JPS5810168A - Method of utilizing heat possessed by hot water discharged from geothermal heat utilizing steam turbine - Google Patents

Method of utilizing heat possessed by hot water discharged from geothermal heat utilizing steam turbine

Info

Publication number
JPS5810168A
JPS5810168A JP56108249A JP10824981A JPS5810168A JP S5810168 A JPS5810168 A JP S5810168A JP 56108249 A JP56108249 A JP 56108249A JP 10824981 A JP10824981 A JP 10824981A JP S5810168 A JPS5810168 A JP S5810168A
Authority
JP
Japan
Prior art keywords
hot water
steam
stage
heat
flasher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56108249A
Other languages
Japanese (ja)
Inventor
Hisami Tajimi
多治見 尚海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Machinery and Engineering Ltd
Original Assignee
Hitachi Ltd
Hitachi Machinery and Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Machinery and Engineering Ltd filed Critical Hitachi Ltd
Priority to JP56108249A priority Critical patent/JPS5810168A/en
Publication of JPS5810168A publication Critical patent/JPS5810168A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To make an efficient use of heat, by utilizing hot water, left after utilization steam contained in underground hot water for driving a steam turbine, in a plurality of pressure stages, exchanging a heat between the hot water and a low-boiling medium at each pressure stage, and using the vapor of said low-boiling medium thus produced also as a driving source. CONSTITUTION:Underground hot water drawn up from a well 1 is separated into steam and hot water in a separator 2. The steam is used to turn a turbine 4 and to thereby generate electric power by a generator 5, while hot water separated from steam is introduced into the first stage 10 of a multi-stage flasher after its pressure is reduced by a hot-water nozzle 24 and exchanges heat with a low- boiling medium (for instance, Freon) passed through heat exchanger tubes in the first flasher 10, thus producing vapor of the low-boiling medium. By repeating the above process also in the second and the third flashers 11, 12, all of the low- boiling medium is converted into vapor, which is used to turn a turbine 13 and to thereby generate electric power by a generator 14. Hot water discharged from the third flasher 12 is carried back to a return well 20 via the second last stage 18 and the last stage 17 by a pump 19.

Description

【発明の詳細な説明】 本発明は地熱利用蒸気タービンの温水熱利用方法に係り
、特に、フロンR,114、あるいはイソブタン等の低
沸点媒体を介在させた前記温水熱利用方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of utilizing hot water heat in a geothermal steam turbine, and particularly relates to a method of utilizing hot water heat using a low boiling point medium such as Freon R, 114 or isobutane.

我が国に多く存在する火山地帯の地熱利用は、一般に、
地熱を直接利用するのではなく、地下水が地熱から熱を
吸収し蒸発した蒸気の熱を利用するものであるが、地下
温水中に大きな割合で蒸気を含み、その飽和蒸気を充分
に得られる箇所は少なく、蒸気の含有量の少ない、むし
ろ温水に近い状態のものである。そのため低沸点媒体、
すなわちフロンR114、あるいはイソブタン等へ、熱
を伝えて蒸発せしめ、その低沸点媒体の蒸気によりりi
ビンを駆動する発電方式が採用されていた。
Generally speaking, the use of geothermal heat from the volcanic areas that exist in Japan is
Rather than using geothermal heat directly, underground water absorbs heat from the geothermal heat and uses the heat of evaporated steam. However, underground hot water contains a large proportion of steam and a sufficient amount of saturated steam can be obtained. It has a low steam content, and is rather similar to hot water. Therefore, a low boiling point medium,
In other words, heat is transferred to Freon R114 or isobutane, etc. to evaporate it, and the vapor of the low boiling point medium causes i
A power generation system was used to drive the bins.

このような方式は、地下より噴出する温水中の蒸気を、
一度、他の熱媒体に熱を移して蒸気としタービンによシ
発電させるという間接的な方式であり、熱の有効な利用
の面からは必らずしも適切ではなかった。
This type of method uses steam in hot water gushing out from underground to
This is an indirect method in which heat is first transferred to another heat medium and turned into steam to be used in a turbine to generate electricity, and it was not necessarily appropriate from the standpoint of effective heat utilization.

本発明の目的は、上記に鑑みてなされたもので、地下温
水の熱を有効に利用して蒸気タービンを駆動するととも
にその蒸気タービンの温水熱も動力源として利用できる
方法を提供することにある。
An object of the present invention has been made in view of the above, and it is an object of the present invention to provide a method that can effectively utilize the heat of underground hot water to drive a steam turbine, and also use the heat of the hot water of the steam turbine as a power source. .

本発明は、地下温水に含まれる蒸気による蒸気タービン
発電設備において、前記蒸気タービンからの温水を多段
の圧力段落に分け、その各段落毎の温水を減圧させるこ
とにより発生する蒸気を蒸気タービンの駆動源として世
いり″からその発生した温水と低沸点媒体とを熱交換さ
せ、前記低沸点媒体を蒸発させて動力源とすることを特
徴とするものである。
The present invention provides a steam turbine power generation facility using steam contained in underground hot water, in which the hot water from the steam turbine is divided into multiple pressure stages, and the steam generated by reducing the pressure of the hot water in each stage is used to drive the steam turbine. It is characterized by heat exchange between the hot water generated from the source, a low boiling point medium, and the low boiling point medium being evaporated to serve as a power source.

以下、本発明の実施例を図面に基づいて説明する。第1
図は本発明の一実施例の実施状態を説明する地下温水利
用の発電サイクルの系統図1.第2図は第1図の多段フ
ラッシャの縦形配列加熱管を備えたフロン沸騰熱交換部
分の段落の詳細縦断面図、第3図は同じく横形配列加熱
管を備えたフロン沸騰熱交換部分の□段落の詳細横断面
図で、第4図はその平面図である。これらの図において
、同一部分または同一に作用する部分には同一符号が付
してあり、1は地下温水用の生産井、2は気水分離器、
3は主蒸気管、4は蒸気タービン、5は発電機、6は直
接接触復水器、7はクーリングタワー、8は循還水ポ、
ンプ、9は復水ポンプ、10は多段フラシャ第1段、1
1は多段フラシャ第2段、12は多段フラシャ第3段、
13はフロン蒸気タービン、14はフロンタービン発電
機、15はフロン蒸気凝縮器、16はフロン復水ポンプ
、17は多段フラシャ最終段、18は多段クラシャ最終
段前、19は温水還元ポンプ、20は還元井、21はフ
ラシャ胴、22はフラシャ氷室、23はフラシャ加熱管
、24は温水ノズル、25は温水入口管、26は温水出
口管、27は次段温水ノズル、28はフラシャ筐、29
は温水供給管、30は温水ノズル、31は温水湧出器、
32は復水囲い、33は邪魔板、34は復水降下管、3
5はフロン液加熱管で、36はその曽板であり37は水
室である。
Embodiments of the present invention will be described below based on the drawings. 1st
Figure 1 is a system diagram of a power generation cycle using underground hot water to explain the implementation state of an embodiment of the present invention. Figure 2 is a detailed vertical sectional view of the paragraphs of the fluorocarbon boiling heat exchange section equipped with vertically arranged heating tubes of the multi-stage flasher shown in Figure 1, and Figure 3 is a detailed longitudinal sectional view of the fluorocarbon boiling heat exchange section equipped with horizontally arranged heating tubes. FIG. 4 is a detailed cross-sectional view of the paragraph, and FIG. 4 is a plan view thereof. In these figures, the same parts or parts that act in the same way are given the same reference numerals; 1 is a production well for underground hot water; 2 is a steam-water separator;
3 is the main steam pipe, 4 is the steam turbine, 5 is the generator, 6 is the direct contact condenser, 7 is the cooling tower, 8 is the circulating water port,
9 is a condensate pump, 10 is a multi-stage flasher first stage, 1
1 is the second stage of the multi-stage flasher, 12 is the third stage of the multi-stage flasher,
13 is a fluorocarbon steam turbine, 14 is a fluorocarbon turbine generator, 15 is a fluorocarbon steam condenser, 16 is a fluorocarbon condensate pump, 17 is a multi-stage crusher final stage, 18 is a multi-stage crusher before the final stage, 19 is a hot water return pump, 20 is a Reduction well, 21 is a flasher body, 22 is a flasher ice chamber, 23 is a flasher heating pipe, 24 is a hot water nozzle, 25 is a hot water inlet pipe, 26 is a hot water outlet pipe, 27 is a next stage hot water nozzle, 28 is a flasher housing, 29
is a hot water supply pipe, 30 is a hot water nozzle, 31 is a hot water fountain,
32 is a condensate enclosure, 33 is a baffle plate, 34 is a condensate downcomer pipe, 3
5 is a fluorocarbon liquid heating tube, 36 is its plate, and 37 is a water chamber.

第1図に示すように、蒸気と水の混合体の地下温水は、
生産井1より導管を通って気水分離器2に至る。ここで
蒸気と温水に分離され、蒸気は湿分除去されて主蒸気管
3に至り、蒸気タービン4に入って駆動し発電機5を回
転させ発電する。
As shown in Figure 1, underground hot water, which is a mixture of steam and water, is
The production well 1 passes through a conduit to a steam separator 2. Here, the steam is separated into steam and hot water, moisture is removed, the steam reaches the main steam pipe 3, enters the steam turbine 4, drives the generator 5, and generates electricity.

−一一方蒸気を分離した温水は、温水ノズル24で減圧
され膨張発生した蒸気とともに多段フラシャ第1段10
のフラシャ胴21内に噴入する。このとき流入温水は、
フラシャ胴21内の圧力になってそれ自身の温度が降下
し、その圧力の飽和液の温度になり温水の一部は蒸気に
なる。このフラッシュした温水は縦形に配列されたフラ
シャ加熱管23の外壁に沿って流れ落ち、管内を上向き
に流れているフロン蒸気とその飽和液とを加熱し蒸発さ
せる。
- On the other hand, the hot water from which the steam has been separated is depressurized by the hot water nozzle 24, and together with the expanded steam, the first stage 10 of the multi-stage flasher
is injected into the flasher cylinder 21. At this time, the inflow hot water is
The pressure inside the flasher cylinder 21 decreases, and the temperature of the flasher cylinder 21 drops, reaching the temperature of the saturated liquid at that pressure, and part of the hot water turns into steam. This flashed hot water flows down along the outer wall of the vertically arranged flasher heating tubes 23, heating and evaporating the fluorocarbon vapor and its saturated liquid flowing upward in the tubes.

前記外壁を流れ落ちた飽和温水はフラシャ胴21の下部
に溜り、多段フラシャ第2段11の胴内圧力差により次
段温水ノズル27から噴出し、フラシャ第2段11の胴
内に入り膨張し、前記フラシャ第1段10内におけると
同様な動作をする。
The saturated hot water that has flown down the outer wall accumulates in the lower part of the flasher barrel 21, and is ejected from the next-stage hot water nozzle 27 due to the pressure difference within the barrel of the second stage multistage flasher 11, enters the barrel of the second stage flasher 11, and expands. The same operation as in the flasher first stage 10 is performed.

このように多段フラシャ第3段12内においても同様で
あるが、管内フロンは全部が蒸気となり、フロン蒸気タ
ービン13に至りタービンを駆動し、フロンタービン発
電機14を回転させ発電する。
As described above, in the third stage 12 of the multi-stage flasher, all of the fluorocarbon in the tube becomes steam, reaches the fluorocarbon steam turbine 13, drives the turbine, rotates the fluorocarbon turbine generator 14, and generates electricity.

仕事をしたフロン蒸気はフロン蒸気凝縮器15に入り冷
却されてフロン液となり、フロン復水ポンプ16により
昇圧されて多段フラシャ最終段17に送り込まれる。こ
のようにして多段フラシャにて加熱され再び蒸気となり
循還する。
The fluorocarbon vapor that has done work enters the fluorocarbon vapor condenser 15 and is cooled to become a fluorocarbon liquid, which is then pressurized by the fluorocarbon condensate pump 16 and sent to the final stage 17 of the multi-stage flasher. In this way, it is heated in the multi-stage flasher and becomes steam again and is circulated.

多段フラシャ第3段12を経た温水は、多段クラシャ最
終段前18へ、温水供給管29を経て流入する。次いで
温水ノズル30により膨張し、一部蒸気となった飽和温
水は、温水湧出器31の皿状の広い堰より一様に湧出す
ることにより、蒸気は温水と分離し、フロン液加熱管に
至り、管内のフロン液を加熱することにより蒸発潜熱を
失い凝縮し液化する。このとき熱交換を効果的に行なわ
しめるため復水囲い32.邪魔板33により、蒸気通過
通路を定めである。凝縮した水は復水降下管34を通シ
フラシャ筐28の底部に溜っている復水と一緒になる。
The hot water that has passed through the third stage 12 of the multi-stage crusher flows into the front stage 18 of the multi-stage crusher through the hot water supply pipe 29. Next, the saturated hot water, which is expanded by the hot water nozzle 30 and partially turned into steam, uniformly gushes out from the dish-shaped wide weir of the hot water spring 31, whereupon the steam is separated from the hot water and reaches the fluorocarbon liquid heating pipe. By heating the fluorocarbon liquid in the pipe, it loses its latent heat of vaporization and condenses to liquefy. At this time, in order to effectively exchange heat, a condensate enclosure 32. The baffle plate 33 defines a steam passage. The condensed water passes through the condensate downcomer pipe 34 and is combined with the condensate accumulated at the bottom of the shuffler housing 28.

多段フラシャ最終段1°°7は、最終段前18の最終段
17の筒内圧力差により温水を供給し、他の現象動作は
前記多段フラシャ最終じ前18と同様である。
The multi-stage flasher final stage 1°°7 supplies hot water by the difference in cylinder pressure between the final stage 18 and the final stage 17, and other phenomena and operations are the same as the multi-stage flasher final stage 18.

フラシャ筐28の底部に溜った復水は、温水還元ポンプ
19により還元井20より地中に還元される。
The condensate accumulated at the bottom of the flasher casing 28 is returned to the ground through the return well 20 by the hot water return pump 19.

多段フラシャ最終段17と7ラシヤ最終段前18とのフ
ロン液加熱管35は横置に配置されている。これは管内
を通過するには、蒸気の混ざって罎いない液体であるこ
とと、管外を蒸気が通過し復水となるため、蒸気流路を
なるべく短く一様にするための構造としたものである。
The fluorocarbon liquid heating tubes 35 of the final stage 17 of the multi-stage flasher and the pre-final stage 18 of the seven-stage flasher are arranged horizontally. This is because the liquid must not be mixed with steam to pass through the pipe, and because steam passes outside the pipe and becomes condensate, the structure is designed to make the steam flow path as short and uniform as possible. It is.

以上説明したように、本発明によれば、地下温水を多段
フラッシュ方式により有効に利用して蒸気タービンを駆
動でき、かつその温水熱を利用して低沸点媒体との熱交
換により低沸点媒体を蒸発させて動力源とすることがで
きるという小型にしてすぐれた実用的効果を奏すること
ができる。
As explained above, according to the present invention, underground hot water can be effectively used by a multi-stage flash method to drive a steam turbine, and the hot water heat can be used to generate a low boiling point medium by heat exchange with a low boiling point medium. It can be evaporated and used as a power source, making it compact and providing excellent practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の実施状態を説明する地下温
水利用の発電サイクルの系統図、第2図は第1図の多段
フラッシュの縦形配列加熱管を備えたフロン沸騰熱交換
部分の段落の詳細縦断面図、第3図は同じく横形管列加
熱管を備えたフロン沸騰熱交換部分の段落の詳細横断面
図で、第4図はその平面図である。 1・・・生産井、4・・・蒸気タービン、10〜12・
・・多段フラシャ第1〜第3段、13・・・フロン蒸気
ター第 3  図 °°第 η 図
Fig. 1 is a system diagram of a power generation cycle using underground hot water to explain the implementation state of one embodiment of the present invention, and Fig. 2 is a diagram of the fluorocarbon boiling heat exchange section equipped with the vertically arranged heating tubes of the multi-stage flash shown in Fig. 1. FIG. 3 is a detailed cross-sectional view of the paragraph of a fluorocarbon boiling heat exchange section similarly equipped with horizontal tube array heating tubes, and FIG. 4 is a plan view thereof. 1... Production well, 4... Steam turbine, 10-12.
...Multi-stage flasher 1st to 3rd stage, 13...Freon steam turbine 3rd figure °° η figure

Claims (1)

【特許請求の範囲】[Claims] 1、地下温水に含まれる蒸気による蒸気タービン発電設
備において、前記蒸気タービンからの温水を多段の圧力
段落に分け、その各段落毎の温水を減圧させることによ
り発生する蒸気を蒸気タービンの駆動源として用いなが
らその発生した温水と低沸点媒体と゛を熱交換させ、前
記低沸点媒体を蒸発させて動力源とすることを特徴とす
る地熱利用蒸気タービンの温水熱利用方法。
1. In a steam turbine power generation facility using steam contained in underground hot water, the hot water from the steam turbine is divided into multiple pressure stages, and the steam generated by reducing the pressure of the hot water in each stage is used as a driving source for the steam turbine. 1. A method for utilizing hot water heat in a geothermal steam turbine, which comprises exchanging heat between the generated hot water and a low boiling point medium while using the geothermal steam turbine, and evaporating the low boiling point medium to provide a power source.
JP56108249A 1981-07-13 1981-07-13 Method of utilizing heat possessed by hot water discharged from geothermal heat utilizing steam turbine Pending JPS5810168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108249A JPS5810168A (en) 1981-07-13 1981-07-13 Method of utilizing heat possessed by hot water discharged from geothermal heat utilizing steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108249A JPS5810168A (en) 1981-07-13 1981-07-13 Method of utilizing heat possessed by hot water discharged from geothermal heat utilizing steam turbine

Publications (1)

Publication Number Publication Date
JPS5810168A true JPS5810168A (en) 1983-01-20

Family

ID=14479862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108249A Pending JPS5810168A (en) 1981-07-13 1981-07-13 Method of utilizing heat possessed by hot water discharged from geothermal heat utilizing steam turbine

Country Status (1)

Country Link
JP (1) JPS5810168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576006A (en) * 1984-06-11 1986-03-18 Mitsui Engineering & Shipbuilding Co., Ltd. Geothermal hot water transportation and utilization system
CZ303076B6 (en) * 2007-08-24 2012-03-21 Fite, A. S. Device for utilization of mine excavations for production of peak electric power by pumped-storage systems
JP2014092040A (en) * 2012-11-01 2014-05-19 Toshiba Corp Power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576006A (en) * 1984-06-11 1986-03-18 Mitsui Engineering & Shipbuilding Co., Ltd. Geothermal hot water transportation and utilization system
CZ303076B6 (en) * 2007-08-24 2012-03-21 Fite, A. S. Device for utilization of mine excavations for production of peak electric power by pumped-storage systems
JP2014092040A (en) * 2012-11-01 2014-05-19 Toshiba Corp Power generation system

Similar Documents

Publication Publication Date Title
JP2011011202A (en) Evaporation type seawater desalination apparatus using phase-change medium
CN1323032C (en) Apparatus of combined solar energy heat pump for desaltination of sea water
US2088276A (en) System for the conversion of heat
JPS5818574B2 (en) heat pump
CN104769371A (en) Apparatus and method for vapor driven absorption heat pumps and absorption heat transformer with applications
CN103058306B (en) Solar air-conditioning seawater desalting system
US20160108762A1 (en) Falling film evaporator for power generation systems
CN113237367B (en) Warm water drainage loop heat pipe cooling device and method utilizing solar energy
KR101282091B1 (en) Power Generation System of cold energy utilization
CN102226447B (en) Medium-low temperature terrestrial heat power generating set system device
CN201794730U (en) Middle-and-low temperature geothermal energy generating set with absorption and heating system
CN101949368B (en) Medium-low temperature geothermal power generation unit with absorbing temperature-increasing system
CN203159268U (en) solar air conditioning seawater desalination system
US20150000275A1 (en) Multi-stage otec power plant
US2337439A (en) Refrigeration
JPS5810168A (en) Method of utilizing heat possessed by hot water discharged from geothermal heat utilizing steam turbine
CN211573609U (en) Evaporative cooling type organic Rankine cycle power generation system
US2035726A (en) Elastic fluid power plant
CN207620863U (en) A kind of Organic Rankine Cycle power generator
CN207620862U (en) A kind of Organic Rankine Cycle power generator
JPH02267304A (en) Binary cycle power recovery device
KR0132383B1 (en) Exhaust steam of generating station or heat exchanger of cooling water
US2781640A (en) Steam drive prime mover system
CN216977243U (en) Generator for refrigerating system
CN107651720A (en) A kind of multistage humidification dehumidification type sea water desalinating unit with loop type gravity assisted heat pipe structure