JPS5836003A - Digital oscillator - Google Patents

Digital oscillator

Info

Publication number
JPS5836003A
JPS5836003A JP13395881A JP13395881A JPS5836003A JP S5836003 A JPS5836003 A JP S5836003A JP 13395881 A JP13395881 A JP 13395881A JP 13395881 A JP13395881 A JP 13395881A JP S5836003 A JPS5836003 A JP S5836003A
Authority
JP
Japan
Prior art keywords
output
modulator
adder
delay device
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13395881A
Other languages
Japanese (ja)
Other versions
JPH0439243B2 (en
Inventor
Kenji Nakayama
謙二 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13395881A priority Critical patent/JPS5836003A/en
Publication of JPS5836003A publication Critical patent/JPS5836003A/en
Publication of JPH0439243B2 publication Critical patent/JPH0439243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/04Recursive filters

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Amplitude Modulation (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To reduce the coefficient precision for deciding on an oscillation frequency by modulating the output of a digital oscillator, using secondary cyclic digital filter, at a quarter frequency as high as a sampling frequency, and extracting only a low frequency component from the modulated signal. CONSTITUTION:An input signal to the 1st delay device 1 is led to a modulator 7, which modulates the input by a modulating wave having a period four times as long as a signal of sampling frequency fs. The output signal of the 1st delay device 1 is modulated by the 2nd modulator 8 when the digital value sequence phi1 which lags a digital value sequence phi0 in phase by pi/2. The output signal of the 2nd delay device 2 is modulated similarly by the 3rd modulator 9 with a sequence phi2 which further lags the sequence phi1 by pi/2. The output of the modulator 8 is multiplied by a coefficient alpha1 through the 2nd multiplier 10, and the output of the modulator 9 is multiplied by a coefficient alpha2 through a multiplier 11. The outputs of the multipliers 10 and 11 are added together by the 3rd adder 12, whose output is supplied to an adder 13, which adds the input to the output of the modulator 7. The coefficients alpha1 and alpha2 are set adequately to remove an unnecessary frequency component from the modulator 7 in the output value of the adder 13.

Description

【発明の詳細な説明】 本発明は、巡回形デジタルフィルタを使用したデジタル
形発振器の回路構故に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a circuit structure of a digital oscillator using a cyclic digital filter.

通信機のデジタル化に伴なって、変復調に用いる正弦波
をデジタル信号として発生させることが重要となってい
る。デジタル正弦波を発生させる第1の方法は、正弦波
を一定時間ごとにサンプリングした標本値をメモリに格
納しておいて、サンプリング周期ごとに該メモリ内容を
順次読み出す方法である。この方法は、テーブル表器法
といわれ、簡便であるが、発生周波数と標本化周波数の
比が無理数の場合には、メモリ容量が尊大になるという
欠点がある。そこで従来、第1図に示すような2次巡回
形回路を使用した一Iジタル形形振振器用いられている
。該発4辰器は、標本化周期に等しい6延時間を有する
第1遅延器1および第2遅延器2を継続に接続し、第1
遅延器1の出力には第1乗算器3で係数b1が乗ぜられ
、2KS2遅延器2の出力には、乗9器4によって係数
b2が乗ぜられる。そして、乗算器3およびl[の出力
を第1加′fi、器5で加重、する。第17III算器
5の出力は第2加算器6で入力インパルスと加算されて
第1遅延器1の入力に接続されて(八る。この発振器は
、係数す、、btを適当に設定して第1.第2遅延回路
1および2の内容をクリ了した後に第2加算器6に入力
インパルスを印加することによりデジタル正弦波を発振
することができる。この発振器の発振周波数f。と標本
化周波数で8  との関係は)係数す、を1とし係数り
、に対応して定オるから、係数す、を適当に設定するこ
とにより任意の周波数を発振させることができる。しか
し、このような従来のデジタル形発振器は、標本化周波
f8に比して発振周波数f。が極めて小さい場合は、後
述する理由によシ係数b1の僅かな差によって発振周波
数foが大きく変動するという欠点がある。
With the digitization of communication devices, it has become important to generate sine waves used for modulation and demodulation as digital signals. A first method for generating a digital sine wave is to store sample values obtained by sampling a sine wave at regular intervals in a memory, and to sequentially read out the contents of the memory at each sampling period. This method, called the table method, is simple, but has the disadvantage that it requires a large amount of memory if the ratio between the generation frequency and the sampling frequency is an irrational number. Therefore, conventionally, a digital type vibrator using a second-order cyclic circuit as shown in FIG. 1 has been used. The generator 4 has a first delay 1 and a second delay 2 connected in series, each having a delay time of 6 equal to the sampling period.
The output of the delay device 1 is multiplied by the coefficient b1 in the first multiplier 3, and the output of the 2KS2 delay device 2 is multiplied by the coefficient b2 in the multiplier 4. Then, the outputs of the multipliers 3 and l[ are weighted by the first addition 'fi' and the multiplier 5. The output of the 17th III multiplier 5 is added to the input impulse in the second adder 6 and connected to the input of the first delay device 1. 1. After clearing the contents of the second delay circuits 1 and 2, a digital sine wave can be oscillated by applying an input impulse to the second adder 6.The oscillation frequency f of this oscillator and sampling The relationship with 8 in terms of frequency is that the coefficient S is set to 1 and is constant, so by appropriately setting the coefficient S, it is possible to oscillate at any frequency. However, such a conventional digital oscillator has an oscillation frequency f compared to the sampling frequency f8. When is extremely small, there is a drawback that the oscillation frequency fo varies greatly due to a slight difference in the coefficient b1 for reasons described later.

従って、所望の発振周波数をイ:Jるために、係数す。Therefore, in order to obtain the desired oscillation frequency, the coefficients are calculated.

を精密に定める必要がある。換言すれば係数す。It is necessary to define precisely. In other words, it is a coefficient.

を表わす係数語長を十分に長くする必要があり、結果的
にハードウェアの増加を招くことになる。
It is necessary to make the coefficient word length representing the value sufficiently long, which results in an increase in hardware.

発振周波数f0と、標本化層θν数f8と、係数す、、
b、との間には下記式(1)および(2)で与えられる
関係がある。
The oscillation frequency f0, the sampling layer θν number f8, and the coefficient S...
b, there is a relationship given by the following equations (1) and (2).

b+=2C082πfo/f、     (1)b、−
1(2) 従って、係数す、をdb、だけ変化させたときの発振周
波数f。の変化分をdfoとすると、f、のす、に対す
る感度は、 ただし、θ=2πt0/l、       (4)で表
わすことができる。すなわち、θく1のとき(3)式の
ainθが小となるため、感度が非常に高くなる。例え
ば、fs  = 100 Hzでf、 =2I(2の場
合、fOの変動を10−4以内に抑えるためにけす、の
附子化誤差を1.6X10’以下に抑える必要がある。
b+=2C082πfo/f, (1) b, -
1 (2) Therefore, the oscillation frequency f when the coefficient S is changed by db. If the change in is dfo, then the sensitivity to f and no can be expressed as: θ=2πt0/l, (4). That is, when θ is 1, ain θ in equation (3) becomes small, so the sensitivity becomes extremely high. For example, when fs = 100 Hz and f, = 2I (2), in order to suppress the fluctuation of fO within 10-4, it is necessary to suppress the adjoining error of the square to 1.6×10' or less.

これは係数語長にして約19ビツトを姿することを意味
している。なお係数b tは1であるから、乗算器4は
特に設ける必要はなく、スルーにしておけば良い。
This means that the coefficient word length is about 19 bits. Note that since the coefficient bt is 1, there is no particular need to provide the multiplier 4, and it is sufficient to leave it through.

本発明の目的は、」二述の従来の欠点を解決し、係数語
長を従来回路に比して大幅に低減することができるデジ
タル形発振器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a digital oscillator which can solve the above-mentioned conventional drawbacks and can significantly reduce the coefficient word length compared to the conventional circuit.

本発明の発振器は、一定の標本化周期に等しい遅延時間
を有する第1遅延器および第2遅延器の縦続接緒回路と
、前記第1遅延器の出力に一定の係数を乗算する第1乗
算器と、該第1乗算器の出力と前記第2遅延器の出力と
を加算する第1加算器と、入力インパルスと上記第1加
算器の出力を加算して前記第1遅延器に入力させる第2
加算器とを備えて、前記第1乗算器に入力させる係数に
対応して任意の周波数のデジタル正弦波を発生するデジ
タル形発振器において、前記第1遅延器の入力信号を前
記標本化周期の4倍の周期の変調波で変調する第1変調
器と、前記第1遅延器の出力信号を上記変調波よpπ/
2だけ位相がおくれだ変調波で変調する第2変調器と、
前記第2遅延器の出力信号を上記変調波よりさらにπ/
2だけ位相がおくれだ変調波で変調する第3変調器と、
上記第2変調器の出力に一定の係数を乗する第2乗算器
と、該第2乗算器の出力と前記第3変調器の出力とを加
算する第3加算器と、該第3加勢器の出力と前記第1変
調器の出力とを加算する第4加算器とを備えて該第4加
算器の出力により所望の周期のデジタル正弦波を発生さ
せることを特徴とする。
The oscillator of the present invention includes a cascaded circuit of a first delay device and a second delay device having a delay time equal to a constant sampling period, and a first multiplication circuit that multiplies the output of the first delay device by a constant coefficient. a first adder that adds the output of the first multiplier and the output of the second delay device, and adds the input impulse and the output of the first adder and inputs the result to the first delay device. Second
an adder, the digital oscillator generates a digital sine wave of an arbitrary frequency corresponding to a coefficient to be input to the first multiplier; A first modulator that modulates a modulated wave with a period twice as long as the modulated wave, and an output signal of the first delay device that is pπ/
a second modulator that modulates with a modulated wave whose phase is delayed by 2;
The output signal of the second delay device is further π/
a third modulator that modulates with a modulated wave whose phase is delayed by 2;
a second multiplier that multiplies the output of the second modulator by a certain coefficient; a third adder that adds the output of the second multiplier and the output of the third modulator; and the third adder. and a fourth adder for adding the output of the first modulator and the output of the first modulator, and the output of the fourth adder generates a digital sine wave of a desired period.

次に、本発明について、図面を参照して詳細に説明する
Next, the present invention will be explained in detail with reference to the drawings.

第2図は、本発明の一実施例を示す回路図である。すな
わち、従来と同様に、第1遅延器1および第2遅延器2
を縦続に接続し、第1遅延器1の出力に第1乗算器3で
係数β、を乗する。上記第1、第2遅延器の遅延時間は
標本化周期Tすなわち標本化周波数fsの逆数に等しい
。そして、第1乗算器3の1[1力と前記第2遅延器2
の出力とを第1加算器5で加算し、第1加算器5の出力
は第2加算器6で人力インパルスと加算される。第2加
?4.器6の出力は前記第1遅延器1の入力に接続され
ている。しかl/、本実施例では例えば標本化周波af
sが1. OOIT、を使用して2■I2の正弦波を得
たいときit、 −,1:述の構成部分で発振させる発
振周波数f。が23H2になるように係数β。
FIG. 2 is a circuit diagram showing one embodiment of the present invention. That is, as in the conventional case, the first delay device 1 and the second delay device 2
are connected in cascade, and the output of the first delay device 1 is multiplied by a coefficient β in the first multiplier 3. The delay times of the first and second delay devices are equal to the sampling period T, that is, the reciprocal of the sampling frequency fs. Then, the 1[1 power of the first multiplier 3 and the second delay device 2
The output of the first adder 5 is added to the human impulse in the second adder 6. Second addition? 4. The output of the device 6 is connected to the input of the first delay device 1. However, in this embodiment, for example, the sampling frequency af
s is 1. When you want to obtain a 2■I2 sine wave using OOIT, it, -, 1: Oscillation frequency f to be oscillated by the above-mentioned component. Coefficient β so that becomes 23H2.

を設定する。そして、核23H2を後述するように(1
00T(7の4倍の周回の)25H2で変ル1Mして2
5土23H,の変調出力信号を得た後不要成分を除去し
て2H7の成分を出力させるように構成している。
Set. Then, the nucleus 23H2 is (1
00T (4 times the number of laps of 7) 25H2, change le 1M and 2
After obtaining the modulated output signal of 23H, 5, and 23H, unnecessary components are removed and the component of 2H7 is output.

すなわち、第1 Ilu <+を際1の入力信号を第1
変調器7に人力させ、標本化周波数fB の4倍の周期
の変調波で変調する。との変調は、第1変調器7に第4
図(、)に示すように標本代用1すITごとにデジタル
値10”11”o −ピを入力させ前記遅延器1の入力
信号に乗するととにより容易に行なうことが可能である
。上記デジタル値系列をφ。ということにする。該デジ
タル値系列φ。け、“1”、”0”および“−1#のみ
の数値であるから、変調器7は乗算器を用いるまでもな
く、例えば符号反転回路とゲート等によって容易に構成
することが可能である。壕だ、第1遅延器1の出力信号
は、第2変調器8で前記デジタル値系列φ。よりπ/2
だけ位相が厚れた第4図(b)に示すようなデジタル値
系列φ1によって変調する。また、第2遅延器2の出力
信号は、同様に第3変調器9でデジタル値系列φ、より
さらにπ/2遅れた系列φ、(第4図(c)参照)によ
って変調する。
That is, when the first Ilu <+ is set, the first input signal is
The modulator 7 is operated manually and modulated with a modulated wave having a cycle four times the sampling frequency fB. The modulation with the fourth modulator 7
This can be easily done by inputting a digital value of 10"11"o-pi for each sample substitute and multiplying it by the input signal of the delay device 1, as shown in FIG. The above digital value series is φ. That's what I will say. The digital value series φ. However, since the values are only "1", "0" and "-1#," the modulator 7 can be easily constructed using, for example, a sign inversion circuit and a gate, without using a multiplier. The output signal of the first delay device 1 is converted to the digital value series φ by the second modulator 8.
It is modulated by a digital value sequence φ1 as shown in FIG. 4(b) in which the phase is thickened by . Further, the output signal of the second delay device 2 is similarly modulated by the third modulator 9 using the digital value sequence φ, and the sequence φ delayed by π/2 (see FIG. 4(c)).

そして、第2変調器8の出力は第2乗算器10において
係数α、と乗算され、第3変調器9の出力は乗算器11
によって係数α、と乗算される。乗算器10.11の出
力は第3加算器12によって加算され、該第3加算器1
2の出力を第4加算器13に入力させて前記第1変調器
7の出力と加算する。上記係数α1.α、を適切に設定
すれば、上記第4加算器13の出力値は、第1変調器7
の出力から不〕!5周波数成分を除去することができる
Then, the output of the second modulator 8 is multiplied by a coefficient α in the second multiplier 10, and the output of the third modulator 9 is multiplied by the coefficient α.
is multiplied by the coefficient α. The outputs of the multipliers 10 and 11 are added by a third adder 12;
The output of the modulator 2 is input to the fourth adder 13 and added to the output of the first modulator 7. The above coefficient α1. If α is set appropriately, the output value of the fourth adder 13 will be the same as that of the first modulator 7.
From the output of 5 frequency components can be removed.

例えば前述の例でいえげ25+23H7,の成分を除去
し、25−23=2FI2の成分のみを出力させること
ができる。すなわち、低域ろ波器作用があり、その減衰
特性は係数α1.α2をそれぞれ例えば2,1に設定す
ることによって十分な減衰用が得られる。従って、乗算
器10は簡単なシフト回路等で構成できる場合もあり、
乗算器11け設けないでスルーにすることも可能である
For example, in the above example, the component 25+23H7 can be removed and only the component 25-23=2FI2 can be output. That is, there is a low-pass filter effect, and its attenuation characteristics are determined by the coefficient α1. Sufficient damping can be obtained by setting α2 to, for example, 2 and 1, respectively. Therefore, the multiplier 10 may be configured with a simple shift circuit, etc.
It is also possible to pass through the multipliers without providing 11 multipliers.

第3図(a)は、第1遅延器1の入力信号(すなわち第
1変ハ1,1器7の入力信号でもある)のスペクトルを
示し、標本化周波数t 、 = 1.00 Hz −変
調周波数25T(7(100IT、/4 ) 、発振周
波数f、を23Hzにした」場合を示す。変調周波数2
57(、の周期は、標本化周波数fa (J 00Hz
)の周期の4倍であるから、変調周波数25H3の角周
波数はπ/2であり、発振周波数23)■zの角周波数
けπ/2の近傍であってπ/2より僅かに(eだけ)小
さいからそのスペクトルは第3図(a)K示すようにな
る。この信号を角周波数がπ/2である正弦波(25H
2)によって変N、′目−れは角周波数が!±(u−e
)の信号が得られる。従って、   2 第1変調器7の出力信号のスペクトルは第3図(b)に
示すように、角周波数e、π土e、および2π−8の4
本の、腺スペクトルを乱む。一方、第2図において係数
α、およびα2をそれぞれ1.9および1に設定したと
きは、第4加J![13の出力には角周波数π付近の信
号は減衰して出力され、その減衰特性は第3図(b)の
曲琲cに示すようになる。従って、角周波数π付近の信
号(25,H8+23H,)が除去されて角周波数eの
信号(2H7)のみが第4加算:帯13から出力される
FIG. 3(a) shows the spectrum of the input signal of the first delay device 1 (that is, also the input signal of the first variable frequency converter 1, 1 device 7), and the sampling frequency t, = 1.00 Hz - modulation The case where the frequency is 25T (7 (100IT, /4) and the oscillation frequency f is 23Hz is shown.Modulation frequency 2
The period of 57(, is the sampling frequency fa (J 00Hz
), the angular frequency of the modulation frequency 25H3 is π/2, and the angular frequency of the oscillation frequency 23) ) is small, so its spectrum becomes as shown in FIG. 3(a)K. This signal is a sine wave with an angular frequency of π/2 (25H
2), the variable N,' is the angular frequency! ±(u-e
) signals are obtained. Therefore, as shown in FIG. 3(b), the spectrum of the output signal of the first modulator 7 is as follows:
Book, disrupting the glandular spectrum. On the other hand, when the coefficients α and α2 are set to 1.9 and 1, respectively in FIG. 2, the fourth addition J! [13] A signal near the angular frequency π is attenuated and outputted, and its attenuation characteristic is as shown in curve c in FIG. 3(b). Therefore, the signal (25, H8+23H,) near the angular frequency π is removed, and only the signal (2H7) with the angular frequency e is output from the fourth addition band 13.

上述において、発振周波数f0を23H7とするために
は、係数β、は、前記(1)式からβ1=2cos2π
f 6 / r Bに設定されていて、(4)式からθ
=2π 23 テある00 から、発振周波数foのβ、に対する感度は、(3)式
から、 となる。従って、foの変動を10−4以内に抑えるの
に必要壺β、の精度け、1.lX10”−3程1jyで
足りる。す々わち、係数語しにして約10ビツトでよい
から、従来回路で19ビツトを要するのに圧しで大幅に
低減することができる。これに伴って乗算器、加匍器等
のハ1摸も小さぐてすみ、全体として少ないハードウェ
アで構IA’できる効果がある。
In the above, in order to set the oscillation frequency f0 to 23H7, the coefficient β is determined by β1=2cos2π from the equation (1) above.
f 6 / r B, and from equation (4), θ
=2π 23 From the equation (3), the sensitivity of the oscillation frequency fo to β is as follows. Therefore, the accuracy of the pot β required to suppress the fluctuation of fo within 10-4 is 1. 1jy is sufficient for lX10''-3. In other words, the coefficient word only requires about 10 bits, which can be significantly reduced compared to the 19 bits required in the conventional circuit. The containers, feeders, etc. can also be made smaller, and the overall effect is that less hardware is required.

v上のように、本発明においては、2次遅皿形デジタル
フィルタを使用した従来のデジタル形発振器の出力を、
標本化周波数の1/4の周波数で変調し、該変調された
信号から高周波成分を除去して低周波成分のみを出力さ
せるように構成されているから、標本化周波数に対して
極めて低い周波数の出力を得たい場合において、発掘周
波数を決定するための係数の精度を低くすることができ
る。すなわち、係数語長が少なくてすみ、従来に比して
回路規模を大幅に低減させることができる効果を有する
As shown above, in the present invention, the output of a conventional digital oscillator using a second-order delay dish digital filter is
It is configured to modulate at a frequency that is 1/4 of the sampling frequency, remove high frequency components from the modulated signal, and output only low frequency components. In cases where output is desired, the precision of the coefficients for determining the excavation frequency can be reduced. That is, the coefficient word length can be reduced, and the circuit scale can be significantly reduced compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のデジタル形発振器の一例を示す回路図、
第2図は本発明の一実施例を示す回路図、第3図(、)
は上記実施例における変調器入力のスペクトルを示す図
、第3図(b)は上記変調器出力のスペクトルを示す図
および第4加算器出力首での減衰特性を示す図、第4図
(a)、(b)および(c)はそれぞれ第1〜第3変調
器に入力させる変調信号を示す図である。 図において、1・・・第1遅延器、2・・・第2遅延器
、3・・・第1乗算器、4・・・乗算器、5・・・第1
加′9器、6・・・第2加算器、7・・・第1変調器、
8・・・第2変調器、9・・・第3変調器、10・・・
第2乗算器、11・・・乗算器、12・・・第3加算器
、13・・・第4加算Ri、blpb7.β1 、β7
.α1.α、・・・係数。 代理人弁理士  住 1)俊 宗
Figure 1 is a circuit diagram showing an example of a conventional digital oscillator.
Figure 2 is a circuit diagram showing an embodiment of the present invention, Figure 3 (,)
is a diagram showing the spectrum of the modulator input in the above embodiment, FIG. 3(b) is a diagram showing the spectrum of the modulator output and a diagram showing the attenuation characteristic at the output neck of the fourth adder, ), (b) and (c) are diagrams showing modulation signals input to the first to third modulators, respectively. In the figure, 1...first delay device, 2...second delay device, 3...first multiplier, 4...multiplier, 5...first
adder, 6... second adder, 7... first modulator,
8... Second modulator, 9... Third modulator, 10...
Second multiplier, 11... Multiplier, 12... Third adder, 13... Fourth addition Ri, blpb7. β1, β7
.. α1. α, ... coefficient. Representative Patent Attorney Sumi 1) Sou Toshi

Claims (1)

【特許請求の範囲】[Claims] 一定の標本化層1υjに等しい遅延時間を有する第1遅
延器および第2遅延器の縦続接続回路と、前記第1遅延
器の出力に一定の係数を乗算する第1乗算器と、該第1
乗算器の出力と前記第2遅延器の出力とを加算する第1
加算器と、入力インパルスと上記第1加算器の出力を加
算して前記第1遅延器に入力させる第2加算器とを備え
て、前記第1乗算器に入力させる係数に苅応して任意の
周波数のデジタル正弦波を発生するデジタル形発掘器に
おいて、前記第1遅延器の入力信号を前記標本化周期の
4倍の周期の変調波で変調する第1変調器と、前記第1
遅廷器の出力信号を上記変調波よりπ/2だけ位相がお
くれだ変調波で変調する第2変調器と、前記第2遅延器
の出力信号を上記変調波よりさらにπ/2だけ位相がお
くれた変調波で変調する第3変調器と、上記第2変調器
の出力に一定の係数を乗する第2乗算器と、該第2乗算
器の出力と前記第3変調器の出力とを加算する第3加算
器と、該第3加算器の出力と前記第1変調器の出力とを
加算する第4加算器とを備えて該第4加算器の出力によ
シ所望の周期のデジタル正弦波を発生させることを特徴
とするデジタル形発振器。
a cascaded circuit of a first delay device and a second delay device having a delay time equal to a constant sampling layer 1υj; a first multiplier that multiplies the output of the first delay device by a constant coefficient;
a first adding the output of the multiplier and the output of the second delay device;
an adder; and a second adder that adds the input impulse and the output of the first adder and inputs the result to the first delay device; a first modulator that modulates the input signal of the first delay device with a modulation wave having a period four times the sampling period;
a second modulator that modulates the output signal of the delay device with a modulation wave whose phase is delayed by π/2 from the modulated wave; and a second modulator that modulates the output signal of the second delay device with a modulation wave whose phase is delayed by π/2 from the modulated wave. a third modulator that modulates with a delayed modulation wave; a second multiplier that multiplies the output of the second modulator by a constant coefficient; a third adder that adds the output of the third adder and the output of the first modulator; and a fourth adder that adds the output of the third adder and the output of the first modulator; A digital oscillator characterized by generating a sine wave.
JP13395881A 1981-08-28 1981-08-28 Digital oscillator Granted JPS5836003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13395881A JPS5836003A (en) 1981-08-28 1981-08-28 Digital oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13395881A JPS5836003A (en) 1981-08-28 1981-08-28 Digital oscillator

Publications (2)

Publication Number Publication Date
JPS5836003A true JPS5836003A (en) 1983-03-02
JPH0439243B2 JPH0439243B2 (en) 1992-06-29

Family

ID=15117050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13395881A Granted JPS5836003A (en) 1981-08-28 1981-08-28 Digital oscillator

Country Status (1)

Country Link
JP (1) JPS5836003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016908A (en) * 2011-06-30 2013-01-24 Rohm Co Ltd Sine wave generator, digital signal processor, and audio output device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016908A (en) * 2011-06-30 2013-01-24 Rohm Co Ltd Sine wave generator, digital signal processor, and audio output device

Also Published As

Publication number Publication date
JPH0439243B2 (en) 1992-06-29

Similar Documents

Publication Publication Date Title
KR930001296B1 (en) Filtering device
US4789837A (en) Switched capacitor mixer/multiplier
JPH0340972B2 (en)
US5200978A (en) Process for actuation of multi-level digital modulation by a digital signal processor
US4494073A (en) Frequency generator using composite digitally controlled oscillators
JPH07162383A (en) Fm stereo broadcasting equipment
JPS5836003A (en) Digital oscillator
US4310803A (en) Bandpass filter circuit
RU2595638C1 (en) Method for frequency modulation of oscillations and device therefor
US4095185A (en) Electrical energy transmission network
JPS6387808A (en) Chirp signal generating circuit
JPS59105712A (en) Digital filter
RU2207737C1 (en) Procedure of information transmission and converter of sequence of digital readings
SU1095418A1 (en) Phase-lock loop
JPH01144818A (en) Numerical value control type oscillation circuit
SU677089A1 (en) Arrangement for shaping signals with calibrated phase shift
SU1622831A1 (en) Calibrator of nonlinear distorsions
SU714473A1 (en) Acoustical signal processing device
SU1631695A1 (en) Digital frequency spectrum generator
JPS5921104A (en) Digital control oscillator
RU2553418C1 (en) Three-phase harmonic signal generator
RU8855U1 (en) DIGITAL FREQUENCY SYNTHESIS
JPS63232713A (en) Phase locked loop circuit
JP2532601B2 (en) Frequency modulation circuit
RU8856U1 (en) DIGITAL FREQUENCY SYNTHESIS