JP2507446B2 - Hot water turbine plant - Google Patents

Hot water turbine plant

Info

Publication number
JP2507446B2
JP2507446B2 JP62163155A JP16315587A JP2507446B2 JP 2507446 B2 JP2507446 B2 JP 2507446B2 JP 62163155 A JP62163155 A JP 62163155A JP 16315587 A JP16315587 A JP 16315587A JP 2507446 B2 JP2507446 B2 JP 2507446B2
Authority
JP
Japan
Prior art keywords
hot water
evaporator
working fluid
temperature
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62163155A
Other languages
Japanese (ja)
Other versions
JPS648305A (en
Inventor
俊二 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62163155A priority Critical patent/JP2507446B2/en
Publication of JPS648305A publication Critical patent/JPS648305A/en
Application granted granted Critical
Publication of JP2507446B2 publication Critical patent/JP2507446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は地熱水、排熱水等の温水を熱源として利用す
る温水利用タービンプラントに関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention relates to a hot water utilization turbine plant that uses hot water such as geothermal water and waste heat water as a heat source.

(従来の技術) 化石燃料に代わる新しいエネルギーの開発の必要性が
叫ばれる中で、従来、熱源としての見方がなされなかっ
た地熱水、排熱水等の比較的低温の温水の活用に目が向
けられている。ランキンサイクルの熱源としてかかる温
度水準の温水を利用する場合、作動流体は当然低沸点の
媒体が選ばれ、炭化水素やフロンなどが好んで用いられ
ている。第4図はこのような炭化水素、フロンなどを作
動流体として用いる温水利用タービンプラントを示すも
ので、満液式蒸発器1内に溜められた液状の作動流体は
外部からポンプ等により供給される温水により加熱さ
れ、蒸発して飽和蒸気となってタービン2に送られる。
作動流体はタービン2内で膨脹してその羽根車を回転さ
せ、羽根車に直結されている発電機3を駆動する。この
後、膨脹した作動流体は凝縮器4に流れ、そこで外部か
ら送られる冷却水によって冷却されて凝縮し、さらに作
動流体ポンプ5によって抽出されて予熱器6に供給さ
れ、そこで温水により温められて後、満液式蒸発器1に
送られてサイクルを完了する。なお、図中符号7は蒸気
加減弁を示している。
(Prior art) As the need to develop new energy to replace fossil fuels has been exclaimed, it has been aimed at the utilization of relatively low-temperature hot water, such as geothermal water and waste hot water, which have not been regarded as heat sources in the past. Is directed. When using hot water at such a temperature level as a heat source of Rankine cycle, a medium having a low boiling point is naturally selected as the working fluid, and hydrocarbons or freons are preferably used. FIG. 4 shows a turbine plant using hot water which uses such hydrocarbons and freons as a working fluid, and the liquid working fluid stored in the full liquid type evaporator 1 is supplied from the outside by a pump or the like. It is heated by hot water and evaporated to be saturated steam, which is sent to the turbine 2.
The working fluid expands in the turbine 2 to rotate its impeller, and drives the generator 3 directly connected to the impeller. After this, the expanded working fluid flows to the condenser 4, where it is cooled by the cooling water sent from the outside to be condensed, further extracted by the working fluid pump 5 and supplied to the preheater 6, where it is warmed by the warm water. After that, the liquid is sent to the full liquid type evaporator 1 to complete the cycle. In addition, the code | symbol 7 in the figure has shown the steam control valve.

(発明が解決しようとする問題点) 上述したように温水利用タービンプラントでは熱源と
して用いられる温水の温度上の制約により、ランキンサ
イクルの作動流体は炭化水素やフロン等の低沸点媒体が
使用されているが、一方これらの性質の異なる媒体を2
種類以上混合した非共沸混合物によりランキンサイクル
を構成し、より効率の高いプラントを目指す動きもあ
る。しかし、非共沸混合物を作動流体として用いる場
合、従来の単一成分を取り扱えばよかったときと比べ、
技術的な困難が倍加する。たとえば、非共沸混合物は液
相から気相へ相変化する際に伝熱面付近で局所的に温度
および濃度の変化が生じ、液相と気相とで異なる濃度と
なる場合があるなど、取り扱いの難しさは単一成分の場
合の比ではない。
(Problems to be solved by the invention) As described above, in the turbine plant utilizing hot water, due to the restriction on the temperature of the hot water used as the heat source, the working fluid of the Rankine cycle uses a low boiling point medium such as hydrocarbon or freon. On the other hand, two media with different characteristics are used.
There is also a movement to construct a Rankine cycle by using a non-azeotropic mixture in which more than one kind is mixed and aim for a more efficient plant. However, when a non-azeotropic mixture is used as the working fluid, compared with the conventional case where it was sufficient to handle a single component,
Technical difficulties double. For example, when a non-azeotropic mixture undergoes a phase change from a liquid phase to a gas phase, temperature and concentration changes locally near the heat transfer surface, and the liquid phase and the gas phase may have different concentrations. The difficulty of handling is not the ratio of single components.

以下、この点を第5図および第6図に基づいて詳しく
説明する。
Hereinafter, this point will be described in detail with reference to FIGS. 5 and 6.

第5図は上述した満液式蒸発器1を用いて熱交換され
た場合の温水と作動流体の温度と交換熱量との関係を示
している。破線は作動流体が単一成分流体の場合であ
り、一方実線で示されるのが非共沸混合物の場合であ
る。つまり、満液式蒸発器1を用いたとき、単一成分流
体ならば沸点温度をT3まで上昇させられるのに対し、非
共沸混合物では沸点温度をT1までしか上げることができ
ない。なお、図中T4は蒸発器入口温水温度、T5は予熱器
入口作動流体温度を示している。もちろん、蒸発器の伝
熱面積を単一成分流体用蒸発器のそれよりも大幅に増し
てやれば沸点温度は高くすることができるが、これは経
済性を無視することにつながり、現実的ではない。
FIG. 5 shows the relationship between the temperature of hot water and the temperature of the working fluid and the amount of heat exchanged when heat is exchanged using the above-described liquid-filled evaporator 1. The dashed line is for the case where the working fluid is a single component fluid, while the solid line is for the non-azeotropic mixture. That is, when the full liquid evaporator 1 is used, the boiling point temperature can be raised to T 3 in the case of a single component fluid, whereas the boiling point temperature can be raised only to T 1 in the non-azeotropic mixture. In the figure, T 4 is the evaporator inlet hot water temperature, and T 5 is the preheater inlet working fluid temperature. Of course, if the heat transfer area of the evaporator is made much larger than that of the evaporator for single component fluid, the boiling point temperature can be increased, but this leads to neglect of economic efficiency and is not realistic. .

それでは、このような沸点温度の相違が何故生じるか
を考えてみる。非共沸混合物は同一の圧力および温度に
おいて平衡な気相と液相の濃度が異なる。この様子を模
式的な平衡図として第6図に示す。ある一定の圧力下、
例えばP1で温度T1のとき気液共存状態で実質的な熱およ
び物質の相間移動が生じない、つまり平衡状態にある液
相および気相の濃度はそれぞれC1およびC2である。しか
し、熱交換器内にて伝熱面を介して温水等から液相に熱
が加えられると、伝熱面に近いところの液相の温度が上
昇する。そして、引き続き熱が液相に流れると、その温
度は局所温度T3に達し、そこで伝熱面に沿って気泡を生
じるようになる。つまり、沸騰が始まる。T2の温度で定
常的に沸騰しているとき、気泡を形成している液相およ
び気相の界面におけるそれぞれの濃度はC3およびC4とな
っている。このとき、気泡の界面から離れたところにあ
る液(バルク液)の温度および濃度はT1およびC1のまま
である。このような大きな濃度差が発生する理由は次の
点にある。すなわち、気泡界面において、液相から気相
へ移動する物質の温度C4が液相の濃度C3と異なるために
気泡界面の液側で低沸点成分の欠乏が生じ、逆に高沸点
成分は過剰となる。欠乏した低沸点成分はバルク液から
拡散によって気泡界面まで移動してくる。この移動が起
こるためには濃度の勾配が必要である。したがって、定
常的に沸騰が生じるとき、バルク液と気泡界面の液の濃
度は異なる。また、伝熱面温度が相当高いとき、気泡界
面温度も上昇し、最高でT3の温度となり、熱および物質
の移動は最も盛んになる。つまり、熱流束がある程度以
上高いとき発生する蒸気の温度はバルク液の温度よりも
高くなる。ただし、蒸気の温度が伝熱面の温度を超える
ことはない。なお、図中符号T1 -およびT3 -は圧力がP
2(P2>P1)のときの沸点および露点温度をそれぞれ示
し、また符号C5は温度T3における液相の濃度を示してい
る。
Let us now consider why such a difference in boiling point temperature occurs. Non-azeotropic mixtures differ in equilibrium vapor and liquid concentration at the same pressure and temperature. This state is shown in FIG. 6 as a schematic equilibrium diagram. Under a certain pressure,
For example, at P 1 and at temperature T 1 , substantial heat and phase transfer of substances do not occur in the gas-liquid coexisting state, that is, the concentrations of the liquid phase and the gas phase in the equilibrium state are C 1 and C 2 , respectively. However, when heat is applied to the liquid phase from hot water or the like through the heat transfer surface in the heat exchanger, the temperature of the liquid phase near the heat transfer surface rises. Then, when the heat continuously flows into the liquid phase, the temperature reaches the local temperature T 3 , whereupon bubbles are generated along the heat transfer surface. In other words, boiling begins. While constantly boiling of T 2, respective concentrations at the interface of the liquid and gas phases that form bubbles has a C 3 and C 4. At this time, the temperature and concentration of the liquid (bulk liquid) apart from the bubble interface remain at T 1 and C 1 . The reason why such a large density difference occurs is as follows. That is, at the bubble interface, the temperature C 4 of the substance that moves from the liquid phase to the gas phase is different from the concentration C 3 of the liquid phase, so that the liquid side of the bubble interface is deficient in low-boiling components, and conversely high-boiling components are Too much. The deficient low boiling point component moves from the bulk liquid to the bubble interface by diffusion. A concentration gradient is required for this migration to occur. Therefore, when boiling constantly occurs, the concentrations of the bulk liquid and the liquid at the bubble interface are different. Also, when the heat transfer surface temperature is considerably high, the bubble interface temperature also rises to a temperature of T 3 at maximum, and heat and mass transfer become the most active. That is, the temperature of the steam generated when the heat flux is higher than a certain level becomes higher than the temperature of the bulk liquid. However, the temperature of the steam does not exceed the temperature of the heat transfer surface. The reference symbols T 1 - and T 3 - indicate that the pressure is P
The boiling point and the dew point temperature when 2 (P 2 > P 1 ) are shown, respectively, and the symbol C 5 shows the concentration of the liquid phase at the temperature T 3 .

こうして、第5図に示される状況が発生するが、非共
沸混合物の沸点温度がT1に留るのであれば、非共沸混合
物を用いる利点は殆んどなくなり、温水利用タービンプ
ラントの効率を向上させる試みも頓座させられてしまう
ことになる。
Thus, the situation shown in FIG. 5 occurs, but if the boiling point temperature of the non-azeotropic mixture remains at T 1 , the advantage of using the non-azeotropic mixture is almost eliminated, and the efficiency of the hot water utilization turbine plant is reduced. Attempts to improve will also be dismissed.

したがって、本発明の目的は非共沸混合物を用いるサ
イクルにおける作動流体の温度を単一成分流体のそれよ
りも高温にしてより効率を向上させることのできる温水
利用タービンプラントを提供することにある。
Therefore, an object of the present invention is to provide a hot water utilization turbine plant capable of increasing the temperature of a working fluid in a cycle using a non-azeotropic mixture to be higher than that of a single-component fluid to further improve efficiency.

[発明の構成] (問題点を解決するための手段) 本発明による温水利用タービンプラントはランキンサ
イクルにおける作動流体としての非共沸混合物を蒸発さ
せる熱源として構成される温水経路内に全蒸発量に対し
予め決められた割合で蒸気を発生する第1および第2の
蒸発器を順次設け、作動流体が初めに導かれる第2の蒸
発器は強制対流沸騰により、また作動流体が次に導かれ
る第1の蒸発器はプール沸騰によりそれぞれ熱伝達が行
なわれるように構成したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) In the hot water utilization turbine plant according to the present invention, the total amount of evaporation is reduced in the hot water path configured as a heat source for evaporating the non-azeotropic mixture as the working fluid in the Rankine cycle. On the other hand, a first evaporator and a second evaporator, which generate steam at a predetermined rate, are sequentially provided, and the second evaporator to which the working fluid is first introduced is the second evaporator to which the working fluid is introduced and the second fluid to which the working fluid is introduced next. The evaporator No. 1 is characterized in that heat is transferred by pool boiling.

(作用) 作動流体は予熱器の入口から出口にかけて温水によっ
て加熱され、飽和液付近まで昇温させられる。続いて、
作動流体は強制対流蒸発器に送られ、そこで温水より熱
を受取って蒸気の流量割合(クオリティ)が予め決めら
れた値となるまで蒸発させられる。さらに、作動流体は
強制対流蒸発器より満液式蒸発器に流れ、より高温の温
水により加熱されて残りの部分が蒸発させられる。この
ときの温水と作動流体の温度と交換熱量との関係を特に
蒸発器部分についてのみ示すと、第2図のようになる。
すなわち、本図は次のことを表わしている。温水と作動
流体との温度差が最も小さくなるところ(ピンチポイン
ト)は作動流体の飽和温度到達点であるが、この部分に
小さい温度差で効率よく蒸発の行なわれる強制対流蒸発
器、つまり、伝熱面から作動流体への熱伝達が沸騰だけ
でなく、対流によっても行なわれる形式の蒸発器を配置
するものである。この強制対流蒸発器では作動流体の流
れ方向に蒸発が進行し、クオリティが増してくると、伝
熱面が液と接触しない状態、すなわち、ドライアウトが
発生するため、低いクオリティを保って運転する。一
方、温水と作動流体との温度差が充分大きい領域ではプ
ール沸騰熱伝達が効率よく行なわれる満液式蒸発器を適
用する。これにより強制対流蒸発器で問題となる高クオ
リティ域でのドライアウトの発生を回避する。かくし
て、上記の本発明の構成によるならばピンチポイント温
度差を小さくすることができ、作動流体の蒸発温度を高
い値に保つことが可能となる。
(Operation) The working fluid is heated by hot water from the inlet to the outlet of the preheater to raise the temperature to near the saturated liquid. continue,
The working fluid is sent to a forced convection evaporator, where it receives heat from hot water and is evaporated until the steam flow rate (quality) reaches a predetermined value. Further, the working fluid flows from the forced convection evaporator to the liquid-filled evaporator, and is heated by hotter hot water to evaporate the remaining portion. The relationship between the temperature of the hot water and the working fluid and the amount of heat exchanged at this time is shown in FIG.
That is, this figure shows the following. The point where the temperature difference between the hot water and the working fluid is the smallest (pinch point) is the point where the saturation temperature of the working fluid is reached. The evaporator is arranged such that the heat transfer from the hot surface to the working fluid is performed not only by boiling but also by convection. In this forced convection evaporator, when evaporation progresses in the flow direction of the working fluid and the quality increases, the heat transfer surface does not come into contact with the liquid, that is, dryout occurs, so the operation is performed with low quality maintained. . On the other hand, in a region where the temperature difference between the hot water and the working fluid is sufficiently large, a full liquid type evaporator is used, which efficiently performs pool boiling heat transfer. This avoids the occurrence of dryout in the high quality range, which is a problem with forced convection evaporators. Thus, according to the above-mentioned configuration of the present invention, the pinch point temperature difference can be reduced, and the evaporation temperature of the working fluid can be maintained at a high value.

(実施例) 以下、本発明の一実施例を第1図を参照して説明す
る。なお、図中第4図に示される部分と同一の部分には
同一の符号を付してその説明を省略する。
Embodiment An embodiment of the present invention will be described below with reference to FIG. The same parts as those shown in FIG. 4 are designated by the same reference numerals and the description thereof will be omitted.

第1図において、本実施例では温水の流れる方向に満
液式蒸発器1、強制対流蒸発器8、予熱器6が順次設け
られる。ここで、強制対流蒸発器8および予熱器6は温
水の流れる方向と作動流体のそれとが対向流となるよう
に構成される。
In FIG. 1, in the present embodiment, a full liquid type evaporator 1, a forced convection evaporator 8 and a preheater 6 are sequentially provided in the flowing direction of hot water. Here, the forced convection evaporator 8 and the preheater 6 are configured such that the flowing direction of the hot water and that of the working fluid are countercurrent.

上記構成において、作動流体は予熱器8の入口から出
口にかけて温水により加熱され、飽和液付近まで昇温さ
せられる。続いて、作動流体は強制対流蒸発器8に送ら
れ、そこで温水より熱を受取ってクオリティ0.5程度ま
で蒸発させられる。さらに、作動流体は強制対流蒸発器
8より満液式蒸発器1に流れ、より高温の温水により加
熱されて残りの部分が蒸発させられる。
In the above configuration, the working fluid is heated by hot water from the inlet to the outlet of the preheater 8 to raise the temperature to near the saturated liquid. Subsequently, the working fluid is sent to the forced convection evaporator 8 where it receives heat from hot water and is evaporated to a quality of about 0.5. Further, the working fluid flows from the forced convection evaporator 8 to the full-fill type evaporator 1 and is heated by higher temperature hot water to evaporate the remaining portion.

かかる強制対流蒸発器8を用いるならば、非共沸混合
物に対しても小さい温度差で効率よく蒸発させることが
でき、ピンチポイント温度差を小さくすることが可能で
ある。しかし、この過程でクオリティが高くなりすぎる
と、ドライアウトが発生するため、蒸発量の限界をクオ
リティ0.5程度までとする。この後、作動流体は満液式
蒸発器1に移送されてプール沸騰熱伝達により残りの液
も蒸発させられる。このとき、液の低沸点成分濃度は初
めの液のそれよりも少なくなっているので、第2図に示
されるように液温度T1″および蒸気温度T3″はそれぞれ
初めの液の沸点温度T1′および露点温度T3′よりも高く
なる。しかし、温水と作動流体との温度差はここでは充
分大きくとれるので、プール沸騰熱伝達が効率よく行な
われる。
If such forced convection evaporator 8 is used, even a non-azeotropic mixture can be efficiently evaporated with a small temperature difference, and the pinch point temperature difference can be reduced. However, if the quality becomes too high in this process, dryout will occur, so the evaporation limit is limited to about 0.5. After that, the working fluid is transferred to the liquid-filled evaporator 1 and the remaining liquid is also evaporated by the pool boiling heat transfer. At this time, since the low boiling point component concentration of the liquid is lower than that of the initial liquid, as shown in FIG. 2, the liquid temperature T 1 ″ and the vapor temperature T 3 ″ are respectively the initial boiling temperature of the liquid. Higher than T 1 ′ and dew point temperature T 3 ′. However, the temperature difference between the hot water and the working fluid can be made sufficiently large here, so that the pool boiling heat transfer is efficiently performed.

また、第3図は本発明の他の実施例を示している。本
実施例では上記実施例の強制対流蒸発器8に加えて強制
対流蒸発器8から満液式蒸発器1へ作動流体を移送する
経路にセパレータ9が設けられる。このセパレータ9は
強制対流蒸発器8で一部蒸発した作動流体の気液二相流
を蒸気と液とに分離し、液のみを満液式蒸発器1へ供給
するものである。このようにセパレータ9を設置した場
合、満液式蒸発器1の内部での作動流体の流動状態が安
定し、かつ容積流量も小さくなるために満液式蒸発器1
をより小型なものにすることができる。
Further, FIG. 3 shows another embodiment of the present invention. In this embodiment, in addition to the forced convection evaporator 8 of the above embodiment, a separator 9 is provided in the path for transferring the working fluid from the forced convection evaporator 8 to the full-fill type evaporator 1. The separator 9 separates the gas-liquid two-phase flow of the working fluid partially evaporated in the forced convection evaporator 8 into a vapor and a liquid, and supplies only the liquid to the full liquid evaporator 1. When the separator 9 is installed in this way, the flow state of the working fluid inside the liquid-filled evaporator 1 becomes stable and the volumetric flow rate becomes small, so the liquid-filled evaporator 1
Can be made smaller.

[発明の効果] 以上の説明から明らかなように本発明はランキンサイ
クルにおける作動流体としての非共沸混合物を蒸発させ
る熱源として構成される温水経路内に全蒸発量に対し予
め決められた割合で蒸気を発生する第1および第2の蒸
発器を順次設け、第2の蒸発器は強制対流沸騰により、
また第1の蒸発器はプール沸騰により熱伝達が行なわれ
るようにしたから、非共沸混合物を用いるサイクルにお
ける作動流体の温度を単一成分のそれよりも高温に保つ
ことができ、温水利用タービンプラントの効率向上が図
れるなど優れて有用なものである。
[Effects of the Invention] As is clear from the above description, the present invention has a predetermined ratio with respect to the total evaporation amount in the hot water passage configured as a heat source for evaporating the non-azeotropic mixture as the working fluid in the Rankine cycle. First and second evaporators that generate steam are sequentially provided, and the second evaporator is a forced convection boiling
Further, since the heat transfer is performed by pool boiling in the first evaporator, the temperature of the working fluid in the cycle using the non-azeotropic mixture can be kept higher than that of the single component, and the turbine using hot water can be used. It is excellent and useful because it can improve plant efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による温水利用タービンプラントの一実
施例を示す構成図、第2図は本発明における温水および
作動流体の温度と交換熱量との関係を示す線図、第3図
は本発明の他の実施例を示す構成図、第4図は従来の温
水利用タービンプラントを示す構成図、第5図は従来の
構成を用いた場合の温水および作動流体の温度と交換熱
量との関係を示す線図、第6図は非共沸混合物の気液相
平衡状態の模式図である。 1……満液式蒸発器 2……タービン 4……凝縮器 5……作動流体ポンプ 6……予熱器 8……強制対流蒸発器 9……セパレータ
FIG. 1 is a block diagram showing an embodiment of a hot water utilization turbine plant according to the present invention, FIG. 2 is a diagram showing the relationship between the temperature of hot water and working fluid and the amount of heat exchanged according to the present invention, and FIG. 3 is the present invention. FIG. 4 is a configuration diagram showing another embodiment of the present invention, FIG. 4 is a configuration diagram showing a conventional hot water utilization turbine plant, and FIG. 5 is a diagram showing the relationship between the temperature of hot water and working fluid and the heat exchange amount when the conventional configuration is used. The diagram shown in FIG. 6 is a schematic view of the vapor-liquid phase equilibrium state of the non-azeotropic mixture. 1 ... Fluid-type evaporator 2 ... Turbine 4 ... Condenser 5 ... Working fluid pump 6 ... Preheater 8 ... Forced convection evaporator 9 ... Separator

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ランキンサイクルにおける作動流体として
非共沸混合物を用いる温水利用タービンプラントであっ
て、その非共沸混合物を蒸発させる熱源として構成され
る温水経路内に全蒸発量に対し予め決められた割合で蒸
気を発生する第1および第2の蒸発器を順次設けてな
り、作動流体が初めに導かれる第2の蒸発器は強制対流
沸騰により、また作動流体が次に導かれる第1の蒸発器
はプール沸騰によりそれぞれ熱伝達が行なわれるように
構成したことを特徴とする温水利用タービンプラント。
1. A hot water utilization turbine plant using a non-azeotropic mixture as a working fluid in a Rankine cycle, wherein a predetermined amount is predetermined for a total amount of evaporation in a hot water path configured as a heat source for evaporating the non-azeotropic mixture. A second evaporator to which the working fluid is first introduced is provided by forced convection boiling and a first fluid to which the working fluid is next introduced. The hot water turbine plant is characterized in that the evaporator is configured to transfer heat by pool boiling.
【請求項2】第1の蒸発器が満液式蒸発器であることを
特徴とする特許請求の範囲第1項記載の温水利用タービ
ンプラント。
2. The hot water turbine plant according to claim 1, wherein the first evaporator is a full liquid evaporator.
【請求項3】第2の蒸発器が強制対流蒸発器であること
を特徴とする特許請求の範囲第1項記載の温水利用ター
ビンプラント。
3. The hot water utilization turbine plant according to claim 1, wherein the second evaporator is a forced convection evaporator.
【請求項4】第2の蒸発器から第1の蒸発器へ至る作動
流体移送経路内にセパレータを設けたことを特徴とする
特許請求の範囲第1項記載の温水利用タービンプラン
ト。
4. The hot water utilization turbine plant according to claim 1, wherein a separator is provided in a working fluid transfer path from the second evaporator to the first evaporator.
JP62163155A 1987-06-30 1987-06-30 Hot water turbine plant Expired - Fee Related JP2507446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62163155A JP2507446B2 (en) 1987-06-30 1987-06-30 Hot water turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62163155A JP2507446B2 (en) 1987-06-30 1987-06-30 Hot water turbine plant

Publications (2)

Publication Number Publication Date
JPS648305A JPS648305A (en) 1989-01-12
JP2507446B2 true JP2507446B2 (en) 1996-06-12

Family

ID=15768272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62163155A Expired - Fee Related JP2507446B2 (en) 1987-06-30 1987-06-30 Hot water turbine plant

Country Status (1)

Country Link
JP (1) JP2507446B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425348A (en) * 1977-07-27 1979-02-26 Ishikawajima Harima Heavy Ind Co Ltd Power generating process by using water heat energy
JPS6193212A (en) * 1984-10-12 1986-05-12 Hisaka Works Ltd Condenser for non-azeotropic mixture
JPS61108815A (en) * 1984-11-01 1986-05-27 Toshiba Corp Turbine plant with use of hot water

Also Published As

Publication number Publication date
JPS648305A (en) 1989-01-12

Similar Documents

Publication Publication Date Title
US4756162A (en) Method of utilizing thermal energy
Sideman et al. Direct contact condensation
US4195485A (en) Distillation/absorption engine
JP2507446B2 (en) Hot water turbine plant
Meacham et al. Modeling of local measured heat and mass transfer variations in a microchannel ammonia-water absorber/Discussion
JPH0742844B2 (en) Hot water turbine plant
US4393657A (en) Method for recovering waste heat as motive power
RU2656037C1 (en) Pressure capillary pump
JPH0626725A (en) Working fluid to absorption type heat pump operated at extremely high temperature
Shelton et al. Design analysis of the Einstein refrigeration cycle
Alonso et al. Experimental study of an innovative absorption heat transformer using partially miscible working mixtures
JPH07198222A (en) Heat pump including reverse rectifying part
JPS61108815A (en) Turbine plant with use of hot water
KR100262718B1 (en) Solution Heat Regenerator Structure of Ammonia Absorption System
JP2650660B2 (en) Control method of thermal cycle using non-azeotropic mixed medium as working fluid
JP3347768B2 (en) Mixed-media plug-flow evaporator
JP2520987B2 (en) Evaporator for non-azeotropic mixture
JPS5928725B2 (en) power plant
JPH1026009A (en) Non-azeotropic mixture medium recycle generating system
JPH074452Y2 (en) Low temperature heat source utilization device
JPH09264636A (en) Working medium evaporator of binary power generator
KR100208181B1 (en) Refrigerant vapor of absorption type cycle
JP2513941B2 (en) Low boiling medium system
JP2005326130A (en) Method and device for generating cold and/or hot heat used of heat of dissolution
JPH0148373B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees