JPS5827806A - Binary fluid power generating device - Google Patents

Binary fluid power generating device

Info

Publication number
JPS5827806A
JPS5827806A JP12568581A JP12568581A JPS5827806A JP S5827806 A JPS5827806 A JP S5827806A JP 12568581 A JP12568581 A JP 12568581A JP 12568581 A JP12568581 A JP 12568581A JP S5827806 A JPS5827806 A JP S5827806A
Authority
JP
Japan
Prior art keywords
heat
temperature
medium
boiling point
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12568581A
Other languages
Japanese (ja)
Inventor
Noriyoshi Teranishi
寺西 詔奉
Tadao Arakawa
荒川 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12568581A priority Critical patent/JPS5827806A/en
Publication of JPS5827806A publication Critical patent/JPS5827806A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the heat recovery efficiency by using a mixture prepared by mixing a plurality of heat mediums having different boiling points as a low boiling point medium. CONSTITUTION:By using a mixture prepared by mixing a plurality of heat mediums RA (low boiling point) and RB (high boiling point) as an operating medium of a low boiling point to drive a binary fluid power generating device. The operating medium enters into an evaporator (not shown) at a temperature t1. When the temperature reaches a value indicated by tva, the heat medium RA starts vaporization. At a point x3 in time where the evaporation is completed, the temperature resumes to rise up. When the temperature reaches a value indicated by tvb, the heat medium RB starts evaporation, and is maintained at the temperature tvb until the completion point x5 in time. Accordingly, the heat medium RA evaporates at the temperature tva between points in time x2 and x3, and the heat medium RB at the temperature tvb between points x4 and x5 in time. By this procedure, it is possible to obtain the quantity of evaporation equivalent to the case of using a heat medium having smaller evaporation latent heat, and also to take out a larger electric output from a given heat source.

Description

【発明の詳細な説明】 本発明は、地熱水、各種廃熱、温海水等の中低温の熱源
によって低沸点媒体を加熱、気化させ、作1IjJ媒体
としてタービン発電機を回転させて発電する二流体発電
装置に関するものである。
[Detailed Description of the Invention] The present invention heats and vaporizes a low-boiling point medium using a medium-low temperature heat source such as geothermal water, various types of waste heat, and warm sea water, and rotates a turbine generator as the medium to generate electricity. The present invention relates to a two-fluid power generation device.

第1図は、二流体発電装置の基本構成の一例を示す概念
図で、lは蒸発器、2はタービン発電機、3は復水器、
4はポンプ、番は熱源供給管を示している。この二流体
発電装置では、沸点の低i作動媒体は蒸発器1において
熱源供給管纂によって供給される熱源によって加熱され
蒸気となって、蛇管6を通ってタービン発電機2に導入
され仕事食し友後、凝縮器3で冷却凝縮される。凝縮器
3で冷却凝縮した作動媒体は、ポンプ4によって配4y
t通って、再び蒸発器・に戻されて、閉サイクルを構成
してiる1作動媒体は、蒸発器1にお−て、加熱され、
昇温、気化するが、この退場における熱源および作動媒
体の温度と交換熱量との関係を示すと第2図の如くにな
る。この図のX軸。
FIG. 1 is a conceptual diagram showing an example of the basic configuration of a two-fluid power generation device, where l is an evaporator, 2 is a turbine generator, 3 is a condenser,
4 indicates a pump, and number 4 indicates a heat source supply pipe. In this two-fluid power generation device, a working medium with a low boiling point is heated in the evaporator 1 by a heat source supplied by a heat source supply pipe, becomes steam, and is introduced into the turbine generator 2 through a coiled pipe 6, where it is fed into a working fluid. Thereafter, it is cooled and condensed in a condenser 3. The working medium cooled and condensed in the condenser 3 is distributed by the pump 4.
The working medium that passes through the evaporator 1 and returns to the evaporator 1 to form a closed cycle is heated in the evaporator 1,
Although the temperature rises and vaporizes, the relationship between the temperature of the heat source and working medium and the amount of heat exchanged during this exit is shown in FIG. The X axis of this figure.

y軸には、それぞれ、交換熱量(kcaA/H) I温
度(C)がとってTo’)、Tt −Tm −Tsは、
それぞれ、熱l1fIt体の入口温度、中間温度、出口
温度を、’l e ’tは、それぞれ、作動媒体の入口
温度、飽和温度を示してiる。
On the y-axis, the amount of heat exchanged (kcaA/H), the temperature (C), and Tt -Tm -Ts are shown, respectively.
'le't indicates the inlet temperature, intermediate temperature, and outlet temperature of the heat body, respectively, and 'le't indicates the inlet temperature and saturation temperature of the working medium, respectively.

すなわち、第2図は、熱源側の流体は温度T。That is, in FIG. 2, the fluid on the heat source side is at a temperature T.

で蒸発器に供給され、熱交換によシ温度T、迄低下した
後排出され1、一方、作動媒体は温度t1の液状で蒸発
器1に供給され、加熱され、飽和温*t、rc違し、蒸
発開始し、飽和蒸気となってタービン発電機2に供給さ
れることを示して^る。
On the other hand, the working medium is supplied to the evaporator 1 in liquid form at a temperature t1 and heated until the saturation temperature *t, rc difference is reached. This indicates that the steam starts to evaporate, becomes saturated steam, and is supplied to the turbine generator 2.

tた、M発器における熱交換は予熱部とJ[発器に分け
ることができる。この場合には、予熱部で作動媒体は温
It ’ tからt、まで加熱され、熱源側流体は温f
T、からT、tで温度降下する。そして、蒸発部におい
ては、作動媒体は、飽和温度T、で、蒸発潜熱相当の熱
を吸収して、飽和蒸気となって出て行き、熱源側流体温
度はT、からT寓まで降下する。
The heat exchange in the M generator can be divided into the preheating section and the J generator. In this case, the working medium is heated in the preheating section from temperature It't to t, and the heat source side fluid is heated to temperature f.
The temperature drops from T, to T,t. In the evaporation section, the working medium absorbs heat equivalent to the latent heat of vaporization at the saturation temperature T, and exits as saturated steam, and the heat source side fluid temperature drops from T to T.

従って、第1図に示す構成で、籐2図に示すような熱交
換を行なう発電装置を設計する場合には、熱源iut体
の入ロ温*T、、流量Qhは予め与えられ、その保有熱
を作動媒体側に最大限に吸収し、さらに最大限に電気エ
ネルギーに変換で自るよう表蒸気圧力、ならびに作動媒
体の種類が選定されている。しかしながら、一種類のみ
の作動媒体を用い、その飽和温1ittvで蒸発開始、
完了するような方式では、熱源流体の蒸発器出口温度T
、は、十分に降下しないので排出されることになるため
、取〕出せる電気エネルギーはかなシ低いものであった
Therefore, when designing a power generation device with the configuration shown in Fig. 1 that performs heat exchange as shown in Fig. 2, the input temperature *T, and flow rate Qh of the heat source Iut body are given in advance, and the The surface steam pressure and the type of working medium are selected so that the maximum amount of heat can be absorbed into the working medium and the maximum amount of heat can be converted into electrical energy. However, using only one type of working medium, evaporation starts at its saturation temperature of 1 ittv;
In such a scheme, the evaporator outlet temperature T of the heat source fluid
, did not descend sufficiently and had to be ejected, so the electrical energy that could be extracted was extremely low.

本発明は、極めて高vhllih回収効率をもつ九二流
体発電装置を提供することを目的とするもので、中低温
の熱源によって低沸点熱媒体を加熱、気化させた蒸気を
、作動媒体としてタービン発電機を回転させ発電する二
流体発電装置において、低沸点熱媒体として、沸点の異
なる複数種類の熱媒体の混合物を用いることを特徴とす
るものである。
The purpose of the present invention is to provide a 92-fluid power generation device with extremely high vhllih recovery efficiency, in which steam generated by heating and vaporizing a low boiling point heat medium with a medium-low temperature heat source is used as a working medium to generate turbine power generation. A two-fluid power generation device that rotates a machine to generate electricity is characterized by using a mixture of multiple types of heat carriers having different boiling points as a low-boiling heat carrier.

そして、本発明は、1種類の作動媒体を用−る従来の二
流体発電装置の熱回収効率の検討の結果得られたもので
、次に、その検討結果について説明する。
The present invention was obtained as a result of a study on the heat recovery efficiency of a conventional two-fluid power generation device that uses one type of working medium, and the study results will be explained next.

第2図の従来の二流体発電の場合には、蒸気圧力(ある
いは飽和蒸気温度t、)、ならびに、作動媒体の蒸発開
始点における熱源流体温度Ttと、飽和温度1.の温度
差(一般にピンチポイントと呼ばれてiる)ΔT、を定
めると、作動媒体の蒸発量Gvは次式によって定まる。
In the case of the conventional two-fluid power generation shown in FIG. 2, the steam pressure (or saturated steam temperature t), the heat source fluid temperature Tt at the starting point of evaporation of the working medium, and the saturation temperature 1. When the temperature difference (generally called the pinch point) ΔT is determined, the evaporation amount Gv of the working medium is determined by the following equation.

GV=G11−(TI−〒t ) Ck /Hv   
  ・”(1)但し、 Gh:熱源流体流量(Kt/h ) Ch:熱源流体平均比重(kcxt/〜・C)HY:作
動媒体蒸発潜熱(kca4/!4 )(1)式は、第一
に、蒸発量GVが定まると、予熱部における回収熱量、
すなわち、蒸発器出口の熱源流体温&’rsが定まって
しまうことを示しておシ、第二に、作動媒体蒸発潜熱H
Vの小さい作動媒体を使用すれば、蒸発量GVが大とな
シ、予熱部における回収熱量が犬きくなjt、Ts も
低下し、取)出せる電気出力も大きくなることを示して
いる。
GV=G11-(TI-〒t) Ck/Hv
・”(1) However, Gh: Heat source fluid flow rate (Kt/h) Ch: Heat source fluid average specific gravity (kcxt/~・C) HY: Working medium latent heat of evaporation (kca4/!4) When the evaporation amount GV is determined, the amount of heat recovered in the preheating section,
That is, it shows that the heat source fluid temperature &'rs at the evaporator outlet is fixed, and secondly, the latent heat of vaporization H of the working medium
This shows that if a working medium with a small V is used, the amount of evaporation GV increases, the amount of heat recovered in the preheating section decreases, and the electric output that can be extracted also increases.

本発明は、これらの検討結果に基づき、作動媒体として
、沸点の真なる複数種類の低沸点媒体の混合物、すなわ
ち、各々異なったいくつかの温度で蒸発する混合された
熱媒体を用いることによって、蒸発潜熱の小さ一作動媒
体を用iたと同じ効果を得ることができ、熱源の保有熱
を、作動流体である低沸点熱媒体側に、最大限に吸収(
回収)し、極めて高い熱回収効率を持つた二流体発電装
置の提供を可能としたものである。
Based on these study results, the present invention uses a mixture of multiple types of low boiling point media with true boiling points as the working medium, that is, a mixed heat medium that evaporates at several different temperatures. The same effect as using a working medium with a low latent heat of vaporization can be obtained, and the heat retained by the heat source is absorbed to the maximum extent by the working fluid, which is a low-boiling heat medium.
heat recovery), making it possible to provide a two-fluid power generation device with extremely high heat recovery efficiency.

以下、実施例につiて説明する。Examples will be described below.

第3図は、沸点の異なる二種類の低沸点熱媒体(両者の
うち沸点の低い方をRA、沸点の高い方を几Bと称する
)を混合して作動媒体として用いる一書施例における、
熱源流体および作動媒体の温度と交換熱量の大きさとの
関係を示して−る。
Figure 3 shows an example in which two types of low-boiling heat media with different boiling points (the one with the lower boiling point is called RA and the one with the higher boiling point is called B) are mixed and used as a working medium.
It shows the relationship between the temperature of the heat source fluid and the working medium and the amount of heat exchanged.

この図のX軸、y軸には、!s2図と同様に、それツレ
、交換熱量(kcat/H)一温度(C)がとってTm
ル、Ti −Tsは、それぞれ、熱f/1tIt、体の
入口温度、出口温度を、T鵞s Tm * T、は三つ
の異なる中間温度を、’le’?ally4は、それぞ
れ、作動媒体の入口温度、熱媒体HAの飽和温度、熱媒
体RBの飽和温度を、ΔT、1.ΔT2.は、それぞれ
、熱媒体RB、熱媒体RAのピンチポイントを示してい
る。
On the X and Y axes of this figure,! Similarly to the s2 diagram, the amount of heat exchanged (kcat/H) and the temperature (C) are Tm
, Ti -Ts are the heat f/1tIt, the inlet temperature and the outlet temperature of the body, Tm * T, are the three different intermediate temperatures, 'le'? ally4 respectively sets the inlet temperature of the working medium, the saturation temperature of the heat medium HA, and the saturation temperature of the heat medium RB as ΔT, 1. ΔT2. indicate the pinch points of the heat medium RB and heat medium RA, respectively.

この二流体発電装置の作動媒体には、低沸点熱媒体8人
とRBとが混合されているので、温度t、で蒸発器1に
入)、温度がLaに適すると、熱媒体RAは、熱媒体R
Bより沸点が低いので、蒸発を開始し、蒸発が完了した
時点(”sの点)から再び温度が上昇し、温度がt、h
に達すると、熱媒体R,Bが蒸発を開始し、蒸発が完了
する時点(”sO魚)まで温度”vbに保持される。す
なわち、第3図は、熱媒体凡人はX、とx8との間にお
いて、敲度t?、で蒸発し、熱媒体RBはX、とx、と
の間において、温度tvbで蒸発することを示している
The working medium of this two-fluid power generation device is a mixture of eight low boiling point heat carriers and RB, so it enters the evaporator 1 at a temperature t), and when the temperature is suitable for La, the heat carrier RA becomes Heat medium R
Since the boiling point is lower than that of B, evaporation starts and the temperature rises again from the point when evaporation is completed (point ``s'') until the temperature reaches t, h.
When the temperature reaches , the heat carriers R and B begin to evaporate and are maintained at the temperature vb until the evaporation is completed (sO fish). That is, in FIG. 3, the heating medium for ordinary people is t? between X and x8. , and the heat medium RB evaporates between X and x at a temperature tvb.

このように熱媒体RAと熱媒体R,Bとが異なった温度
で蒸発する場合には、単一熱媒体の場合に、蒸発潜熱の
小さい熱媒体を使うことと同様の効果を得ることができ
、α)式にもとづいて述べたように、蒸発量が増大する
ことになシ、与えられた熱源から取シ出す電気出力を大
きくすることができる。
In this way, when heat medium RA and heat mediums R and B evaporate at different temperatures, it is possible to obtain the same effect as using a heat medium with a small latent heat of vaporization when using a single heat medium. , α), the electrical output extracted from a given heat source can be increased without increasing the amount of evaporation.

なお、混合される低沸点の熱媒体の種類、混合の割合は
、熱源の特性および熱媒体の特性によって最適条件とな
るように選定される。
Note that the type of low-boiling heat medium to be mixed and the mixing ratio are selected to provide optimum conditions depending on the characteristics of the heat source and the characteristics of the heat medium.

以上の如く、本発明の二流体発電装置は、極めて高い熱
回収効率をもった二流体発電装置の提供を可能とするも
ので、産業上の効果の大なるものでちる。
As described above, the two-fluid power generation device of the present invention makes it possible to provide a two-fluid power generation device with extremely high heat recovery efficiency, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、二流体発電装置の基本構成の一例を示す概念
図、第2図は、従来の二流体発電装置の熱源および作動
媒体の温度と交換熱量との関係を示す線図、#I3図は
、本発明の二流体発電装置の一実施例の熱源および作動
媒体の温度と交換熱量との関係を示す線図である。 l・・・蒸発器、2・・・タービン発電機、3・・・復
水器、(ほか1名) 弔1図 第2図 交換熱量(Kcal/Hン
FIG. 1 is a conceptual diagram showing an example of the basic configuration of a two-fluid power generation device, and FIG. 2 is a diagram showing the relationship between the temperature of the heat source and working medium and the amount of heat exchanged in a conventional two-fluid power generation device. #I3 The figure is a diagram showing the relationship between the temperature of the heat source and the working medium and the amount of heat exchanged in an embodiment of the two-fluid power generation device of the present invention. l...Evaporator, 2...Turbine generator, 3...Condenser, (1 other person) Figure 1 Figure 2 Exchanged heat amount (Kcal/H)

Claims (1)

【特許請求の範囲】 1、中低温の熱源によって低沸点熱媒体を加熱。 気化させた蒸気を、作動媒体としてタービン発電機を@
転させて発電する二流体発電装置におiて、前記低沸点
熱媒体として、沸点の^なる複数種類の熱媒体の温食物
を用いることを特徴とする二流体発電装置。
[Claims] 1. A low boiling point heat medium is heated by a medium to low temperature heat source. The vaporized steam is used as a working medium for a turbine generator.
1. A two-fluid power generation device which generates electricity by converting the boiling point of a plurality of types of heat carriers having boiling points as the low-boiling point heat medium.
JP12568581A 1981-08-10 1981-08-10 Binary fluid power generating device Pending JPS5827806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12568581A JPS5827806A (en) 1981-08-10 1981-08-10 Binary fluid power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12568581A JPS5827806A (en) 1981-08-10 1981-08-10 Binary fluid power generating device

Publications (1)

Publication Number Publication Date
JPS5827806A true JPS5827806A (en) 1983-02-18

Family

ID=14916140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12568581A Pending JPS5827806A (en) 1981-08-10 1981-08-10 Binary fluid power generating device

Country Status (1)

Country Link
JP (1) JPS5827806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179810A (en) * 1984-09-26 1986-04-23 Hisaka Works Ltd Vaporizer for non-azeotrope
US4808717A (en) * 1986-09-17 1989-02-28 Sumitomo Chemical Company, Limited Thermosetting resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179810A (en) * 1984-09-26 1986-04-23 Hisaka Works Ltd Vaporizer for non-azeotrope
US4808717A (en) * 1986-09-17 1989-02-28 Sumitomo Chemical Company, Limited Thermosetting resin composition
US4913697A (en) * 1986-09-17 1990-04-03 Sumitomo Chemical Company, Limited Thermosetting resin composition from alkenylaryloxy triazine
US4980436A (en) * 1986-09-17 1990-12-25 Sumitomo Chemical Company, Limited Thermosetting resin composition from alkenyl aryloxy triazine compound and poly maleimide

Similar Documents

Publication Publication Date Title
TW436580B (en) Gas turbine inlet air cooling method for combined cycle power plants
EP0181275A2 (en) Power generating cycle
JPH0626441A (en) Method and device for carrying out thermodynamic cycle
JPH05340342A (en) Ocean thermal energy conversion device
JPS5827806A (en) Binary fluid power generating device
US4183218A (en) Thermal powered gas generator
JPH01285607A (en) Hybrid binary generating system
JPH0626725A (en) Working fluid to absorption type heat pump operated at extremely high temperature
JPH0221215B2 (en)
Shelton et al. Design analysis of the Einstein refrigeration cycle
JPH11294316A (en) Method of generating power by utilizing solar heat
JPS62294705A (en) Heat pipe type generating device
JPH0359350B2 (en)
JPS5543266A (en) Power generator utilizing thermal difference between solar heat and cool water
JPS60526B2 (en) Waste heat power generation plant
JP2507446B2 (en) Hot water turbine plant
JPS60169608A (en) Turbine plant utilizing hot water
JPS63134867A (en) Ocean temperature difference power generation set
JPS5810168A (en) Method of utilizing heat possessed by hot water discharged from geothermal heat utilizing steam turbine
JPS6232384B2 (en)
JPS5455256A (en) Waste-heat utilizing power plant
JPH0438883B2 (en)
JPH0583831B2 (en)
JPS61108815A (en) Turbine plant with use of hot water
JPS5840094B2 (en) Danbouki