 問題点を解決するための手段 本発明による焼付硬化性のすぐれた高強度冷延
鋼板は、重量%で C 0.01%以下、 Si 0.65〜2%、 Mn 1.0%を越えて、2%まで、 P 0.03〜0.15%、 Cu 0.2〜1%、及び Al 0.10%以下 残部鉄及び不可避的不純物よりなることを特徴と
する。 また、本発明による焼付硬化性のすぐれた高強
度冷延鋼板の製造方法は、重量%で C 0.01%以下、 Si 0.65〜2%、 Mn 1.0%を越えて、2%まで、 P 0.03〜0.15%、 Cu 0.2〜1%、及び Al 0.10%以下 残部鉄及び不可避的不純物よりなる鋼をA3変態
点以上の温度で熱間圧延し、600℃以上の温度で
巻取り、次いで、冷間圧延することを特徴とす
る。 以下、本発明にかかる焼付硬化性のすぐれた冷
延鋼板及びその製造方法について詳細に説明す
る。 本発明において、Cは、冷延鋼板の強度を高め
るために基本的且つ極めて重要な元素であるが、
過多に添加するときは、焼付硬化性を低下させる
ので、本発明に従つて、卓越した焼付硬化性を有
する冷延鋼板を得るには、本発明におけるような
高張力成分鋼の場合にも、Cを0.01%以下とする
ことが必要且つ重要である。 Siは、高強度化のための主要成分であると共
に、焼付硬化性を高める効果が顕著である。これ
らの効果を有効に得るためには、0.65%以上を添
加することが必要である。しかし、過多に添加す
るときは、製鋼操業面で障害が生じたり、或いは
主として成形性等の材料特性値が低下するので、
添加量は2%以下とされる。 Mnは、溶鋼中に不純物元素として混入するこ
との多い微量のSを固定すると共に、鋼板を強化
するために有効な元素である。焼付硬化性の観点
からは、Mnは、その添加量が増大するに伴つ
て、固溶Cを減少させるので、従来、一般には、
余り多く添加することは好ましくないとされてい
る。しかしながら、本発明によれば、固溶Cの減
少が顕著に生じるといわれている1.0%を越える
高Mn量の高張力成分鋼についても、前述したよ
うに、特に、Cを低減させることによつて、極め
て高い焼付硬化量を得ることができる。しかし、
2%を越えて添加する必要はないので、本発明に
おいては、Mn量は、1.0%を越えて、2%までと
される。 Pは、Si及びMnを主要強化元素とする基体に
適量を含有させることによつて、鋼板の焼付硬化
性を顕著に向上させる効果を有する。かかる効果
を有効に得るためには、少なくとも0.03%を含有
させることが必要である。しかし、0.15%を越え
るときは、二次加工性に代表される材料特性値の
劣化が生じる。 このように、Pの添加によつて、冷延鋼板にお
ける焼付硬化性が向上する機構については、必ず
しも明確ではないが、種々の実験の結果、焼鈍後
の炭化物の大きさ、量、スペーシング等にPが影
響を及ぼし、P量の増加と共に析出炭化物の面積
率が低下する事実から、P量の増大と共に固溶C
量が増大して、焼付硬化性を上昇させるものと推
定される。 焼付硬化性に対するPの添加効果は、C量が
0.05%程度の場合には、高Si系鋼(Si/Mn重量
比≧1)で大きく、C量が0.01%以下の低炭素領
域では、高Si系鋼と高Mn系鋼(Si/Mn重量比<
1)との間の差が小さくなる。このことは、炭化
物が多く存在する状態では、パーライト状にてあ
る程度大きい形状にて存在する高Mn系鋼より
も、塊状の微細なセメンタイトとして存在する高
Si系鋼に対する場合の方が、Pが一層有効に作用
することを示すものと考えられる。焼付硬化性に
対する作用の仕方としては、上記のように、炭化
物の状態を変え、それを介してその特性値を左右
する場合と、Cの固溶量を直接左右する場合とが
考え得るが、炭化物量の少ないC量が0.01%以下
の場合には、固溶Cに対する作用のみを考えれば
よいこととなり、高Si系鋼と高Mn系鋼の差が小
さくなるものと推定される。 Cuは、本発明によれば、特に、Pと共存した
場合に、高い焼付硬化量を維持しつつ、成形性を
大きく改善する元素であり、その添加量は0.2〜
1%の範囲であるが、特に好ましい添加量は0.2
〜0.8%の範囲である。 Alは、従来、脱酸効果のみが注目されてお
り、高張力成分鋼に対するAlの添加効果につい
ては、殆ど研究されていない。本発明による前記
化学成分組成の範囲内では、鋼は、Si及びMnの
効果によつて、鋼は実質的にキルド鋼となるの
で、脱酸の目的からすれば、Alの添加は不必要
である。しかし、本発明者らによれば、C量が
0.03〜0.08%である鋼材に適量のAlを含有させる
とき、焼付硬化性が大幅に改善され、更に、この
焼付硬化性を向上させるAlの効果は、C量が0.01
%以下の鋼についても認められる。 Alは、かかる焼付硬化性に対する効果に加え
て、加工性を向上させ、或いは、Si、Mn等の添
加元素の歩留りを向上させる効果を有する。本発
明においては、これらAlの効果を有効に発揮さ
せるために、0.10%以下の範囲で添加される。し
かし、製品の表面性状が厳しく要求される場合
は、0.08%以下とすることが好ましい。 尚、鋼中の酸素は、殆どが非金属介在物として
存在し、強度付与及び焼付硬化性に寄与するC,
Si,Mn,P等の効果を減ずるので、酸素量は
0.015%以下に抑えることが望ましい。 本発明による焼付硬化性にすぐれた高強度冷延
鋼板は、上記のような化学成分組成を有する溶鋼
を通常の方法にて造塊、分塊した後、A3変態点
以上の温度で仕上熱延を行ない、600℃以上の温
度で巻取り、次いで、冷間圧延することによつて
得ることができる。熱間圧延工程において、溶製
後、熱鋼片状態としたものを熱間溶削後、直ちに
熱間圧延を行なうか、又は温片装入熱間圧延を行
ない、仕上温度をA3変態点以上とし、600℃以上
の温度で巻取る方法は、鋼がCuを含有する場合
に特に表面性状対策から推奨される。本発明によ
れば、このように、熱間圧延及び巻取条件を規定
することによつて、焼付硬化性に影響する固溶C
量を析出炭化物の状態変化を通じて変更させ、高
い焼付硬化性を得るに適した状態に維持すること
が可能となる。 このようにして得た熱間圧延鋼板の冷間圧延及
び焼鈍は、通常の方法にて行なえばよいが、焼鈍
後の冷却速度を速くすることによつて、焼付硬化
性を一層向上させることができる。 発明の効果 本発明による高強度冷延鋼板は、すぐれた成形
性と共に、きわめて高い焼付硬化性を有するの
で、例えば、自動車用冷延鋼板として、一層の薄
肉化を実現することができる。 実施例 以下に本発明を実施例に基づいて説明する。 実施例 1 第1表に示す化学成分を有する供試鋼を常法に
従つて、造塊、分塊した後、仕上温度を910℃と
して熱間圧延し、640℃の温度で巻取つて、2.7mm
厚の熱間圧延板を得た。次いで、これを酸洗した
後、冷間圧延を行なつて、0.8mm厚とし、次い
で、710℃にて3時間焼鈍し、この後、1%の調
質圧延を施して、冷延鋼板を得た。 このようにして得たそれぞれの冷延鋼板につい
て、焼付硬化量を第1表に示す。ここに、焼付硬
化量は、JIS 5号の引張試験片に2%の引張予歪
を与えた後、焼付け条件に対応させるために、こ
の試験片を170℃で30分間熱処理し、再度、引張
試験を行なつて、このとき得た降伏応力から2%
引張時の変形応力を差し引いた値で示す。 第1表に示す各供試材について、化学成分と焼
付硬化量との関係を第1図から第5図に示す。第
1図は、供試材番号1〜6(P<0.01%、Al0.04
〜0.05%)について、第2図は、供試材番号7〜
12(P約0.08%、Al0.04〜0.05%)について、そ
れぞれC量と焼付硬化量との関係を示すグラフで
ある。 第1図及び第2図にみられるように、高Si系鋼
のP含有材を除いて、いずれの材料ともC量を
0.01%以下とすることによつて、焼付硬化性が向
上し、その値は、高Si系鋼で高くなる傾向が認め
られる。高Si系鋼のP含有材は、焼付硬化
INDUSTRIAL APPLICATION FIELD The present invention relates to a high-strength cold-rolled steel sheet with excellent bake hardenability and a method for manufacturing the same. Conventional Technology In recent years, high-strength cold-rolled steel sheets for automobiles have been developed in order to meet the demands for increased strength for the purpose of protecting occupants in the event of an automobile collision, as well as for reducing vehicle weight in line with exhaust gas regulations and improving fuel efficiency. Research is actively being carried out to make the wall thinner.
The properties required for these materials are:
It has excellent workability, which allows it to be molded into a complex shape with good dimensional accuracy without causing breakage, and good strength and impact resistance when assembled as a welded structure. However, recently, in addition to the above-mentioned properties, bake hardenability has newly attracted attention as a property required of these materials. The term "bake hardenability" refers to a phenomenon in which the steel plate ages and hardens due to the heat generated during baking of the paint, increasing its yield point. Regarding this bake hardenability, research has mainly focused on rimmed steel and aluminum killed steel, and it is generally recognized that rimmed steel has higher bake hardenability.
The bake hardenability of rimmed steel and aluminum-killed steel has so far only been researched on steel plates with a tensile strength of around 40 kg, or at most 45 kg, but with tensile strength of around 45 kg or higher. There has been little research into the bake hardenability of steel sheets, and conventionally, this type of high-strength cold-rolled steel sheet is
Most people believe that it has poor bake hardenability. However, although high-strength cold-rolled steel sheets produced by continuous annealing, which have recently been widely used as having relatively excellent bake hardenability, have excellent strength and bake hardenability, they have a low Rankford value (r value). ) has the disadvantage of extremely poor deep drawing deformability. Problems to be Solved by the Invention In view of the above-mentioned circumstances regarding the bake hardenability of high-strength cold-rolled steel sheets, the present inventors have conducted intensive research and have developed a high-strength cold-rolled steel sheet with excellent bake hardenability. A high-strength cold-rolled steel sheet that has formability comparable to or better than steel, and at the same time has bake hardenability far superior to aluminum-killed steel and comparable to rimmed steel, thus enabling further thinning. The present invention was completed by obtaining a steel plate. Means for Solving the Problems The high-strength cold-rolled steel sheet with excellent bake hardenability according to the present invention contains C 0.01% or less, Si 0.65-2%, Mn more than 1.0% up to 2%, P It is characterized by consisting of 0.03 to 0.15% Cu, 0.2 to 1% Cu, and 0.10% or less Al, with the balance being iron and inevitable impurities. Furthermore, the method for producing a high-strength cold-rolled steel sheet with excellent bake hardenability according to the present invention includes C 0.01% or less, Si 0.65 to 2%, Mn exceeding 1.0% to 2%, P 0.03 to 0.15. %, Cu 0.2 to 1%, and Al 0.10% or less, the balance iron and unavoidable impurities are hot rolled at a temperature above the A3 transformation point, coiled at a temperature above 600°C, and then cold rolled. It is characterized by Hereinafter, a cold rolled steel sheet with excellent bake hardenability and a method for manufacturing the same according to the present invention will be explained in detail. In the present invention, C is a basic and extremely important element for increasing the strength of cold rolled steel sheets,
When adding too much, the bake hardenability is reduced, so in order to obtain a cold rolled steel sheet with excellent bake hardenability according to the present invention, even in the case of high tensile strength steel as in the present invention, It is necessary and important to keep C below 0.01%. Si is a main component for increasing strength and has a remarkable effect of increasing bake hardenability. In order to effectively obtain these effects, it is necessary to add 0.65% or more. However, when adding too much, it may cause problems in steelmaking operations or reduce material properties such as formability.
The amount added is 2% or less. Mn is an effective element for fixing trace amounts of S, which are often mixed as an impurity element in molten steel, and for strengthening steel sheets. From the viewpoint of bake hardenability, as the amount of Mn added increases, solute C decreases;
It is considered undesirable to add too much. However, according to the present invention, even for high tensile strength steel with a high Mn content exceeding 1.0%, which is said to cause a significant decrease in solid solution C, the present invention can be applied by reducing C, as described above. Therefore, an extremely high amount of bake hardening can be obtained. but,
Since it is not necessary to add more than 2%, in the present invention, the amount of Mn is more than 1.0% and up to 2%. P has the effect of significantly improving the bake hardenability of a steel plate by including an appropriate amount in a substrate containing Si and Mn as main reinforcing elements. In order to effectively obtain such effects, it is necessary to contain at least 0.03%. However, when it exceeds 0.15%, material property values, typified by secondary workability, deteriorate. Although the mechanism by which the bake hardenability of cold-rolled steel sheets is improved by the addition of P is not necessarily clear, various experiments have shown that the size, amount, spacing, etc. of carbides after annealing are From the fact that the area ratio of precipitated carbides decreases as the amount of P increases, the amount of solute C decreases as the amount of P increases.
It is presumed that the increase in the amount increases the bake hardenability. The effect of adding P on bake hardenability is due to the amount of C.
When it is around 0.05%, it is large in high Si steel (Si/Mn weight ratio ≧ 1), and in the low carbon region where the C content is 0.01% or less, it is large in high Si steel and high Mn steel (Si/Mn weight ratio ratio<
1) becomes smaller. This means that in a state where many carbides exist, high Mn steels exist in the form of lumpy fine cementite, rather than in high Mn steels, which exist in a pearlite-like and somewhat large shape.
This is considered to indicate that P acts more effectively on Si-based steel. Possible ways of acting on bake hardenability include changing the state of the carbide and thereby influencing its characteristic values, and directly influencing the amount of solid solution of C, as described above. When the amount of C with a small amount of carbides is 0.01% or less, it is only necessary to consider the effect on solid solution C, and it is estimated that the difference between high-Si steel and high-Mn steel becomes small. According to the present invention, Cu is an element that greatly improves formability while maintaining a high bake hardening amount, especially when it coexists with P, and the amount of Cu added is 0.2~
It is within the range of 1%, but the particularly preferred amount is 0.2
In the range of ~0.8%. Conventionally, attention has been focused only on the deoxidizing effect of Al, and the effect of adding Al to high-strength component steel has hardly been studied. Within the range of the chemical composition according to the present invention, the steel becomes substantially killed steel due to the effects of Si and Mn, so the addition of Al is unnecessary for the purpose of deoxidation. be. However, according to the present inventors, the amount of C is
When a suitable amount of Al (0.03 to 0.08%) is contained in a steel material, bake hardenability is greatly improved.
% or less is also permitted. In addition to this effect on bake hardenability, Al has the effect of improving workability or improving the yield of added elements such as Si and Mn. In the present invention, in order to effectively exhibit the effects of Al, Al is added in an amount of 0.10% or less. However, if the surface quality of the product is strictly required, the content is preferably 0.08% or less. Note that most of the oxygen in steel exists as non-metallic inclusions, including C, which contributes to strength imparting and bake hardenability.
Since it reduces the effects of Si, Mn, P, etc., the amount of oxygen is
It is desirable to keep it below 0.015%. The high-strength cold-rolled steel sheet with excellent bake hardenability according to the present invention is produced by ingot-forming and blooming molten steel having the above-mentioned chemical composition in a conventional manner, and then finishing it at a temperature of A3 transformation point or higher. It can be obtained by rolling, winding at a temperature of 600°C or higher, and then cold rolling. In the hot rolling process, after melting, the hot steel slab is hot rolled and immediately hot rolled, or the hot slab is charged and hot rolled, and the finishing temperature is adjusted to the A3 transformation point. In view of the above, the method of winding at a temperature of 600°C or higher is recommended from the viewpoint of surface quality, especially when the steel contains Cu. According to the present invention, by regulating the hot rolling and winding conditions as described above, solid solution C, which affects bake hardenability, can be reduced.
It becomes possible to change the amount through changes in the state of the precipitated carbide and maintain it in a state suitable for obtaining high bake hardenability. Cold rolling and annealing of the hot-rolled steel sheet obtained in this manner may be carried out by a conventional method, but the bake hardenability may be further improved by increasing the cooling rate after annealing. can. Effects of the Invention The high-strength cold-rolled steel sheet according to the present invention has excellent formability and extremely high bake hardenability, so it can be used, for example, as a cold-rolled steel sheet for automobiles, and can be made even thinner. Examples The present invention will be described below based on examples. Example 1 A test steel having the chemical composition shown in Table 1 was ingot-formed and bloomed according to a conventional method, then hot-rolled at a finishing temperature of 910°C, coiled at a temperature of 640°C, 2.7mm
A thick hot rolled plate was obtained. Next, this was pickled, cold rolled to a thickness of 0.8 mm, annealed at 710°C for 3 hours, and then 1% temper rolled to form a cold rolled steel sheet. Obtained. Table 1 shows the amount of bake hardening for each of the cold-rolled steel sheets obtained in this way. Here, the amount of bake hardening is determined by applying 2% tensile prestrain to a JIS No. After conducting the test, 2% of the yield stress obtained at this time was
It is shown as the value after deducting the deformation stress during tension. For each sample material shown in Table 1, the relationship between the chemical composition and the amount of bake hardening is shown in FIGS. 1 to 5. Figure 1 shows sample materials numbers 1 to 6 (P<0.01%, Al0.04
~0.05%), Figure 2 shows sample material number 7~
12 (P about 0.08%, Al 0.04 to 0.05%) is a graph showing the relationship between the amount of C and the amount of bake hardening, respectively. As seen in Figures 1 and 2, except for the P-containing high-Si steel, all materials have a low C content.
By setting the content to 0.01% or less, bake hardenability is improved, and the value tends to be higher in high-Si steels. P-containing materials of high Si steel are hardened by baking.

【表】 性を向上させるSiとPの複合添加効果が顕著であ
つて、その値を高いレベルで安定させ、Cの影響
は殆ど認められないが、この場合にも、低炭素化
に伴う加工性の向上は極めて大きい。高Mn系鋼
の場合は、第2図に明らかなように、特に、C量
を0.01%以下とすることによつて、焼付硬化性が
著しく向上し、高Si系鋼のレベルに近づくことが
理解される。 次に、第3図及び第4図は、C量が0.01%以下
の供試材について、P及びAl量と焼付硬化量と
の関係を示すグラフであり、P及びAlの添加に
よつて焼付硬化量の増加が認められる。また、第
5図は、P及びCuの複合添加鋼(P約0.08%、
Cu約0.4%)についてのC量と焼付硬化量との関
係を示すグラフであり、高Mn系鋼において、焼
付硬化量に対するCの影響が特に大きく、低炭素
化することによつて、高Si系鋼のそれに近づくこ
とが示される。高Si系鋼にPとCuを複合添加し
た材料は、焼付硬化性を向上させるSiとPの複合
添加による効果が顕著であつて、その値を高いレ
ベルで安定させ、Cの影響は殆ど認められない
が、この場合にも、低炭素化に伴う加工性の向上
は極めて大きい。 比較例 1 第1表に示す供試材のうち、番号3,6,9,
12,17及び18の6鋼種を用いて、巻取温度の影響
を調べた。巻取温度のみを570℃とし、ほかは実
施例1と同様の処理を行なつた材料の焼付硬化量
を実施例1との比較にて第2表に示す。
[Table] The effect of the combined addition of Si and P, which improves the carbon properties, is remarkable, and the value is stabilized at a high level, and the influence of C is hardly recognized. The improvement in gender is extremely large. In the case of high Mn steel, as shown in Figure 2, by reducing the C content to 0.01% or less, the bake hardenability can be significantly improved and approach the level of high Si steel. be understood. Next, Figures 3 and 4 are graphs showing the relationship between the amount of P and Al and the amount of bake hardening for test materials with a C amount of 0.01% or less. An increase in the amount of hardening is observed. In addition, Figure 5 shows a steel with composite addition of P and Cu (approximately 0.08% P,
This is a graph showing the relationship between the amount of C and the amount of bake hardening for Cu (approximately 0.4%). In high Mn steel, the influence of C on the amount of bake hardening is particularly large. It is shown that it approaches that of steel. In materials with a combination of P and Cu added to high-Si steel, the effect of the combined addition of Si and P in improving bake hardenability is remarkable, and the value is stabilized at a high level, with almost no effect of C being observed. However, even in this case, the improvement in workability due to the reduction in carbon is extremely large. Comparative Example 1 Among the test materials shown in Table 1, numbers 3, 6, 9,
The influence of coiling temperature was investigated using six steel types: 12, 17, and 18. Table 2 shows the amount of bake hardening of the material which was treated in the same manner as in Example 1 except that only the coiling temperature was 570° C. and in comparison with Example 1.

【表】 第2表から明らかなように、570℃の温度で巻
取つた場合にも、本発明鋼であれば、高い焼付硬
化量を得ることができるが、より高い焼付硬化量
を得る目的からは、巻取温度を600℃以上とする
ことの必要性が明らかである。
[Table] As is clear from Table 2, even when the steel of the present invention is coiled at a temperature of 570°C, a high degree of bake hardening can be obtained. From this, it is clear that it is necessary to set the winding temperature to 600°C or higher.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、P無添加材についてのC含有量と焼
付硬化量(ΔYP)との関係を示すグラフ、第2
図は、P添加材についてのC含有量と焼付硬化量
(ΔYP)との関係を示すグラフ、第3図は、C量
が0.01%以下の材料についてのP含有量と焼付硬
化量(ΔYP)との関係を示すグラフ、第4図
は、C量が0.01%以下の材料についてのAl含有量
と焼付硬化量(ΔYP)との関係を示すグラフ、
第5図は、P及びCu複合添加材についてのC含
有量と焼付硬化量(ΔYP)との関係を示すグラ
フである。
Figure 1 is a graph showing the relationship between C content and bake hardening amount (ΔYP) for P-free materials;
The figure is a graph showing the relationship between C content and bake hardening amount (ΔYP) for P-added materials, and Figure 3 shows the P content and bake hardening amount (ΔYP) for materials with a C content of 0.01% or less. Figure 4 is a graph showing the relationship between Al content and bake hardening amount (ΔYP) for materials with a C content of 0.01% or less.
FIG. 5 is a graph showing the relationship between C content and bake hardening amount (ΔYP) for P and Cu composite additives.

Claims (1)

【特許請求の範囲】 1 重量%で C 0.01%以下、 Si 0.65〜2%、 Mn 1.0%を越えて、2%まで、 P 0.03〜0.15%、 Cu 0.2〜1%、及び Al 0.10%以下 残部鉄及び不可避的不純物よりなることを特徴と
する焼付硬化性のすぐれた高強度冷延鋼板。 2 重量%で C 0.01%以下、 Si 0.65〜2%、 Mn 1.0%を越えて、2%まで、 P 0.03〜0.15%、 Cu 0.2〜1%、及び Al 0.10%以下 残部鉄及び不可避的不純物よりなる鋼をA3変態
点以上の温度で熱間圧延し、600℃以上の温度で
巻取り、次いで、冷間圧延することを特徴とする
焼付硬化性のすぐれた高強度冷延鋼板の製造法。
[Claims] 1% by weight: C 0.01% or less, Si 0.65-2%, Mn more than 1.0% up to 2%, P 0.03-0.15%, Cu 0.2-1%, and Al 0.10% or less balance A high-strength cold-rolled steel sheet with excellent bake hardenability characterized by being composed of iron and unavoidable impurities. 2. C 0.01% or less, Si 0.65 to 2%, Mn more than 1.0% to 2%, P 0.03 to 0.15%, Cu 0.2 to 1%, and Al 0.10% or less by weight, the balance less than iron and unavoidable impurities. A method for producing high-strength cold-rolled steel sheets with excellent bake hardenability, characterized by hot rolling steel at a temperature of A3 transformation point or higher, coiling at a temperature of 600°C or higher, and then cold rolling. .
JP3005881A 1981-03-02 1981-03-02 High-strength cold-rolled steel plate with superior enameling hardenability and its manufacture Granted JPS57143464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3005881A JPS57143464A (en) 1981-03-02 1981-03-02 High-strength cold-rolled steel plate with superior enameling hardenability and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3005881A JPS57143464A (en) 1981-03-02 1981-03-02 High-strength cold-rolled steel plate with superior enameling hardenability and its manufacture

Publications (2)

Publication Number Publication Date
JPS57143464A JPS57143464A (en) 1982-09-04
JPS6261664B2 true JPS6261664B2 (en) 1987-12-22

Family

ID=12293221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3005881A Granted JPS57143464A (en) 1981-03-02 1981-03-02 High-strength cold-rolled steel plate with superior enameling hardenability and its manufacture

Country Status (1)

Country Link
JP (1) JPS57143464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189157U (en) * 1987-05-28 1988-12-05

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266116A (en) * 1988-08-29 1990-03-06 Nissan Motor Co Ltd Improvement of fatigue strength of steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798630A (en) * 1980-12-08 1982-06-18 Kawasaki Steel Corp Manufacture of high-tension cold-rolled steel plate with high lankford value and baking hardness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798630A (en) * 1980-12-08 1982-06-18 Kawasaki Steel Corp Manufacture of high-tension cold-rolled steel plate with high lankford value and baking hardness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189157U (en) * 1987-05-28 1988-12-05

Also Published As

Publication number Publication date
JPS57143464A (en) 1982-09-04

Similar Documents

Publication Publication Date Title
KR101638719B1 (en) Galvanized steel sheet and method for manufacturing the same
US8449698B2 (en) Dual phase steel sheet and method of manufacturing the same
US4502897A (en) Method for producing hot-rolled steel sheets having a low yield ratio and a high tensile strength due to dual phase structure
US3988173A (en) Cold rolled steel sheet having excellent workability and method thereof
JP5394306B2 (en) High-strength steel plate with excellent plating properties and manufacturing method thereof
JPH11350038A (en) Production of dual-phase high tensile strength cold rolled steel plate excellent in ductility and stretch-flanging formability
JPH0949026A (en) Production of high strength hot rolled steel plate excellent in balance between strength and elongation and in stretch-flange formability
JP5764498B2 (en) High-strength cold-rolled steel sheet having excellent deep drawability and high yield ratio, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet using the same, and production method thereof
JPH0123530B2 (en)
JPH11279693A (en) Good workability/high strength hot rolled steel sheet excellent in baking hardenability and its production
JPH0610096A (en) High tensile strength cold rolled steel plate excellent in chemical convertibility and formability and its manufacture
JPH11310827A (en) Manufacture of cold rolled steel sheet excellent in aging resistance at normal temperature and panel characteristic and hot dip galvanized steel sheet
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPS6261664B2 (en)
JPS6150125B2 (en)
JPH0559970B2 (en)
JPH1036917A (en) Production of high strength hot-rolled steel plate excellent in stretch-flanging property
JPH0931534A (en) Production of high strength hot rolled steel plate excellent in workability and fatigue characteristic
JPH0756053B2 (en) Manufacturing method of galvanized hot rolled steel sheet with excellent workability
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JPH0849038A (en) Baking hardening type cold rolled steel sheet excellent in deep drawability and its production
JPH0238647B2 (en) CHOKOCHORYOKUKOHANNOSEIZOHOHO
JPH0770649A (en) Production of hot rolled steel sheet excellent in stretch-flange formability, ductility and surface property
JPS5817811B2 (en) Fukashiboriseino Sugretakouchiyouriyoreienkohanno Seizouhouhou