JPS60169608A - Turbine plant utilizing hot water - Google Patents

Turbine plant utilizing hot water

Info

Publication number
JPS60169608A
JPS60169608A JP59026397A JP2639784A JPS60169608A JP S60169608 A JPS60169608 A JP S60169608A JP 59026397 A JP59026397 A JP 59026397A JP 2639784 A JP2639784 A JP 2639784A JP S60169608 A JPS60169608 A JP S60169608A
Authority
JP
Japan
Prior art keywords
evaporator
hot water
working fluid
mist
turbine plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59026397A
Other languages
Japanese (ja)
Other versions
JPH0148373B2 (en
Inventor
Shunji Kono
俊二 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59026397A priority Critical patent/JPS60169608A/en
Publication of JPS60169608A publication Critical patent/JPS60169608A/en
Publication of JPH0148373B2 publication Critical patent/JPH0148373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the efficiency of entire plant by providing an once-through evaporator operatable under low dryness region of working liquid and a mist evaporator operatable under high dryness region. CONSTITUTION:Hot water pumped through a hot water pump 1 will pass sequentially through mist evaporator 2, once-through evaporator 3 and preheater 4 to be returned to the underground. Mixture medium of more than two components is pressurized by working fluid pump 5 to be fed to preheater 4, once-through evaporator 3 and mist evaporator 2. The working fluid is heated by once- through evaporator 3 to produce wet steam having the dryness of approximately 0.8-0.9. Steam flowed out of the mist evaporator 2 is fed to a turbine 6. The evaporators 2, 3 are counter-flow type. In such a manner, the heat-exchange efficiency is improved resulting in considerable improvement of the efficiency of entire plant.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、地熱熱水或は表層海水等の温水を高温熱源と
するとともに、低沸点の炭化水素、フロン等の2種類以
上適切な比率で混合したものを作動流体とするタービン
プラントに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention uses hot water such as geothermal hot water or surface seawater as a high-temperature heat source, and uses two or more types of low-boiling point hydrocarbons, fluorocarbons, etc. in an appropriate ratio. The present invention relates to a turbine plant that uses a mixture as a working fluid.

〔発明の技術的背景およびその問題点〕近年、地熱熱水
等のもつ熱エネルギをランキンサイクルなどのタービン
サイクル用島温熱源として利用づ°る発電所においては
、2種類以上の低沸点の炭化水素、フロン等を混合した
、いわゆる混合媒体を作動流体としてシステムを構成す
ることが考えられている。この混合媒体は、蒸発するに
従って蒸発温度が上昇していくという特性をもっている
ので、単一成分の作動流体の場合よりも少ない作動流体
循環量で多くの熱エネルギを熱水から回収することがで
き、ポンプ動力等の所内動力の低減が可能どなり、送電
端出力が大きく取り出せるという利点をちっている。
[Technical background of the invention and its problems] In recent years, in power plants that use the thermal energy of geothermal hot water as an island heat source for turbine cycles such as Rankine cycles, two or more types of low boiling point carbonization are used. It has been considered to configure a system using a so-called mixed medium, which is a mixture of hydrogen, fluorocarbon, etc., as a working fluid. This mixed medium has the characteristic that the evaporation temperature increases as it evaporates, so more heat energy can be recovered from hot water with less working fluid circulation than in the case of a single component working fluid. This has the advantage that it is possible to reduce in-house power such as pump power, and a large output can be obtained at the sending end.

しかしながら、この混合媒体の特性を引き出すためには
、混合媒体の温度の変化が蒸発または凝縮過程において
成分相互の蒸発速度または凝縮速度の相違によって引き
起こされ、液および蒸気の組成の変化に伴なって現われ
るものであるため、蒸発器または凝縮器は完全向流型の
貫流型の熱交換器である必要がある。
However, in order to bring out the characteristics of this mixed medium, changes in the temperature of the mixed medium are caused by differences in the evaporation rate or condensation rate of the components during the evaporation or condensation process, and are accompanied by changes in the composition of liquid and vapor. Therefore, the evaporator or condenser must be a completely countercurrent, once-through heat exchanger.

ところが、このように作動流体を伝熱管内に流す熱交換
器または伝熱管外に作動流体を流す熱交換器では、その
いずれでも蒸発過程における蒸気の乾き度が0.8〜0
.9程度まで高くなると、伝熱面が液で濡らされなくな
り伝熱面での沸騰が起らなくなるため、熱伝達率が極端
に悪くなり、作動流体の完全な気化が不可能であり、未
蒸発液が液滴(ミスト)の状態となって残る等の問題が
ある。そのためその蒸発器で得られた蒸気をタービンに
送る前に、ミストセパレータでミストを分離する必要が
ある。したがって、蒸発器に送給される作動流体の全て
をタービンの駆動用として利用することができず、プラ
ント全体の効率が低いものとなる等の不都合がある。
However, in heat exchangers that flow the working fluid inside the heat transfer tubes or outside the heat transfer tubes, the dryness of the steam during the evaporation process is between 0.8 and 0.
.. When the temperature rises to about 9, the heat transfer surface is no longer wetted by the liquid and boiling does not occur on the heat transfer surface, resulting in an extremely poor heat transfer coefficient, and complete vaporization of the working fluid is impossible. There are problems such as the liquid remaining in the form of droplets (mist). Therefore, before sending the steam obtained from the evaporator to the turbine, it is necessary to separate the mist using a mist separator. Therefore, all of the working fluid fed to the evaporator cannot be used to drive the turbine, resulting in disadvantages such as lower efficiency of the entire plant.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、蒸発器に送給される作動
流体中のミストも完全に蒸発させ、作動流体の全てをタ
ービンの駆動用として利用できるようにし、混合媒体の
特性を最大限に活用でき、プラント全体の効率を向上し
得るようにした温水利用タービンプラントを得ることを
目的とする。
In view of these points, the present invention completely evaporates the mist in the working fluid fed to the evaporator, so that all of the working fluid can be used to drive the turbine, and the characteristics of the mixed medium are maximized. The purpose of the present invention is to obtain a hot water utilization turbine plant that can be utilized for various purposes and improve the efficiency of the entire plant.

〔発明の概要〕[Summary of the invention]

本発明は、高温熱源として地熱渇水等を利用するととも
に、2成分以上の混合媒体を作動流体としてタービンサ
イクルを構成する温水利用タービンプラントにおいて、
作動流体の液から蒸気への昇温・蒸発過程にかかわる全
ての熱交換器の流体の流れ方向をはず向流型とするとと
もに、作動流体の飽和液から乾き飽和蒸気に至るまでの
蒸発過程にかかわる蒸発器を、作動流体の乾き度の低0
領域で作動する貫流型の蒸発器と、本体胴内の伝熱管外
側部にミスト捕集層を設けた、作動流体の乾き度が高い
領域で作動するミスト蒸発器とによって構成したことを
特徴とする。
The present invention provides a hot water turbine plant that utilizes geothermal drought or the like as a high-temperature heat source and configures a turbine cycle using a mixed medium of two or more components as a working fluid.
The flow direction of the fluid in all heat exchangers involved in the temperature raising and evaporation process from liquid to steam of the working fluid is set to counter-flow type, and the flow direction of the fluid in all heat exchangers involved in the process of heating up and evaporating the working fluid from liquid to steam is of the counter-flow type. The evaporator involved is
It is characterized by being configured with a once-through type evaporator that operates in the region, and a mist evaporator that operates in the region where the working fluid is highly dry, with a mist collection layer provided on the outside of the heat transfer tube in the main body shell. do.

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面を参照して本発明の一実施例について説
明する。
Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.

第1図において、符号1は地熱により加熱された温水等
を汲み上げる温水ポンプであって、その渇水ポンプ1で
汲み上げられた温水は、ミスト蒸発器2、i流型蒸発器
3および予熱器4を順次通り、地中に返流される。
In FIG. 1, reference numeral 1 denotes a hot water pump that pumps hot water etc. heated by geothermal heat. The water is returned to the ground in sequence.

一方、符号5は作動流体ポンプであって、低沸点の炭化
水素、フロンなどを2種類以上適切な比率で混合した作
動流体がその作動流体ポンプ5によって加圧されて、サ
ブクール液の状態で予熱器4に供給され、さらに順次貫
流型蒸発器3およびミスト蒸発器2へと送給される。上
記ミスト蒸発器2、貫流型蒸発器3および予熱器4はほ
ず完全な対向流型のものであり、まず上記予熱器4に流
入した作動流体は、予熱器4で温水と熱交換して昇温さ
れて飽和温度に達する。飽和温度となった作動流体は貫
流型蒸発器3で蒸発しながら昇温し、乾き度が0.8〜
0.9程度のしめり熱気となるまで加熱され、その後ミ
スト蒸発器2に供給される。
On the other hand, reference numeral 5 denotes a working fluid pump, in which a working fluid containing two or more types of low boiling point hydrocarbons, fluorocarbons, etc. mixed in an appropriate ratio is pressurized by the working fluid pump 5 and preheated in a subcooled liquid state. The water is supplied to the vessel 4 and then sequentially to the once-through evaporator 3 and the mist evaporator 2. The mist evaporator 2, once-through evaporator 3, and preheater 4 are completely counterflow types, and the working fluid that first flows into the preheater 4 undergoes heat exchange with hot water in the preheater 4. The temperature is raised to reach the saturation temperature. The temperature of the working fluid that has reached the saturation temperature increases while evaporating in the once-through evaporator 3, and the dryness level increases from 0.8 to 0.8.
The air is heated until it reaches a temperature of about 0.9℃, and is then supplied to the mist evaporator 2.

ところで、上記貫流型蒸発器3の出口付近では作動流体
は液滴(ミスト)を多量に含んだ蒸気となっており、こ
れを通常の貫流型蒸発器で加熱したのでは、熱伝達率が
悪いために大きな伝熱面積を必要どする。そこで、本発
明に43いては、上記熱伝達率の低下が起きる前にこの
貫流型蒸発器から取り出し、ミストを含lυだ蒸気の加
熱に適したミスト蒸発器2に導入する。
By the way, near the outlet of the once-through type evaporator 3, the working fluid is steam containing a large amount of droplets (mist), and if this is heated with a normal once-through type evaporator, the heat transfer rate will be poor. Therefore, a large heat transfer area is required. Therefore, according to the present invention, the mist is removed from the once-through type evaporator before the heat transfer coefficient decreases and introduced into the mist evaporator 2 suitable for heating the steam containing lυ.

第2図は上記ミスト蒸発器2の縦断面図であって、本体
胴21の下端には熱水入口側水室22が設けられ、また
上端には熱水出口側氷室23が設けられている。上記本
体胴21内には、両端がそれぞれ管板24.24に装着
され互いに平行な多数の伝熱管25が配設されるととも
に、上記伝熱管25に直交する複数のバッフル板26が
ジグザグ状に設けられており、さらに本体胴21の上部
J3よび下部にはそれぞれ作動流体の入口27および出
口28が形成されている。
FIG. 2 is a longitudinal sectional view of the mist evaporator 2, in which a hot water inlet side water chamber 22 is provided at the lower end of the main body body 21, and a hot water outlet side ice chamber 23 is provided at the upper end. . Inside the main body shell 21, a large number of parallel heat exchanger tubes 25 are disposed with both ends attached to tube plates 24 and 24, respectively, and a plurality of baffle plates 26 orthogonal to the heat exchanger tubes 25 are arranged in a zigzag shape. Further, an inlet 27 and an outlet 28 for the working fluid are formed in the upper part J3 and the lower part of the main body shell 21, respectively.

また、本体1121内の空間すなわち伝熱管25の外側
部には、多層の金網層からなるミスト捕集層29が、少
なくともその一部が伝熱管25の外面に接するように配
設されている。
Further, in the space within the main body 1121, that is, on the outer side of the heat exchanger tube 25, a mist collection layer 29 made of a multilayer wire mesh layer is arranged so that at least a part thereof is in contact with the outer surface of the heat exchanger tube 25.

すなわち、第3図に示すように、板状金l1層からなる
ミスト捕集層29が上記伝熱@25と平行に配設され、
その金網層の両面がそれぞれ伝熱管25に接せしめられ
、ミスト捕集層2つの少なくとも一部が伝熱管25の表
面の一部に接触するようにしてあり、或は第4図に示づ
”ように、伝熱管25の外周にこれと同心状に金網層か
らなるミスト捕集層29が設けられ、または第5図に示
づように伝熱管25と直交するようにミスト捕集層2つ
を設け、そのミスト捕集層29を上記伝熱管25が貫通
するようにしである。
That is, as shown in FIG. 3, a mist collection layer 29 made of a layer of sheet metal is arranged parallel to the heat transfer @25,
Both sides of the wire mesh layer are in contact with the heat exchanger tubes 25, and at least a portion of the two mist collection layers is in contact with a portion of the surface of the heat exchanger tube 25, or as shown in FIG. As shown in FIG. 5, a mist collection layer 29 made of a wire mesh layer is provided concentrically on the outer periphery of the heat exchanger tube 25, or two mist collection layers 29 are provided perpendicularly to the heat exchanger tube 25 as shown in FIG. is provided, and the heat transfer tube 25 penetrates through the mist collection layer 29.

しかして、貫通波型蒸発器3がら作動流体人口27を経
て本体胴21に供給されたミスi〜を含んだ作動流体蒸
気は、本体胴21内を流下し、その間作動流体蒸気の流
れと対向方向に伝熱管25内を流れる温水と熱交換して
加熱され、作動流体出口28から流出する。ところで、
上記作動流体入口27から本体胴21内に入った作動流
体のうちミスト分は、前記ミスト捕集層29によって徐
々に捕集される。したがって、この捕集されたミストは
蒸気のせlυ断力および表面張力によって伝熱管25の
表面に達し、こ)で伝熱管25内の渇水により加熱され
て蒸発し、蒸気化せしめられる。
Therefore, the working fluid vapor containing the mistake i~ supplied from the penetrating wave evaporator 3 to the main body shell 21 via the working fluid population 27 flows down inside the main body shell 21, while opposing the flow of the working fluid vapor. The working fluid is heated by exchanging heat with the hot water flowing in the heat transfer tube 25 in the direction, and flows out from the working fluid outlet 28. by the way,
The mist portion of the working fluid that has entered the main body shell 21 from the working fluid inlet 27 is gradually collected by the mist collecting layer 29 . Therefore, the collected mist reaches the surface of the heat exchanger tube 25 due to the shear force and surface tension of the steam, where it is heated by the dry water in the heat exchanger tube 25, evaporates, and becomes vaporized.

このようにして、作動流体中のミスト分は蒸発して蒸気
となるが、初めから蒸気として本体胴1内に入って来た
分も伝熱管25に触れて流れ方向に徐々に加熱されて飽
和温度以上となる。このためミスト捕集層29に捕えら
れたけれども伝熱管表面まで達し得ないミスト分があっ
ても、次々に流れて来る高温の蒸気によって加熱され、
蒸気となる。なお、この場合作動流体の流れる流路長ざ
は十分に長いので金網の目は極端に細いものである必要
はなく、作動流体の圧力損失も小さくてすむ。
In this way, the mist in the working fluid evaporates and becomes steam, but the mist that originally entered the main body shell 1 as steam also touches the heat transfer tube 25 and is gradually heated in the flow direction, becoming saturated. temperature or higher. Therefore, even if there is mist that is trapped in the mist collection layer 29 but cannot reach the surface of the heat transfer tube, it will be heated by the high temperature steam that flows one after another.
It becomes steam. In this case, since the length of the flow path through which the working fluid flows is sufficiently long, the mesh of the wire mesh does not need to be extremely narrow, and the pressure loss of the working fluid can be small.

このように、ミストを含んだ蒸気は流れ方向に徐々に温
度上昇するが、温水の流れ方向に対し全体的にほぼ完全
向流であるので、温水との温度差は常に大きく保たれ熱
交換率が大きく、このミスト蒸発器2にd3いて作動流
体中のミストが完全に蒸発せしめられ、このミスト蒸発
器2から流出した蒸気がタービン6に送給される。
In this way, the temperature of the steam containing mist gradually rises in the flow direction, but since the flow is almost completely countercurrent to the flow direction of the hot water, the temperature difference with the hot water is always maintained large, increasing the heat exchange rate. is large, and the mist in the working fluid in the mist evaporator 2 is completely evaporated, and the steam flowing out from the mist evaporator 2 is fed to the turbine 6.

上記タービン6に送られた蒸気はそこで仕事を行ない発
電機7を駆動し、またそのタービン6で仕事を終えた蒸
気は凝m器8で凝縮せしめられホットウェルタンク9に
流入し、その後作動流体ポンプ5により再び予熱器4へ
と送られる。
The steam sent to the turbine 6 performs work there to drive the generator 7, and the steam that has completed its work in the turbine 6 is condensed in the condenser 8 and flows into the hot well tank 9, after which the working fluid is The pump 5 sends it again to the preheater 4.

一方、上記凝縮器8には、冷却塔10によって冷却され
た冷却水が、冷却水ポンプ11によって送られ、その冷
却水による冷却によって前記タービン6からのV[気が
凝縮Vしめられる。
On the other hand, cooling water cooled by a cooling tower 10 is sent to the condenser 8 by a cooling water pump 11, and the cooling water condenses the air from the turbine 6.

(発明の効果〕 以上説明したj;うに、本発明においては画然発器をと
もに自流型としたので、各蒸発器において熱源流体と作
動流体どの温度差を常に大きく保つことがCぎて、熱交
換効率を高くひき、伝熱面積を小さくでσて蒸発器の小
形化を図ることかぐきる。しかも、ミストが含まれる作
動流体の乾き度が高い領域で作動しそのミストを効果的
に蒸発Uしめ冑るミスト蒸発器を普通の貫流型蒸発器に
つづいて設りたので、作動流体ポンプで送られた作動流
体は全て蒸気の状態でタービンに供給され、ポンプ動力
が小さく、また蒸気流量も大ぎくなり、タービン効率も
向上できて、プラント全体の効率を大幅に向上せしめる
ことができる。
(Effects of the Invention) As explained above, in the present invention, since both of the generators are self-flow type, it is possible to always maintain a large temperature difference between the heat source fluid and the working fluid in each evaporator. By increasing the heat exchange efficiency and reducing the heat transfer area, the evaporator can be made smaller.Moreover, it operates in an area where the working fluid containing mist is highly dry, and the mist can be effectively evaporated. Since the cooling mist evaporator is installed next to the ordinary once-through evaporator, all of the working fluid sent by the working fluid pump is supplied to the turbine in the form of steam, reducing the pump power and reducing the steam flow rate. The turbine efficiency can also be improved, and the efficiency of the entire plant can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラントの概略系統図、第2図はミス
ト蒸発器の縦断面図、第3図乃至第5図はそれぞれミス
ト捕集層の説明図である。 2・・・ミスト蒸発器、3・・・貴流型蒸発器、4・・
・予熱器、5・・・作動流体ポンプ、6・・・タービン
、8・・・凝縮器、21・・・本体胴、25・・・伝熱
管、29・・・ミスト捕集層。 出願人代理人 猪 股 消 第1図 躬2図 第3目 9 手続補正書 昭和59年4月11 日 特許庁長官 若杉和夫 殿 (審査官 殿) 1 事件の表示 昭和59年 特許願 第26397号 2 発明の名称 渇水利用タービンプラン1〜 3 補正をする者 事件との関係 特許出願人 (307) 株式会社 東 芝 4 代 理 人 東京都千代田区丸の内圧丁目2番3号 電話東京(211)2321大代表 4230 弁理士 猪 設 清 5 補正命令の日付 明細書の「発明の詳細な説明」の欄。 8、補正の内容 明細書第3頁第20行の[引き起こされ、液および蒸気
jを[引き起こされる液市よび蒸気Jと訂正する。
FIG. 1 is a schematic system diagram of a plant according to the present invention, FIG. 2 is a vertical cross-sectional view of a mist evaporator, and FIGS. 3 to 5 are explanatory diagrams of a mist trapping layer. 2...Mist evaporator, 3...Noble flow evaporator, 4...
- Preheater, 5... Working fluid pump, 6... Turbine, 8... Condenser, 21... Main body shell, 25... Heat transfer tube, 29... Mist collection layer. Applicant's agent Ino Wataru Figure 1 Figure 2 Figure 3 Item 9 Procedural amendment April 11, 1980 Commissioner of the Patent Office Kazuo Wakasugi (Examiner) 1 Indication of the case 1980 Patent Application No. 26397 2 Name of the invention Drought water utilization turbine plan 1 to 3 Relationship with the case of the person making the amendment Patent applicant (307) Toshiba Corporation 4 Agent 2-3 Marunouchi Atsushi-chome, Chiyoda-ku, Tokyo Telephone Tokyo (211) 2321 Major Representative 4230 Patent Attorney Ino Setsei 5 "Detailed Description of the Invention" column of the dated specification of the amendment order. 8. In the statement of contents of the amendment, page 3, line 20, [caused, liquid and vapor j] is corrected as [caused liquid and vapor J.

Claims (1)

【特許請求の範囲】 1 高温熱源として地熱温水等を利用するとともに、2
成分以上の混合媒体を作動流体としてタービンサイクル
を構成する温水利用タービンプラントにおいて、作動流
体の液から蒸気への昇温・蒸発過程にかかわる全ての熱
交換器の流体の流れ方向をはイ向流型とするとともに、
作動流体の飽和液から乾き飽和蒸気に至るまでの蒸発過
程にかかわる蒸発器を、作動流体の乾き度の低い領域で
作動する貫流型の蒸発器と、本体胴内の伝熱管外側部に
ミスト捕集層を設けた、作動流体の乾き度が高い領域で
作動するミスト蒸発器とによって構成したことを特徴と
する、渇水利用タービンプラント。 2 ミスト捕集層は金網層であることを特徴とする特許
請求の範囲第1項記載の渇水利用タービンプラント。 3 ミスト捕集層は、伝熱管と平行に配設された多数の
板状金網であることを特徴とする特許請求の範囲第1項
記載の温水利用タービンプラント。 4 ミスト捕集層は、伝熱管と同心状に配設された金網
層であることを特徴とする特許請求の範囲第1項記載の
渇水利用タービンプラント。 5 ミスト捕集層は、伝熱管に直交する面内に・配設さ
れlζ金網層であることを特徴とする特許請求の範囲第
1項記載の温水利用タービンプラント。 6 温水は地熱熱水であることを特徴とする特許請求の
範囲M1項乃至第5項のいずれが1項に記載の渇水利用
タービンプラン1−0 7 温水は、海洋の表層海水であることを特徴とする特
許請求の範囲第1項乃至第5項のいずれか1項に記載の
温水利用タービンプラン1〜。
[Claims] 1. Geothermal hot water, etc. is used as a high-temperature heat source, and 2.
In a hot water turbine plant where a turbine cycle is constructed using a mixed medium containing more than the components as a working fluid, the flow direction of the fluid in all heat exchangers involved in the temperature raising and evaporation process of the working fluid from liquid to steam is reverse flow. Along with making a mold,
The evaporator involved in the evaporation process from working fluid saturated liquid to dry saturated steam is divided into a once-through type evaporator that operates in an area where the working fluid is less dry, and a mist trap on the outside of the heat transfer tube inside the main body shell. A drought utilization turbine plant characterized by comprising a mist evaporator that operates in a region where a working fluid has a high degree of dryness and is provided with a condensed layer. 2. The drought utilization turbine plant according to claim 1, wherein the mist collection layer is a wire mesh layer. 3. The hot water utilization turbine plant according to claim 1, wherein the mist collection layer is a large number of plate-shaped wire meshes arranged in parallel with the heat transfer tubes. 4. The drought water utilization turbine plant according to claim 1, wherein the mist collection layer is a wire mesh layer arranged concentrically with the heat transfer tube. 5. The hot water utilization turbine plant according to claim 1, wherein the mist collection layer is a wire mesh layer arranged in a plane perpendicular to the heat transfer tubes. 6. The hot water is geothermal hot water. Which of claims M1 to 5 is the drought utilization turbine plan 1-0 according to claim 1? 7. The hot water is surface seawater of the ocean. Hot water utilization turbine plans 1 to 1 according to any one of claims 1 to 5.
JP59026397A 1984-02-15 1984-02-15 Turbine plant utilizing hot water Granted JPS60169608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59026397A JPS60169608A (en) 1984-02-15 1984-02-15 Turbine plant utilizing hot water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59026397A JPS60169608A (en) 1984-02-15 1984-02-15 Turbine plant utilizing hot water

Publications (2)

Publication Number Publication Date
JPS60169608A true JPS60169608A (en) 1985-09-03
JPH0148373B2 JPH0148373B2 (en) 1989-10-19

Family

ID=12192417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59026397A Granted JPS60169608A (en) 1984-02-15 1984-02-15 Turbine plant utilizing hot water

Country Status (1)

Country Link
JP (1) JPS60169608A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2457266A (en) * 2008-02-07 2009-08-12 Univ City Power generation from a heat source
JP2014118818A (en) * 2012-12-13 2014-06-30 Mitsubishi Heavy Ind Ltd Geothermal power generation system
JP2016114029A (en) * 2014-12-17 2016-06-23 大阪瓦斯株式会社 Binary power generating system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2457266A (en) * 2008-02-07 2009-08-12 Univ City Power generation from a heat source
GB2457266B (en) * 2008-02-07 2012-12-26 Univ City Generating power from medium temperature heat sources
JP2014118818A (en) * 2012-12-13 2014-06-30 Mitsubishi Heavy Ind Ltd Geothermal power generation system
JP2016114029A (en) * 2014-12-17 2016-06-23 大阪瓦斯株式会社 Binary power generating system

Also Published As

Publication number Publication date
JPH0148373B2 (en) 1989-10-19

Similar Documents

Publication Publication Date Title
US4525242A (en) Desalting system utilizing solar energy
JPS5818574B2 (en) heat pump
Panchal et al. Experimental analysis of diesel engine exhaust gas coupled with water desalination for improved potable water production
JPH09512332A (en) Absorption cooling device and method
JP2000517410A (en) Equipment for transferring heating and cooling power
US5784886A (en) Hydro-air renewable power system
US4617800A (en) Apparatus for producing power using concentrated brine
CN201093905Y (en) Inorganic heat tube spraying type evaporator
JPS60169608A (en) Turbine plant utilizing hot water
JPS58198648A (en) Loop type heat pipe system solar heat water heater
KR100912353B1 (en) Absorption chiller
KR200154391Y1 (en) Apparatus for preparing water using waste heat of power house
JPS5946375A (en) Power generator by sea water
JPH0447570Y2 (en)
JPS5867975A (en) Energy recovery method of low temperature and low temperature difference
JP2021520479A (en) Water heat source heat pump
CN107651720A (en) A kind of multistage humidification dehumidification type sea water desalinating unit with loop type gravity assisted heat pipe structure
US4704993A (en) Apparatus for producing power using concentrated brine
Brauner et al. Experimental studies of a hygroscopic condenser-evaporator heat exchanger based on concentration differences of vertically falling films
JPH0213233B2 (en)
JPS60110388A (en) Seawater desalting apparatus
CN207740126U (en) Solar energy Stirling photo-thermal power generation utilizes system with sea water desalination thermoelectricity synergistic combination
JPS6022284Y2 (en) solar heat collector
JPS6313113B2 (en)
JPS59110872A (en) Compound generation device which utilizes sea temperature difference and solar heat