JP3750600B2 - High tensile cold-rolled steel sheet and method for producing the same - Google Patents

High tensile cold-rolled steel sheet and method for producing the same Download PDF

Info

Publication number
JP3750600B2
JP3750600B2 JP2001387542A JP2001387542A JP3750600B2 JP 3750600 B2 JP3750600 B2 JP 3750600B2 JP 2001387542 A JP2001387542 A JP 2001387542A JP 2001387542 A JP2001387542 A JP 2001387542A JP 3750600 B2 JP3750600 B2 JP 3750600B2
Authority
JP
Japan
Prior art keywords
phase
steel
steel sheet
less
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001387542A
Other languages
Japanese (ja)
Other versions
JP2003183777A (en
Inventor
純 芳賀
一彦 岸
茂樹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001387542A priority Critical patent/JP3750600B2/en
Publication of JP2003183777A publication Critical patent/JP2003183777A/en
Application granted granted Critical
Publication of JP3750600B2 publication Critical patent/JP3750600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本究明は.プレス加工等により様々な形状に成形して利用される高張力冷延鋼板とその製造方法、特に、焼付硬化性、耐常温時効性ならびに成形性の良好な高張力冷延鋼板とその製造方法に関する。
【0002】
【従来の技術】
産業技術分野が高度に分業化した今日、各技術分野において用いられる材料には、特殊かつ高度な性能が要求されている。プレス成形して使用される冷延鋼板についても、高い強度が要求されるようになり、高張力冷延鋼板の適用が検討されている。特に、自動車用鋼板に関しては、地球環境への配慮等から、車体を軽量化して燃費を向上させるために、薄肉高張力冷延鋼板の需要が著しく高まってきている。
【0003】
例えば自動車外板パネルでは、耐デント性、すなわち、指で押したり石が当たったときに永久変形を起こさない性質を備えていることが必要である。耐デント性は、プレス成形してから塗装焼付けした後の降伏応力が高いほど、また、鋼板の板厚が厚いほど向上するため、降伏応力の高い鋼板を使用できれば薄肉化が可能となる。
【0004】
一方、プレス成形においては、使用される鋼板の厚さが薄いほど、割れやしわが発生しやすくなるため、優れた深絞り性が必要となり、鋼板特性としては、高いランクフォード値(r値)が要求される。また、プレス型に良くなじみ、かつ、成形品をプレス型から外したときにスプリングバックの発生が少ない、すなわち、形状凍結性が良好であることも必要であり、そのためにはプレス成形前の降伏応力が低いことが要求される。
【0005】
したがって、プレス成形前の特性として高いr値および低い降伏応力を有し、プレス成形して塗装焼付けした後においては高い降伏応力を持つ鋼板が、自動車用鋼板として適することになる。
【0006】
これらの特性を満足させるべく開発された鋼板として、焼付硬化性鋼板(BH鋼板)がある。これは、固溶C、N原子が転位上へ偏析して転位を固着し降伏応力が上昇する、いわゆる歪時効硬化現象を取り入れた鋼板である。BH鋼板を利用する過程においては、プレス成形時に導入される転位が、塗装焼付け時に固溶C、Nによって固着されて降伏応力が上昇する。
【0007】
BH鋼板に関してはこれまでに多くの提案がなされてきている。例えば、特開昭59−31827 号公報、特開昭59−38337 号公報には、極低炭素鋼にTiおよびNbを添加し、さらにSi、Mn、Pを添加して引張強度を高めた、深絞り性に優れたBH鋼板の製造方法が開示されている。しかし、この方法には以下のような問題点がある。
【0008】
(1)引張強度を高めるためにSi、Mn、P等の固溶強化元素を添加すると、引張強度のみならず降伏応力も上昇する。この結果、形状凍結性が劣化し、また、面歪みも発生しやすくなる。さらに、深絞り性劣化の原因にもなり、これは特にMnを添加した場合において著しい。
【0009】
(2)溶融めっき鋼板を製造する場合、Si添加による不めっきの発生、P添加による合金化処理性の劣化等が生じる。
(3)焼付硬化性と耐常温時効性の両立が困難であり、耐常温時効性、例えば常温非時効性の確保の必要性から、実質上、焼付硬化量の上限は50MPa 程度である。
【0010】
また、特開昭55−50455 号公報、特開昭56−90926 号公報、特開昭56−146826号公報には、フェライト中にマルテンサイトを分散させた複合組織を有する低炭素Alキルド鋼板の製造方法が開示されている。複合組織鋼板は、引張強度が高く、降伏応力が低く、さらに、焼付硬化量が大きくても常温非時効性が確保できるという特徴を持つ。しかし、平均r値が高々1.0 程度であり、深絞り性に劣るために、自動車外板パネルヘの適用が困難であるのが実状である。
【0011】
【発明が解決しようとする課題】
これに対し、特開平2−232316号公報には、極低炭素鋼にNbとB を添加し、ミクロ組織をアシキュラーフェライトとフェライトとの複合組織とした、焼付硬化性と常温非時効性に優れた加工用冷延鋼板の製造方法が開示されている。極低炭素鋼をベースとすることで高r値が得られるのであるが、本発明者らの検討によれば、極低炭素鋼のようにC含有量が低いと、ミクロ組織を複合組織化しても十分な焼付硬化性が得られない場合があることが判明した。
【0012】
焼付硬化性の評価は、通常、2%の引張予ひずみを付与し、170 ℃程度で約20分間の塗装焼付け処理に相当する熱処理を施した後、引張試験を行い、熱処理後の降伏応力と2%変形応力の差をもとめてこれを焼付硬化量とし、焼付硬化量が大きいほど焼付硬化性に優れるとされている。しかしながら、極低炭素鋼板では、予ひずみ量の低下に伴い焼付硬化量も低下し、予ひずみ量が約 0.5%以下の場合において、焼付硬化性はほとんど消失してしまうのである。
【0013】
近年、自動車のデザインが多様化し、プレス成形時に生じるひずみ量は部位により様々であり、ほぼ0%から10%程度の範囲で分布するが、極低炭素鋼ベースのBH鋼板では、ひずみ量の小さな箇所では焼付硬化量が小さくなり、その結果、耐デント性が確保できないといった問題が生じる。
【0014】
ここに、本発明の課題は、上記の従来技術の問題点を解決する技術の開発にあり、具体的には、プレス成形性が良好で、優れた焼付硬化性と耐常温時効性を有する高張力冷延鋼板、およびその製造方法を提供することである。
【0015】
さらに詳しくは、本発明は、予ひずみを付与しなくとも、170 ℃で20分間の熱処理により降伏応力が30Mpa 以上上昇する、引張強度が 340〜390MPa級であって、さらにプレス成形性、耐常温時効性にすぐれた高張力冷延鋼板およびその製造方法を提供することである。
【0016】
【課題を解決するための手段】
本発明は、上述の課題を解決すべくなされたものであり、その要旨は次のとおりである。
【0017】
(1)質量%で、
C:0.001〜0.01%、Si:0.5%以下、Mn:0.5〜2.5%、
P:0.05%以下、S:0.01%以下、sol.Al:0.005〜0.1%、
N:0.01%以下、B:0.0025%以下、Mo:0.02〜1.5%、
を含有し、かつ下記式(1)で与えられる関係を満足し、残部がFeおよび不純物からなる化学組成を有し、主相がフェライト相であり第二相にマルテンサイト相、ベイナイト相、アシキュラーフェライト相の一種または二種以上の低温変態生成相を含む組織を備えたことを特徴とする高張力冷延鋼板。
【0018】
B≧1.5×10-4×(Mn2 +1)・・・・・・・(1)
ここで、式中の元素記号は、鋼中での各元素の含有量を質量%にて表したものである。
【0019】
(2)前記化学組成が、質量%でさらに、Ti:0.003 〜0.15%を含有することを特徴とする上記(1) 記載の高張力冷延鋼板。
(3)前記化学組成が、質量%でさらに、Cr:0.01〜1.5 %を含有することを特徴とする上記(1) または(2) 記載の高張力冷延鋼板。
【0020】
(4)上記(1)ないし(3)のいずれかに記載の化学組成を有する鋼に、熱間圧延を行い、次いで巻き取り、酸洗を行ってから、冷間圧延を行い、その後、Ac変態点以上Ac変態点未満の温度で焼鈍を行うことを特徴とする主相がフェライト相であり第二相にマルテンサイト相、ベイナイト相、アシキュラーフェライト相の一種または二種以上の低温変態生成相を含む組織を備える高張力冷延鋼板の製造方法。
【0021】
【発明の実施の形態】
次に、本発明をその経緯に関連させながらより具体的に説明し、さらに本発明の形態を説明する。
【0022】
なお、本明細書において、鋼の化学組成を示す各成分の含有量はすべて質量%で表示する。
本発明者らは、極低炭素鋼板をベースとした高張力鋼板の焼付硬化性および耐常温時効性に及ぼす添加元素の影響について詳細な調査を行った。
【0023】
供試鋼は、質量%で、C:0.01%以下、Si:0.01%、Mn:2.5 %以下、P:0.005 %、S:0.005 %、sol.Al:0.02%、N:0.003 %、Mo:0.5 %以下、B :0.002 %以下、残部Feおよび不可避不純物からなる化学組成を有するものであった。
【0024】
このような化学組成を有する鋼片を、1240℃に加熱した後、900 ℃以上の温度範囲で熱間圧延を行い、650 ℃で巻き取り、得られた熱延鋼板を酸洗し、80%の圧延率で冷間圧延を行ってから、連続焼鈍を行った。
【0025】
なお、鋼片と鋼板とで化学組成の事実上の差異は認められなかった。
得られた焼鈍板の焼付硬化性、耐常温時効性を調査し、次のような結果を得て本発明を完成させた。
【0026】
ここに、予ひずみを付与することなく170 ℃で20分間の熱処理を施した焼鈍板の降伏応力と、同様の熱処理を施さなかった、製造ままの焼鈍板の降伏応力の差をBH0 と定義した。
【0027】
このような予備試験の結果、次の(A) ないし(E) のようなことが分かった。
(A)BH0 を30MPa 以上とするためには、鋼のミクロ組織をフェライト相と低温変態生成相の複合組織とする必要がある。これは、フェライト相とマルテンサイト相等の低温変態生成相とが混在すると、フェライト内部に転位が導入され、熱処理により、その転位に鋼中の固溶Cが偏析して転位が固着されるため、予ひずみを付与しなくとも、降伏応力が増加するためと考えられる。
【0028】
(B)C含有量が0.01%以下である極低炭素鋼においてフェライト相と低温変態生成相の複合組織を安定して得るためには、BおよびMnを含有させる必要がある。
【0029】
(C)図1は、上述の例において、Mn含有量とB 含有量とを種々変更した供試鋼について得られたデータをB含有量とMn含有量の関係に整理して示すグラフである。図中、○印はBH0 が30MPa 以上、●印はBH0 が30MPa 未満である場合を示す。
【0030】
同図に示されているように、BH0 は、B含有量およびMn含有量と相関関係を有し、BH0 を高くするためには、Mn含有量が多い場合ほどB含有量を増加させる必要があり、下記式(1)を満たす範囲であれば30MPa 以上のBH0 が得られることが分かる。
【0031】
B≧1.5×10-4×(Mn2 +1)・・・・・・・(1)
この理由は明らかではないが、(a)BH0 は焼鈍板中に存在する転位へのC原子の偏析量が多いほど増加すること、(b)C原子とMn原子の間には引力相互作用が働き、Mn含有量が増加するにつれて、Cの活量が低下して転位への偏析量が低下し、BH0 が低下すること、(c)BはC原子とMn原子間の相互作用を弱めるため、B含有量が増加するにつれて、Cの転位偏析量が増加し、BH0 が増加すること、によると推定される。
【0032】
(D)BH0 が大きくなるに伴い時効劣化しやすくなるが、Moを含有させることにより、BH0 が30MPa を超える場合においても常温非時効性が確保される。なお、ここで言う常温非時効とは、常温で3ケ月間放置した焼鈍板の降伏点伸びが0.2 %以下であることを意味する。
【0033】
(E)以上の結果から、極低炭素鋼において、Mn含有量に応じて一定量以上のBを含有させ、さらにMoを添加することにより、常温非時効性を確保しつつ、BH0 を高めることが可能となる。
【0034】
以下に、本発明においてミクロ組織、鋼成分の化学組成および圧延、焼鈍条件等の限定理由について詳述する。
(a)鋼のミクロ組織
本発明にかかる高張力鋼板は、フェライト相中に低温変態生成相が分散した複合組織を備えることとする。これは、鋼板に予ひずみを付与しなくとも、良好な焼付硬化性を得ることができるためである。低温変態生成相の種類は特に限定しないが、鋼板の降伏応力をできるだけ低下させるためには、マルテンサイト相とすることが望ましい。なお、低温変態生成相として2種以上の相、例えば、マルテンサイト相とベイナイト相を含んでいてもよい。また、低温変態生成相が主相となると、深絞り性が著しく劣化するため、主相がフェライト相であり、第二相が低温変態生成相であることとする。
【0035】
ここに、「低温変態生成相」とは、マルテンサイト相あるいはベイナイト相等、低温変態により生成される組織を云う。その他、アシキュラ−フェライト相等を挙げることができる。
【0036】
(b)鋼の化学組成
C:
C含有量が0.01%を超えると、鋼板の深絞り性が損なわれる。一方、0.001 %を下回ると低温変態生成相が得られなくなる。したがって、C含有量の範囲を0.001 %〜0.01%と定めた。望ましくはその下限は 0.002%、また上限は0.009 %である。
【0037】
Si:
Siは、鋼中に不可避的に含有される元素であるが、鋼板の化成処理性を著しく劣化させる。また、めっき鋼板を製造する場合、めっき密着性を低下させる。したがって、その含有量は少ないほど好ましい。しかし、鋼板を強化する作用を有するので、鋼を強化する目的で、最高0.5 %まで含有させることができる。好ましくは0.1 %以下、さらに好ましくは0.02%以下である。
【0038】
Mn:
Mnは、鋼の焼入性を向上させる作用があり、フェライト相中に低温変態生成相を分散させるために0.5 %以上含有させる。一方、過度に含有させると深絞り性が劣化するので、含有量の上限を2.5 %とする。好ましくは、下限は0.7 %、上限は1.7 %である。
【0039】
また、Mnは、焼付硬化性を劣化させるので、B含有量との下記関係式(1)を満たす範囲に限定する。
B≧1.5×10-4×(Mn2 +1)・・・・・・・(1)
P:
Pは、鋼中に不可避的に含有される元素であるが、粒界に偏析して二次加工脆性および溶接性を劣化させる。また、めっき鋼板を製造する場合、めっき密着性を低下させる。したがって、その含有量は少ないほど好ましい。ただし、Pは安価に鋼を強化することができる元素であるため、所望の強度を得るために0.05%以下の範囲で含有させてもよい。好ましくは0.015 %以下である。
【0040】

Sは鋼中に不可避的に含有される不純物であり、粒界に偏析して鋼を脆化させるため、その含有量は少ないほど好ましく、0.01%以下と定めた。
【0041】
sol.Al:
Alは溶鋼を脱酸するために用いられる。脱酸処理により鋼中に残存するsol.Al含有量が0.005 %未満の場合には脱酸が不十分となる。一方、0.1 %を超えて含有させると、効果が飽和して不経済となる。このため、sol.Alの含有量を0.005 %から0.1 %と定めた。なお、鋼中のNをAlN として析出固定させ、Nによる耐常温時効性の劣化を抑制するために、0.04%以上含有させることが望ましい。
【0042】
N:
Nは、鋼中に不可避的に含有される元素であり、含有量の増加は深絞り性および耐常温時効性を劣化させる。したがって、0.01%以下と定めた。好ましい範囲は0.004 %以下である。
【0043】
B:
Bは焼入性を向上させるばかりでなく、焼付硬化性を向上させる働きがあり、本発明における重要な構成成分である。Mn添加による焼付硬化性の劣化を補償し、先述のBH0 を30MPa 以上とするために、上記(1)式を満たす範囲に限定する。ただし、深絞り性を劣化させるので、上限を0.0025%とする。好ましい範囲は0.0020%以下である。下限は特に規定されないが、好ましくは、0.0002%以上である。
【0044】
Mo:
Moは、耐常温時効性を向上させるために0.02%以上含有させる。しかし、1.5 %を超えて含有させると効果が飽和して不経済となる。したがって、含有量の範囲を0.02〜1.5 %と定めた。しかし、Moは高価な元素であり、その経済性を考えたとき上限は0.5 %で十分である。好ましい範囲は、0.05〜0.3 %である。
【0045】
Ti:
Tiは、特に含有させなくてもよいが、耐常温時効性をさらに向上させるために0.003 〜0.15%の範囲で含有させてもよい。Tiは鋼中のNをTiN として析出固定するため、Nによる時効劣化が抑制される。この効果を得るためには、0.003 %以上含有させることが好ましい。一方、0.15%を超えて含有させると効果が飽和して不経済となる。したがって、Tiを添加する場合の含有量の範囲を0.003 〜0.15%と定めた。
【0046】
Cr:
Crも、特に含有させる必要はないが、焼入性を向上させる作用があるため、含有させることが好ましい。ただし、Crは鋼板の化成処理性を劣化させるため、上限を1.5 %とする。一方、含有量が0.01%未満であると、焼入性向上効果が得られない。したがって、0.01〜1.5 %の範囲に限定した。好ましい範囲は、0.05〜1 .0%である。
【0047】
(c)焼鈍条件等の限定理由
前記の化学組成を有する鋼は、適宜手段で溶製後、連続鋳造法、または、造塊法で鋼塊とした後、分塊圧延する方法などにより鋼片とされる。この鋼片は再加熱するか、連続鋳造または分解圧延後の高温の鋼片をそのまま、または、補助加熱を施して熱間圧延が行われる。
【0048】
熱間圧延の条件は特に規定しないが、オーステナイト低温域で仕上げ圧延を行って、熱延板の結晶粒を微細化し、焼鈍時に深絞り性に好ましい再結晶集合組織を発達させる観点から、Ar3 変態点〜Ar3 変態点+100 ℃の範囲で最終圧下を行うことが望ましい。なお、最終圧下をこの温度範囲で行うために、粗圧延と仕上げ圧延の間で、鋼帯を加熱しても良い。この際に、鋼帯の後端が先端よりも高温となるように加熱し、仕上げ圧延開始時の鋼帯全長にわたる温度の変動が140 ℃以下となるようにすることが望ましい。これにより、製品特性のコイル内均一性が向上する。粗圧延材の加熱は、例えば粗圧延機と仕上げ圧延機の間にソレノイド式誘導加熱装置を設け、誘導加熱装置前の長手方向温度分布などに基づいて加熱昇温量を制御することにより可能である。
【0049】
熱間圧延後は、鋼板を巻取り温度まで冷却してからコイル状に巻取る。巻取り温度は特に規定しないが、スケール生成による歩留りの低下を防ぐために、700 ℃以下とすることが望ましい。
【0050】
冷間圧延は、酸洗等により脱スケールした後に、常法に従って行われる。冷間圧延後に行われる再結晶焼鈍によって深絞り性に好ましい再結晶集合組織を発達させるために、冷間圧延の際の圧下率を70%以上とすることが好ましい。
【0051】
焼鈍:
冷問圧延された鋼板、つまり冷延鋼板は必要に応じて公知の方法に従って脱脂などの処理が施され、再結晶焼鈍が施される。この際の焼鈍温度は、鋼のミクロ組織を主相がフェライト相であり第二相が低温変態生成相である複合組織とするために、Ac1 変態点以上、Ac3 変態点未満の温度範囲とする。これは、焼鈍温度がAc1 変態点未満であると、低温変態生成相が得られず、一方、Ac3 変態点以上であると、低温変態生成相のみからなる単相組織となり、深絞り性が著しく低下するためである。ここに、Ac1 変態点とはα→γ変態開始温度、Ac3 変態点とはα→γ変態完了温度である。
【0052】
焼鈍後は、常法にしたがって、調質圧延を施してもよく、その際に、伸びの低下を招くので、調質圧延の伸び率を1.0 %以下とすることが好ましい。更に好ましいのは0.4 %以下とすることである。
【0053】
本発明の方法に従って製造される冷延鋼板は、これを母材として電気めっきを行ってもよく、また塗装鋼板として用いることもできる。また、冷間圧延後の鋼板を、例えば亜鉛または亜鉛合金溶融めっきを行う公知の溶融めっき装置に装備されている加熱炉で焼鈍をして、溶融めっきをして、めっき鋼板や合金化溶融めっき鋼板にしてもかまわない。もちろん、連続焼鈍炉で焼鈍を施した後、溶融めっきをして、めっき鋼板や合金化溶融めっき鋼板にしても良い。ただし、鋼板のCr含有量が0.25%を超える場合は、めっきムラが生じやすくなるため、めっきを施さずに冷延鋼板として使用することが好ましい。
【0054】
【実施例】
本発明の実施例について以下に説明する。
実験用真空溶解炉を用いて、表1に示される化学組成の鋼を溶解し、鋳造した。これらの鋼塊を熱間鍛造により厚さ30mmの鋼片とし、電気加熱炉を用いて1240℃に加熱し、1時間保持した。
【0055】
このようにして得られた鋼片を炉から抽出した後、実験用熱間圧延機を用いて、900 ℃以上の温度範囲で熱間圧延を行い、厚さ5mmの熱延鋼板を得た。
熱間圧延後直ちに強制空冷あるいは水スプレー冷却により650 ℃まで冷却してこれを巻取り温度とし、同温度に保持された電気加熱炉中に挿入して1時間保持した後、20℃/h の冷却速度で炉冷却して巻取り後の徐冷処理とした。
【0056】
得られた鋼板の両表面を研削して厚さ4mm厚の冷間圧延母材とし、圧延率80%で冷間圧延し、表2に示す740 〜900 ℃の均熱温度で40秒間保持する連続焼鈍相当の再結晶焼鈍を施した。その後、これらの焼鈍板に、伸び率0.2 %の調質圧延を施し、その性能を評価した。
【0057】
r値は、圧延方向(0度方向)、45度方向;および幅方向(90度方向)から採取したJIS 5号引張試験片を引張試験に供して測定し、平均r値は、(r0 +2×r45+r90)/4から計算することにより求めた。降伏応力(YS)、引張強度(TS)および全伸びは、幅方向から採取したJIS 5号引張試験片を引張試験して求めた。
【0058】
焼付硬化性は、以下の方法により評価した。冷延鋼板の幅方向からJIS 5号引張試験片を採取し、170 ℃で20分間の熱処理を施した後、引張試験に供した。得られたYSと、熱処理を施さずに引張試験に供して得られたYSの差をBH0 と定義した。また、幅方向から採取したJIS 5号引張試験片に2%の引張予ひずみを付与し、170 ℃で20分間の熱処理を施した後、引張試験に供した。
【0059】
得られたYSと2%変形応力の差をBH2 と定義し、これらを焼付硬化性の指標とした。
耐常温時効性は、幅方向から採取したJIS 5号引張試験片を、40℃に設定した電気炉中で3ヶ月間保持した後、引張試験に供し、降伏点伸び(YPE) を測定することにより評価した。
【0060】
表3に性能評価の結果を示した。本発明の範囲内の条件で製造された冷延鋼板についての試験結果(試番1、2、5、7、9、12、13)は、いずれも、平均r値が1.2 以上、全伸びが34%以上であり、かつ、YSが240MPa以下であり、良好なプレス成形性を示した。また、BH0 は30MPa 以上、BH2 は50MPa 以上であり、優れた焼付硬化性を示した。さらに、40℃で3ケ月間の時効処理後のYPE は0.2 %以下であり、良好な耐常温時効性を示した。
【0061】
一方、化学組成が、本発明の規定する範囲から外れる鋼(鋼C、D、F、H、J、K、N)を用いて製造された冷延鋼板の試験結果(試番3、4、6、8、10、11、14)は、平均r値、全伸び、YS、BH0 および時効後YPE のうちのいずれかが劣っていた。
【0062】
具体的には、鋼Cを用いた試験(試番3)は鋼中のC含有量が多すぎるために、鋼Fを用いた試験(試番6)は鋼中のMn含有量が多すぎるために、鋼Jを用いた試験(試番10)は綱中のB含有量が多すぎるために、平均r値と全伸びが低くYSが高い。
【0063】
鋼Dを用いた試験(試番4)は、鋼中のMn含有量が少なすぎ、低温変態生成相が得られていないため、BH0 が低い。鋼F、Hを用いた試験(試番6、8)では、ミクロ組織は複合組織化されているが、鋼のMn含有量に対してB含有量が少なく、前述の式(1)を満たさないため、BH0 が低い。
【0064】
鋼K、Nを用いた試験(試番11、14)では、鋼のMo含有量が少なすぎるために、時効処理後のYPE が高く、耐常温時効性が劣っている。
一方、鋼の化学組成は本発明の範囲内であるが、製造条件が本発明の範囲外の条件で製造された冷延鋼板の試験(試番15〜18)では、複合組織が得られておらず、平均r値、全伸び、BH0 および時効後YPE のうちのいずれかが劣っていた。具体的には、試番15および16では、焼鈍の均熱温度が低すぎて、ミクロ組織がフェライト単相組織となり、BH0 が低く、時効後YPE も高い。また、試番17および18では、均熱温度が高すぎるために、ミクロ組織がアシキュラーフェライト単相組織となり、平均r値、全伸び、BH0 が低く、YSが高く、さらに時効後YPE も高い。
【0065】
【表1】

Figure 0003750600
【0066】
【表2】
Figure 0003750600
【0067】
【表3】
Figure 0003750600
【0068】
【発明の効果】
以上詳述したとおり、本発明によれば、プレス成形などの加工に適用できる十分な成形性を有し、かつ、極めて優れた焼付硬化性を示し、さらに、耐常温時効性に優れた、高張力鋼板が製造可能である。本発明は自動車の車体軽量化を通じて地球環境問題の解決に寄与できるなど産業の発展に寄与するところ大である。
【図面の簡単な説明】
【図1】 BH0 とB含有量とMn含有量の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
This study is. High-tensile cold-rolled steel sheet used by forming into various shapes by press working and its manufacturing method, in particular, high-tensile cold-rolled steel sheet having good bake hardenability, room temperature aging resistance and formability, and its manufacturing method .
[0002]
[Prior art]
Now that the industrial technology field is highly divided, materials used in each technical field are required to have special and high performance. High-strength cold-rolled steel sheets used by press forming are also required, and application of high-tensile cold-rolled steel sheets is being studied. In particular, regarding automotive steel sheets, the demand for thin-walled high-tensile cold-rolled steel sheets has been remarkably increasing in order to reduce the weight of the vehicle body and improve fuel efficiency in consideration of the global environment.
[0003]
For example, an automobile outer panel needs to have dent resistance, that is, a property that does not cause permanent deformation when pressed by a finger or hits a stone. The dent resistance is improved as the yield stress after press-molding and paint baking is higher, and as the plate thickness of the steel plate is thicker. Therefore, if a steel plate having a high yield stress can be used, the thickness can be reduced.
[0004]
On the other hand, in press forming, the thinner the steel sheet used, the easier it is to generate cracks and wrinkles. Therefore, excellent deep drawability is required, and the steel sheet properties have a high Rankford value (r value). Is required. In addition, it is necessary to be well-familiar with the press mold and to generate less springback when the molded product is removed from the press mold, that is, to have good shape freezing properties. Low stress is required.
[0005]
Therefore, a steel plate having a high r value and a low yield stress as properties before press forming and having a high yield stress after press forming and paint baking is suitable as a steel plate for automobiles.
[0006]
As a steel sheet developed to satisfy these characteristics, there is a bake hardenable steel sheet (BH steel sheet). This is a steel sheet incorporating a so-called strain age hardening phenomenon in which solute C and N atoms segregate on dislocations to fix the dislocations and increase the yield stress. In the process of using the BH steel sheet, dislocations introduced at the time of press forming are fixed by solid solutions C and N at the time of coating baking, and the yield stress increases.
[0007]
Many proposals have been made regarding BH steel sheets. For example, in JP-A-59-31827 and JP-A-59-38337, Ti and Nb are added to ultra-low carbon steel, and Si, Mn, and P are further added to increase the tensile strength. A method for producing a BH steel sheet excellent in deep drawability is disclosed. However, this method has the following problems.
[0008]
(1) When a solid solution strengthening element such as Si, Mn, or P is added to increase the tensile strength, not only the tensile strength but also the yield stress increases. As a result, the shape freezing property deteriorates and surface distortion is likely to occur. In addition, it causes deterioration of deep drawability, which is particularly remarkable when Mn is added.
[0009]
(2) When manufacturing a hot-dip galvanized steel sheet, non-plating due to addition of Si, deterioration of alloying processability due to addition of P, etc. occur.
(3) It is difficult to achieve both bake hardenability and room temperature aging resistance, and the upper limit of bake hardening is substantially about 50 MPa because of the need to secure room temperature aging resistance, for example, room temperature non-aging.
[0010]
JP-A-55-50455, JP-A-56-90926, and JP-A-56-146826 disclose low carbon Al killed steel sheets having a composite structure in which martensite is dispersed in ferrite. A manufacturing method is disclosed. The composite structure steel plate has the characteristics that the tensile strength is high, the yield stress is low, and the non-aging property at room temperature can be secured even if the bake hardening amount is large. However, the average r value is at most about 1.0 and the deep drawability is inferior, so that it is difficult to apply to an automobile outer panel.
[0011]
[Problems to be solved by the invention]
On the other hand, in Japanese Patent Laid-Open No. 2-232316, Nb and B are added to ultra-low carbon steel, and the microstructure is a composite structure of acicular ferrite and ferrite. An excellent method of manufacturing a cold-rolled steel sheet for processing is disclosed. A high r value can be obtained by using an ultra-low carbon steel as a base. However, according to the study by the present inventors, when the C content is low as in the ultra-low carbon steel, a microstructure is formed into a composite structure. However, it has been found that sufficient bake hardenability may not be obtained.
[0012]
Bake hardenability is usually evaluated by applying a tensile pre-strain of 2%, applying a heat treatment equivalent to a paint baking process at about 170 ° C for about 20 minutes, and performing a tensile test to determine the yield stress after heat treatment. The difference in 2% deformation stress is obtained and this is set as the bake hardening amount. The larger the bake hardening amount, the better the bake hardenability. However, in an ultra-low carbon steel sheet, the bake hardening amount decreases as the pre-strain amount decreases, and the bake hardenability almost disappears when the pre-strain amount is about 0.5% or less.
[0013]
In recent years, the design of automobiles has been diversified, and the amount of strain that occurs during press forming varies depending on the part, and it is distributed in the range of about 0% to 10%. However, BH steel sheets based on ultra-low carbon steel have a small amount of strain. The amount of bake-hardening becomes small at the location, and as a result, there arises a problem that dent resistance cannot be secured.
[0014]
The object of the present invention is to develop a technique for solving the above-mentioned problems of the prior art. Specifically, the press formability is good, and an excellent bake hardenability and room temperature aging resistance are high. It is to provide a tension cold-rolled steel sheet and a manufacturing method thereof.
[0015]
More specifically, the present invention provides that the yield stress is increased by 30 MPa or more by heat treatment at 170 ° C. for 20 minutes without applying prestrain, the tensile strength is 340 to 390 MPa class, and press formability and room temperature resistance are increased. It is an object to provide a high-tensile cold-rolled steel sheet excellent in aging and a method for producing the same.
[0016]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and the gist thereof is as follows.
[0017]
(1) In mass%,
C: 0.001 to 0.01%, Si: 0.5% or less, Mn: 0.5 to 2.5%,
P: 0.05% or less, S: 0.01% or less, sol. Al: 0.005 to 0.1%,
N: 0.01% or less, B: 0.0025% or less, Mo: 0.02 to 1.5%,
And the following formula (1) is satisfied, the balance has a chemical composition composed of Fe and impurities, the main phase is a ferrite phase, and the second phase is a martensite phase, bainite phase, A high-tensile cold-rolled steel sheet characterized by comprising a structure containing one or more low-temperature transformation-forming phases of a curl ferrite phase .
[0018]
B ≧ 1.5 × 10 −4 × (Mn 2 +1) (1)
Here, the element symbol in the formula represents the content of each element in steel in mass%.
[0019]
(2) The high-tensile cold-rolled steel sheet according to (1), wherein the chemical composition further contains Ti: 0.003 to 0.15% by mass%.
(3) The high-tensile cold-rolled steel sheet according to the above (1) or (2), wherein the chemical composition further contains Cr: 0.01 to 1.5% by mass%.
[0020]
(4) The steel having the chemical composition according to any one of the above (1) to (3) is hot-rolled, then wound and pickled, then cold-rolled, and then Ac The main phase is characterized by annealing at a temperature of 1 transformation point or more and less than Ac 3 transformation point, and the main phase is a ferrite phase, and the second phase is a martensite phase, a bainite phase, an acicular ferrite phase, or a low temperature of two or more types. A method for producing a high-tensile cold-rolled steel sheet having a structure including a transformation generation phase .
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described more specifically with reference to the background, and further embodiments of the present invention will be described.
[0022]
In addition, in this specification, all content of each component which shows the chemical composition of steel is displayed by the mass%.
The present inventors conducted a detailed investigation on the influence of additive elements on the bake hardenability and normal temperature aging resistance of high-tensile steel sheets based on ultra-low carbon steel sheets.
[0023]
The test steel is in mass%, C: 0.01% or less, Si: 0.01%, Mn: 2.5% or less, P: 0.005%, S: 0.005%, sol.Al: 0.02%, N: 0.003%, Mo: It had a chemical composition of 0.5% or less, B: 0.002% or less, the balance Fe and inevitable impurities.
[0024]
A steel slab having such a chemical composition is heated to 1240 ° C, then hot-rolled in a temperature range of 900 ° C or higher, wound up at 650 ° C, and the resulting hot-rolled steel sheet is pickled, 80% After performing cold rolling at a rolling rate of, continuous annealing was performed.
[0025]
In addition, the virtual difference of a chemical composition was not recognized by the steel piece and the steel plate.
The obtained annealed plate was investigated for bake hardenability and normal temperature aging resistance, and the following results were obtained to complete the present invention.
[0026]
Here, BH 0 is defined as the difference between the yield stress of the annealed sheet that was heat-treated at 170 ° C for 20 minutes without prestraining and the yield stress of the as-produced annealed sheet that was not subjected to the same heat treatment. did.
[0027]
As a result of such a preliminary test, the following (A) to (E) were found.
(A) In order to set BH 0 to 30 MPa or more, the microstructure of the steel needs to be a composite structure of a ferrite phase and a low temperature transformation generation phase. This is because when a ferrite phase and a low-temperature transformation generation phase such as a martensite phase are mixed, dislocations are introduced into the ferrite, and due to heat treatment, solid solution C in the steel is segregated to the dislocations, and the dislocations are fixed. This is probably because the yield stress increases without pre-straining.
[0028]
(B) In an ultra-low carbon steel having a C content of 0.01% or less, it is necessary to contain B and Mn in order to stably obtain a composite structure of a ferrite phase and a low-temperature transformation generation phase.
[0029]
(C) FIG. 1 is a graph showing the data obtained for the test steels in which the Mn content and the B content are variously changed in the above example, organized in relation to the B content and the Mn content. . In the figure, ○ indicates that BH 0 is 30 MPa or more, and ● indicates that BH 0 is less than 30 MPa.
[0030]
As shown in the figure, BH 0 has a correlation with B content and Mn content, and in order to increase BH 0 , the B content increases as the Mn content increases. It is necessary to understand that BH 0 of 30 MPa or more can be obtained within the range satisfying the following formula (1).
[0031]
B ≧ 1.5 × 10 −4 × (Mn 2 +1) (1)
The reason for this is not clear, but (a) BH 0 increases as the amount of segregation of C atoms to dislocations present in the annealed plate increases, and (b) attractive interaction between C atoms and Mn atoms. As the Mn content increases, the activity of C decreases, the amount of segregation to dislocations decreases, and BH 0 decreases. (C) B shows the interaction between C atoms and Mn atoms. In order to weaken, it is estimated that as the B content increases, the dislocation segregation amount of C increases and BH 0 increases.
[0032]
(D) Aging deterioration tends to occur as BH 0 increases, but by including Mo, room temperature non-aging is ensured even when BH 0 exceeds 30 MPa. The term “non-aging at room temperature” as used herein means that the yield point elongation of an annealed sheet left at room temperature for 3 months is 0.2% or less.
[0033]
(E) From the above results, by adding a certain amount of B or more according to the Mn content and adding Mo in the ultra-low carbon steel, BH 0 is increased while ensuring non-aging at room temperature. It becomes possible.
[0034]
Hereinafter, the reasons for limitation of the microstructure, the chemical composition of the steel components, rolling, annealing conditions, and the like will be described in detail.
(a) Microstructure of steel The high-tensile steel sheet according to the present invention has a composite structure in which a low-temperature transformation generation phase is dispersed in a ferrite phase. This is because good bake hardenability can be obtained without applying pre-strain to the steel sheet. The type of the low-temperature transformation generation phase is not particularly limited, but it is desirable to use the martensite phase in order to reduce the yield stress of the steel sheet as much as possible. In addition, as a low-temperature transformation production | generation phase, 2 or more types of phases, for example, a martensite phase and a bainite phase may be included. Further, when the low temperature transformation generation phase becomes the main phase, the deep drawability deteriorates remarkably, so the main phase is the ferrite phase and the second phase is the low temperature transformation generation phase.
[0035]
Here, the “low temperature transformation generation phase” refers to a structure produced by low temperature transformation such as martensite phase or bainite phase. In addition, an acicular-ferrite phase can be used.
[0036]
(b) Steel chemical composition C:
If the C content exceeds 0.01%, the deep drawability of the steel sheet is impaired. On the other hand, if it is less than 0.001%, a low-temperature transformation generation phase cannot be obtained. Therefore, the C content range is defined as 0.001% to 0.01%. Desirably, the lower limit is 0.002%, and the upper limit is 0.009%.
[0037]
Si:
Si is an element inevitably contained in the steel, but significantly deteriorates the chemical conversion property of the steel sheet. Moreover, when manufacturing a plated steel plate, plating adhesiveness is reduced. Therefore, the smaller the content, the better. However, since it has an effect of strengthening the steel sheet, it can be contained up to 0.5% for the purpose of strengthening the steel. Preferably it is 0.1% or less, More preferably, it is 0.02% or less.
[0038]
Mn:
Mn has the effect of improving the hardenability of the steel, and is contained in an amount of 0.5% or more in order to disperse the low-temperature transformation generation phase in the ferrite phase. On the other hand, if it is excessively contained, deep drawability deteriorates, so the upper limit of the content is made 2.5%. Preferably, the lower limit is 0.7% and the upper limit is 1.7%.
[0039]
Moreover, since Mn degrades the bake hardenability, it is limited to a range satisfying the following relational expression (1) with the B content.
B ≧ 1.5 × 10 −4 × (Mn 2 +1) (1)
P:
P is an element inevitably contained in the steel, but segregates at the grain boundary and deteriorates secondary work brittleness and weldability. Moreover, when manufacturing a plated steel plate, plating adhesiveness is reduced. Therefore, the smaller the content, the better. However, since P is an element that can strengthen steel at a low cost, it may be contained in a range of 0.05% or less in order to obtain a desired strength. Preferably it is 0.015% or less.
[0040]
S
S is an impurity inevitably contained in the steel, and segregates at the grain boundaries to embrittle the steel. Therefore, the content is preferably as small as possible, and is determined to be 0.01% or less.
[0041]
sol.Al:
Al is used to deoxidize molten steel. When the sol.Al content remaining in the steel by deoxidation treatment is less than 0.005%, deoxidation is insufficient. On the other hand, if it exceeds 0.1%, the effect is saturated and uneconomical. Therefore, the content of sol.Al is determined to be 0.005% to 0.1%. In addition, in order to precipitate and fix N in steel as AlN, and to suppress deterioration of normal temperature aging resistance due to N, it is desirable to contain 0.04% or more.
[0042]
N:
N is an element inevitably contained in steel, and an increase in the content deteriorates deep drawability and normal temperature aging resistance. Therefore, it was determined as 0.01% or less. A preferred range is 0.004% or less.
[0043]
B:
B not only improves hardenability but also has an effect of improving bake hardenability, and is an important constituent in the present invention. In order to compensate for the deterioration of the bake hardenability due to the addition of Mn and make the above-mentioned BH 0 30 MPa or more, the range is limited to the range satisfying the above formula (1). However, since the deep drawability is deteriorated, the upper limit is made 0.0025%. A preferred range is 0.0020% or less. The lower limit is not particularly defined, but is preferably 0.0002% or more.
[0044]
Mo:
Mo is contained in an amount of 0.02% or more in order to improve room temperature aging resistance. However, if it exceeds 1.5%, the effect becomes saturated and uneconomical. Therefore, the content range is set to 0.02 to 1.5%. However, Mo is an expensive element, and when considering its economic efficiency, an upper limit of 0.5% is sufficient. A preferred range is 0.05 to 0.3%.
[0045]
Ti:
Ti may not be contained, but may be contained in the range of 0.003 to 0.15% in order to further improve the normal temperature aging resistance. Since Ti precipitates and fixes N in steel as TiN, aging deterioration due to N is suppressed. In order to acquire this effect, it is preferable to make it contain 0.003% or more. On the other hand, if it exceeds 0.15%, the effect is saturated and uneconomical. Therefore, the content range when adding Ti is set to 0.003 to 0.15%.
[0046]
Cr:
Cr is not particularly required to be contained, but is preferably contained because it has an effect of improving hardenability. However, Cr degrades the chemical conversion properties of the steel sheet, so the upper limit is 1.5%. On the other hand, if the content is less than 0.01%, the effect of improving hardenability cannot be obtained. Therefore, it was limited to the range of 0.01 to 1.5%. A preferable range is 0.05 to 1.0%.
[0047]
(c) Reasons for limiting annealing conditions, etc. Steel having the above-described chemical composition is made of steel by a method such as melting by a suitable means and then forming a steel ingot by a continuous casting method or an ingot-making method and then rolling it into pieces. It is said. This steel slab is re-heated, or hot rolling is performed with the high-temperature steel slab after continuous casting or decomposition rolling as it is or with auxiliary heating.
[0048]
Conditions of the hot rolling is not particularly defined, performing finish rolling at austenite low-temperature range, the crystal grains of hot-rolled sheet finer, in view of developing the preferred recrystallization texture in deep drawability during annealing, Ar 3 It is desirable to perform the final reduction in the range of transformation point to Ar 3 transformation point + 100 ° C. In addition, in order to perform final reduction in this temperature range, you may heat a steel strip between rough rolling and finish rolling. At this time, it is desirable to heat the steel strip so that the rear end of the steel strip is at a higher temperature than the front end, so that the temperature variation over the entire length of the steel strip at the start of finish rolling is 140 ° C. or less. Thereby, the uniformity within a coil of a product characteristic improves. Rough rolling material can be heated, for example, by installing a solenoid induction heating device between the roughing mill and the finishing mill and controlling the heating temperature rise based on the longitudinal temperature distribution before the induction heating device. is there.
[0049]
After hot rolling, the steel sheet is cooled to the coiling temperature and then wound into a coil. Although the coiling temperature is not particularly specified, it is desirable to set the temperature to 700 ° C. or less in order to prevent a decrease in yield due to scale generation.
[0050]
Cold rolling is performed according to a conventional method after descaling by pickling or the like. In order to develop a recrystallized texture preferable for deep drawability by recrystallization annealing performed after cold rolling, it is preferable to set the rolling reduction during cold rolling to 70% or more.
[0051]
Annealing:
A cold-rolled steel sheet, that is, a cold-rolled steel sheet, is subjected to a treatment such as degreasing according to a known method as necessary, and then subjected to recrystallization annealing. The annealing temperature at this time is a temperature range from the Ac 1 transformation point to the Ac 3 transformation point in order to make the microstructure of the steel a composite structure in which the main phase is the ferrite phase and the second phase is the low-temperature transformation generation phase. And If the annealing temperature is lower than the Ac 1 transformation point, a low-temperature transformation formation phase cannot be obtained.On the other hand, if the annealing temperature is higher than the Ac 3 transformation point, a single-phase structure consisting of only the low-temperature transformation production phase is obtained. This is because remarkably decreases. Here, the Ac 1 transformation point is the α → γ transformation start temperature, and the Ac 3 transformation point is the α → γ transformation completion temperature.
[0052]
After annealing, temper rolling may be performed according to a conventional method, and at that time, elongation is reduced. Therefore, the elongation rate of temper rolling is preferably 1.0% or less. More preferable is 0.4% or less.
[0053]
The cold-rolled steel sheet produced according to the method of the present invention may be electroplated using this as a base material, and can also be used as a coated steel sheet. In addition, the steel sheet after cold rolling is annealed in a heating furnace equipped with a known hot dipping apparatus for performing zinc or zinc alloy hot dipping, for example, hot dipped to obtain a hot dipped steel sheet or alloyed hot dipping. A steel plate may be used. Of course, after annealing in a continuous annealing furnace, hot dipping may be performed to form a plated steel sheet or an alloyed hot dipped steel sheet. However, when the Cr content of the steel sheet exceeds 0.25%, uneven plating tends to occur, so it is preferable to use it as a cold-rolled steel sheet without plating.
[0054]
【Example】
Examples of the present invention will be described below.
Steels having chemical compositions shown in Table 1 were melted and cast using a laboratory vacuum melting furnace. These steel ingots were made into steel pieces having a thickness of 30 mm by hot forging, heated to 1240 ° C. using an electric heating furnace, and held for 1 hour.
[0055]
The steel pieces thus obtained were extracted from the furnace, and then hot-rolled in a temperature range of 900 ° C. or higher using a laboratory hot rolling mill to obtain a hot-rolled steel plate having a thickness of 5 mm.
Immediately after hot rolling, it is cooled to 650 ° C by forced air cooling or water spray cooling, and this is taken up as the coiling temperature, inserted into an electric heating furnace maintained at the same temperature and held for 1 hour, then 20 ° C / h The furnace was cooled at a cooling rate, and the annealing was performed after winding.
[0056]
Both surfaces of the obtained steel plate are ground to form a cold-rolled base metal having a thickness of 4 mm, cold-rolled at a rolling rate of 80%, and held at a soaking temperature of 740 to 900 ° C. shown in Table 2 for 40 seconds. Recrystallization annealing equivalent to continuous annealing was performed. Thereafter, these annealed plates were subjected to temper rolling with an elongation of 0.2%, and the performance was evaluated.
[0057]
The r value is measured by subjecting a JIS No. 5 tensile specimen taken from the rolling direction (0 degree direction), 45 degree direction; and the width direction (90 degree direction) to a tensile test, and the average r value is (r 0 + 2 × r 45 + r 90 ) / 4. Yield stress (YS), tensile strength (TS) and total elongation were obtained by tensile testing JIS No. 5 tensile specimens taken from the width direction.
[0058]
The bake hardenability was evaluated by the following method. A JIS No. 5 tensile test piece was taken from the width direction of the cold rolled steel sheet, subjected to a heat treatment at 170 ° C. for 20 minutes, and then subjected to a tensile test. The difference between YS obtained and YS obtained by subjecting it to a tensile test without heat treatment was defined as BH 0 . Further, 2% tensile pre-strain was applied to the JIS No. 5 tensile test specimen collected from the width direction, subjected to a heat treatment at 170 ° C. for 20 minutes, and then subjected to a tensile test.
[0059]
The difference between the obtained YS and 2% deformation stress was defined as BH 2 and used as an index for bake hardenability.
For aging resistance at normal temperature, hold a JIS No. 5 tensile test specimen taken from the width direction in an electric furnace set at 40 ° C for 3 months, then subject it to a tensile test and measure the yield point elongation (YPE). It was evaluated by.
[0060]
Table 3 shows the results of performance evaluation. The test results (test numbers 1, 2, 5, 7, 9, 12, 13) of the cold-rolled steel sheets manufactured under the conditions within the scope of the present invention all have an average r value of 1.2 or more and a total elongation. It was 34% or more and YS was 240 MPa or less, indicating good press formability. Further, BH 0 was 30 MPa or more, and BH 2 was 50 MPa or more, showing excellent bake hardenability. Furthermore, the YPE after aging treatment at 40 ° C. for 3 months was 0.2% or less, indicating good room temperature aging resistance.
[0061]
On the other hand, test results of cold-rolled steel sheets manufactured using steels (steel C, D, F, H, J, K, N) whose chemical composition deviates from the range defined by the present invention (trial numbers 3, 4, 6, 8, 10, 11, 14), any of average r value, total elongation, YS, BH 0 and post-aging YPE was inferior.
[0062]
Specifically, because the test using steel C (trial number 3) has too much C content in the steel, the test using steel F (trial number 6) has too much Mn content in the steel. Therefore, in the test using steel J (trial number 10), since the B content in the steel is too much, the average r value and the total elongation are low and YS is high.
[0063]
In the test using Steel D (Trial No. 4), the Mn content in the steel is too small and a low temperature transformation product phase is not obtained, so BH 0 is low. In the tests using steels F and H (Trial Nos. 6 and 8), the microstructure is compounded, but the B content is small relative to the Mn content of the steel, and the above-described formula (1) is satisfied. Because BH 0 is low.
[0064]
In the tests using steels K and N (Trial Nos. 11 and 14), the steel has too little Mo content, so the YPE after aging treatment is high and the room temperature aging resistance is poor.
On the other hand, the chemical composition of steel is within the scope of the present invention, but in the test of cold-rolled steel sheets manufactured under conditions where the production conditions are outside the scope of the present invention (trial numbers 15 to 18), a composite structure is obtained. None of the average r value, total elongation, BH 0 and post-aging YPE were inferior. Specifically, in the trial numbers 15 and 16, the soaking temperature of annealing is too low, the microstructure becomes a ferrite single phase structure, BH 0 is low, and YPE after aging is also high. In trial numbers 17 and 18, since the soaking temperature is too high, the microstructure becomes an acicular ferrite single phase structure, average r value, total elongation, BH 0 is low, YS is high, and YPE after aging is also high. high.
[0065]
[Table 1]
Figure 0003750600
[0066]
[Table 2]
Figure 0003750600
[0067]
[Table 3]
Figure 0003750600
[0068]
【The invention's effect】
As described above in detail, according to the present invention, it has sufficient formability that can be applied to processing such as press molding, exhibits extremely excellent bake hardenability, and is excellent in room temperature aging resistance. Tensile steel sheets can be manufactured. The present invention greatly contributes to the development of industries, such as contributing to the solution of global environmental problems through weight reduction of automobile bodies.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between BH 0 , B content, and Mn content.

Claims (4)

質量%で、
C:0.001〜0.01%、Si:0.5%以下、Mn:0.5〜2.5%、
P:0.05%以下、S:0.01%以下、sol.Al:0.005〜0.1%、
N:0.01%以下、B:0.0025%以下、Mo:0.02〜1.5%、
を含有し、かつ下記式(1)で与えられる関係を満足し、残部がFeおよび不純物からなる化学組成を有し、主相がフェライト相であり第二相にマルテンサイト相、ベイナイト相、アシキュラーフェライト相の一種または二種以上の低温変態生成相を含む組織を備えたことを特徴とする高張力冷延鋼板。
B≧1.5×10−4×(Mn+1)・・・・・・・(1)
ここで、式中の元素記号は、鋼中での各元素の含有量を質量%にて表したものである。
% By mass
C: 0.001 to 0.01%, Si: 0.5% or less, Mn: 0.5 to 2.5%,
P: 0.05% or less, S: 0.01% or less, sol. Al: 0.005 to 0.1%,
N: 0.01% or less, B: 0.0025% or less, Mo: 0.02 to 1.5%,
And the following formula (1) is satisfied, the balance has a chemical composition consisting of Fe and impurities, the main phase is a ferrite phase, and the second phase is a martensite phase, bainite phase, A high-tensile cold-rolled steel sheet comprising a structure containing one or two or more low-temperature transformation generation phases of a curl ferrite phase .
B ≧ 1.5 × 10 −4 × (Mn 2 +1) (1)
Here, the element symbol in the formula represents the content of each element in steel in mass%.
前記化学組成が、質量%でさらに、Ti:0.003〜0.15%を含有することを特徴とする請求項1記載の高張力冷延鋼板。2. The high-tensile cold-rolled steel sheet according to claim 1, wherein the chemical composition further contains Ti: 0.003 to 0.15% by mass%. 前記化学組成が、質量%でさらに、Cr:0.01〜1.5%を含有することを特徴とする請求項1または2記載の高張力冷延鋼板。The high-strength cold-rolled steel sheet according to claim 1 or 2, wherein the chemical composition further contains Cr: 0.01 to 1.5% by mass%. 請求項1ないし請求項3のいずれかに記載の化学組成を有する鋼に、熱間圧延を行い、次いで巻き取り、酸洗を行ってから、冷間圧延を行い、その後、Ac変態点以上Ac変態点未満の温度で焼鈍を行うことを特徴とする主相がフェライト相であり第二相にマルテンサイト相、ベイナイト相、アシキュラーフェライト相の一種または二種以上の低温変態生成相を含む組織を備える高張力冷延鋼板の製造方法。The steel having the chemical composition according to any one of claims 1 to 3 is hot-rolled, then wound, pickled, cold-rolled, and then the Ac 1 transformation point or higher. Ac is characterized by annealing at a temperature below the 3 transformation point, the main phase is a ferrite phase, and the second phase is a martensite phase, a bainite phase, an acicular ferrite phase, or two or more types of low-temperature transformation formation phases. A method for producing a high-tensile cold-rolled steel sheet having a structure including the same .
JP2001387542A 2001-12-20 2001-12-20 High tensile cold-rolled steel sheet and method for producing the same Expired - Fee Related JP3750600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001387542A JP3750600B2 (en) 2001-12-20 2001-12-20 High tensile cold-rolled steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001387542A JP3750600B2 (en) 2001-12-20 2001-12-20 High tensile cold-rolled steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003183777A JP2003183777A (en) 2003-07-03
JP3750600B2 true JP3750600B2 (en) 2006-03-01

Family

ID=27596338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001387542A Expired - Fee Related JP3750600B2 (en) 2001-12-20 2001-12-20 High tensile cold-rolled steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP3750600B2 (en)

Also Published As

Publication number Publication date
JP2003183777A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP4639996B2 (en) Manufacturing method of high-tensile cold-rolled steel sheet
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
US20090071574A1 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
AU2005227556A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP2011236505A (en) Cold rolled steel sheet for coating and plated steel sheet for coating
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
RU2514743C2 (en) High-strength steel sheet of higher thermal hardening and forming capacity and method of its production
JP3969350B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
JP5051886B2 (en) Method for producing cold-rolled steel sheet and plated steel sheet
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3525812B2 (en) High strength steel plate excellent in impact energy absorption and manufacturing method thereof
JP4370795B2 (en) Method for producing hot-dip galvanized steel sheet
JP3829621B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
CN115151673B (en) Steel sheet, member, and method for producing same
JP5332547B2 (en) Cold rolled steel sheet
JP5012636B2 (en) Galvanized steel sheet
JP4292986B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP5041096B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP4867336B2 (en) High-tensile cold-rolled steel, high-tensile electroplated steel, and high-tensile hot-dip galvanized steel
JP2009263713A (en) Cold-rolled steel sheet with high tensile strength, plated steel sheet with high tensile strength, and manufacturing method therefor
JP4506005B2 (en) High strength steel sheet for warm forming and forming method thereof
JP3969351B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3750600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees