JPH0213233B2 - - Google Patents

Info

Publication number
JPH0213233B2
JPH0213233B2 JP59026398A JP2639884A JPH0213233B2 JP H0213233 B2 JPH0213233 B2 JP H0213233B2 JP 59026398 A JP59026398 A JP 59026398A JP 2639884 A JP2639884 A JP 2639884A JP H0213233 B2 JPH0213233 B2 JP H0213233B2
Authority
JP
Japan
Prior art keywords
heat exchanger
mist
heat transfer
layer
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59026398A
Other languages
Japanese (ja)
Other versions
JPS60171386A (en
Inventor
Shunji Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2639884A priority Critical patent/JPS60171386A/en
Publication of JPS60171386A publication Critical patent/JPS60171386A/en
Publication of JPH0213233B2 publication Critical patent/JPH0213233B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/122Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は向流型の熱交換器に係り、特にミスト
蒸発を促進し得るようにした熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a countercurrent type heat exchanger, and particularly to a heat exchanger capable of promoting mist evaporation.

〔発明の技術的背景およびその問題点〕[Technical background of the invention and its problems]

近年、熱水のもつ熱エネルギをランキンサイク
ルなどのタービンサイクル用高温熱源として利用
する発電所においては、2種類以上の低沸点の炭
化水素、フロン等を混合した、いわゆる混合媒体
を作動流体としてシステムを構成することが考え
られている。この混合媒体は、蒸発するに従つて
蒸発温度が上昇していくという特性をもつている
ので、単一成分の作動流体の場合よりも少ない作
動流体循環量で多くの熱エネルギを熱水から回収
することができ、ポンプ動力等の所内動力の低減
が可能となり、送電端出力が大きく取り出せると
いう利点をもつている。
In recent years, power plants that use the thermal energy of hot water as a high-temperature heat source for turbine cycles such as the Rankine cycle have started using so-called mixed media, which is a mixture of two or more types of low-boiling hydrocarbons, fluorocarbons, etc., as the working fluid. It is considered to constitute This mixed medium has the characteristic that the evaporation temperature increases as it evaporates, so more heat energy can be recovered from the hot water with less working fluid circulation than in the case of a single component working fluid. This has the advantage that it is possible to reduce in-house power such as pump power, and it is possible to obtain a large output at the power transmission end.

しかしながら、この混合媒体の特性を引き出す
ためには、混合媒体の温度の変化が蒸発または凝
縮過程において成分相互の蒸発速度または凝縮速
度の相違によつて引き起こされる液および蒸気の
組成の変化に伴なつて現われるものであるため、
蒸発器または凝縮器は完全向流型の貫流型の熱交
換器である必要がある。
However, in order to bring out the characteristics of this mixed medium, it is necessary that the temperature change of the mixed medium is accompanied by a change in the liquid and vapor composition caused by the difference in the evaporation rate or condensation rate of the components during the evaporation or condensation process. Because it appears as
The evaporator or condenser must be a completely countercurrent, once-through heat exchanger.

ところが、このように作動流体を伝熱管内に流
す熱交換器または伝熱管外に作動流体を流す熱交
換器では、そのいずれでも、蒸発過程において蒸
気の質量割合(クオリテイ)が0.8〜0.9程度まで
高くなると、伝熱面が液で濡らされなくなり伝熱
面での沸騰が起らなくなるため、熱伝達率が極端
に悪くなり、作動流体の完全な気化が不可能であ
り、未蒸発液が液滴(ミスト)の状態となつて残
る等の問題がある。そのため、例えば上記熱交換
器で得られた蒸気でタービンを作動させるような
場合には、上記ミストをミストセパレータで分離
して蒸気のみをタービンに送る必要がある。した
がつて、熱交換器に送給される作動流体の全てを
タービンの駆動用として利用することができず、
プラント全体の効率が低いものとなる等の不都合
がある。
However, in both heat exchangers that flow the working fluid inside the heat transfer tubes or outside the heat transfer tubes, the mass ratio (quality) of steam during the evaporation process reaches approximately 0.8 to 0.9. If the temperature rises, the heat transfer surface will not be wetted by the liquid and boiling will not occur on the heat transfer surface, resulting in an extremely poor heat transfer coefficient, making it impossible to completely vaporize the working fluid, and causing the unevaporated liquid to turn into a liquid. There is a problem that it remains in the form of drops (mist). Therefore, for example, when operating a turbine with the steam obtained from the heat exchanger, it is necessary to separate the mist with a mist separator and send only the steam to the turbine. Therefore, all of the working fluid fed to the heat exchanger cannot be used to drive the turbine;
There are disadvantages such as lower efficiency of the entire plant.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、それぞれのクオ
リテイ域でも高い熱伝達率が得られ、前記ミスト
をも完全に蒸発せしめることができるようにした
熱交換器を得ることを目的とする。
In view of these points, it is an object of the present invention to provide a heat exchanger that can obtain high heat transfer coefficients in each quality range and can completely evaporate even the mist.

〔発明の概要〕[Summary of the invention]

本発明は、伝熱管の内外を流れる流体を互いに
対向方向に流通せしめる向流型の熱交換器におい
て、上記伝熱管の外部に、その伝熱管に少なくと
も一部が接触する多層の金網層の如きミスト捕集
層を設けたことを特徴とする。
The present invention relates to a counterflow type heat exchanger in which fluids flowing inside and outside of a heat exchanger tube flow in opposite directions to each other. It is characterized by having a mist collection layer.

〔発明の実施例〕[Embodiments of the invention]

第1図において、符号1は熱交換器の本体胴で
あつて、その本体胴1の下端には熱水入口側水室
2が設けられ、また上端には熱水出口側水室3が
設けられている。上記本体胴1内には、両端がそ
れぞれ管板4,4に装着され互いに平行な多数の
伝熱管5が配設されるとともに、上記伝熱管5に
直交する複数のバツフル板6がジグザグ状に設け
られており、さらに本体胴1の上部および下部に
はそれぞれ作動流体の入口7および出口8が形成
されている。
In FIG. 1, reference numeral 1 denotes the main body of the heat exchanger, and the lower end of the main body 1 is provided with a water chamber 2 on the hot water inlet side, and the upper end is provided with a water chamber 3 on the hot water outlet side. It is being Inside the main body 1, a large number of parallel heat exchanger tubes 5 are disposed with both ends attached to tube plates 4, 4, respectively, and a plurality of butt-full plates 6 perpendicular to the heat exchanger tubes 5 are arranged in a zigzag shape. Furthermore, an inlet 7 and an outlet 8 for a working fluid are formed in the upper and lower parts of the main body shell 1, respectively.

また、本体胴1内の空間すなわち伝熱管5の外
側部には、第2図に示すように、板状金網層から
なるミスト捕集層9が上記伝熱管5と平行に配設
され、その金網層の両面がそれぞれ伝熱管5に接
せしめられ、ミスト捕集層9の少なくとも一部が
伝熱管5の表面の一部に接触するようにしてあ
る。
In addition, in the space inside the main body shell 1, that is, on the outside of the heat exchanger tubes 5, as shown in FIG. Both sides of the wire mesh layer are brought into contact with the heat exchanger tubes 5, and at least a portion of the mist collection layer 9 is brought into contact with a portion of the surface of the heat exchanger tubes 5.

しかして、熱水入口側水室2に供給された熱水
は多数の伝熱管5内を流れ熱水出口側水室3を経
て熱交換器外に排出される。一方、ミストを含ん
だ作動流体蒸気は作動流体入口7から本体胴1内
に入り、本体胴1内を流下し、その間作動流体蒸
気の流れと対向方向に上記伝熱管5内を流れる熱
水と熱交換して加熱され、作動流体出口8から流
出する。ところで、上記作動流体入口7から本体
胴1内に入つた作動流体のうちミスト分は、前記
板状金網層からなるミスト捕集層9によつて徐々
に捕集される。したがつて、この捕集されたミス
トは上記のせん断力および表面張力によつて伝熱
管5の表面に達し、こゝで伝熱管5内の熱水によ
り加熱されて蒸発し、蒸気化せしめられる。
Thus, the hot water supplied to the hot water inlet side water chamber 2 flows through a large number of heat transfer tubes 5, passes through the hot water outlet side water chamber 3, and is discharged to the outside of the heat exchanger. On the other hand, the working fluid vapor containing mist enters the main body shell 1 from the working fluid inlet 7 and flows down inside the main body shell 1, while the hot water flowing in the heat transfer tube 5 in the opposite direction to the flow of the working fluid vapor flows. The working fluid is heated by heat exchange and flows out from the working fluid outlet 8. Incidentally, the mist portion of the working fluid that has entered the main body shell 1 from the working fluid inlet 7 is gradually collected by the mist collecting layer 9 made of the plate-shaped wire mesh layer. Therefore, the collected mist reaches the surface of the heat exchanger tube 5 due to the above-mentioned shear force and surface tension, where it is heated by the hot water in the heat exchanger tube 5, evaporates, and becomes vaporized. .

このようにして、作動流体中のミスト分は蒸発
して蒸気となるが、初めから蒸気として本体胴1
内に入つて来た分も伝熱管に触れて流れ方向に
徐々に加熱されて飽和温度以上となる。このため
ミスト捕集層9に補えられたけれども伝熱管表面
まで達し得ないミスト分があつても、次々流れて
来る高温の蒸気によつて加熱され、蒸気となる。
すなわち、上記ミスト捕集層9は、ミストを捕
え、金網等の表面に広く液を分布させて蒸気の接
触面積を広げる作用をし伝熱面積の拡大作用を行
なうとともに、捕えたミスト分と蒸気との相対速
度を大きくして熱伝達率を高める作用を行なう。
なお、この場合作動流体の流れる流路長さは十分
に長いので金網の目は極端に細いものである必要
はなく、作動流体の圧力損失も小さくてすむ。
In this way, the mist in the working fluid evaporates and becomes steam, but from the beginning it is
The incoming heat also touches the heat transfer tube and is gradually heated in the flow direction, reaching a temperature above the saturation temperature. Therefore, even if there is some mist that is collected in the mist collection layer 9 but cannot reach the surface of the heat exchanger tube, it is heated by the high temperature steam that flows one after another and turns into steam.
That is, the mist trapping layer 9 traps the mist and widely distributes the liquid on the surface of the wire mesh, etc., thereby increasing the contact area of steam and increasing the heat transfer area. It acts to increase the heat transfer coefficient by increasing the relative speed with the heat transfer coefficient.
In this case, since the length of the flow path through which the working fluid flows is sufficiently long, the mesh of the wire mesh does not need to be extremely narrow, and the pressure loss of the working fluid can also be small.

また、上記実施例においては板状の金網層を伝
熱管と平行に設けたものを示したが、第3図に示
めすように、伝熱管5の外周にこれと同心状に金
網層からなるミスト捕集層9を設けてもよく、さ
らに第4図に示すように伝熱管5と直交するよう
にミスト捕集層9を設けて、そのミスト捕集層9
を上記伝熱管5が貫通するような形としてもよ
い。
Further, in the above embodiment, a plate-shaped wire mesh layer was provided parallel to the heat exchanger tubes, but as shown in FIG. A mist trapping layer 9 may be provided, and as shown in FIG.
It may be shaped so that the heat exchanger tube 5 passes through it.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は伝熱管の外部に
少なくとも一部がこの伝熱管と接触するミスト捕
集層を設けたので、作動流体中に含まれるミスト
がこのミスト捕集層に捕えられ、伝熱管表面に達
してその伝熱管によつて加熱され、或いは本体胴
内を流れる蒸気によつて加熱されて蒸気となり、
結局作動流体中のミストを完全に気化せしめるこ
とができ、この熱交換器から流出する蒸気を完全
にミストを含まないものとすることができる。す
なわち、高クオリテイのミスト流領域でも熱伝達
率を大幅に向上させることができる。したがつ
て、全蒸発過程に必要な伝熱面積を単なる従来の
熱交換器に比し小さなものとすることもできる。
As explained above, the present invention provides a mist collection layer on the outside of the heat transfer tube, at least a portion of which is in contact with the heat transfer tube, so that the mist contained in the working fluid is captured by the mist collection layer. It reaches the surface of the heat exchanger tube and is heated by the heat exchanger tube, or is heated by the steam flowing inside the main body shell and becomes steam,
As a result, the mist in the working fluid can be completely vaporized, and the steam flowing out of the heat exchanger can be completely free of mist. That is, the heat transfer coefficient can be significantly improved even in a high quality mist flow region. Therefore, the heat transfer area required for the entire evaporation process can be smaller than that of a mere conventional heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱交換器の縦断面図、第2図
は第1図のX−X線に沿う断面部分図、第3図お
よび第4図はそれぞれ本発明の他の実施例を示す
第2図相当図である。 1……本体胴、2……熱水入口側水室、3……
熱水出口側水室、5……伝熱管、9……ミスト捕
集層。
FIG. 1 is a longitudinal cross-sectional view of a heat exchanger according to the present invention, FIG. 2 is a partial cross-sectional view taken along the line X-X in FIG. 1, and FIGS. 2 is a diagram corresponding to FIG. 1...Main body shell, 2...Hot water inlet side water chamber, 3...
Hot water outlet side water chamber, 5... heat transfer tube, 9... mist collection layer.

Claims (1)

【特許請求の範囲】 1 伝熱管の内外を流れる流体を互いに対向方向
に流通せしめる向流型の熱交換器において、上記
伝熱管の外側部に、その伝熱管に少なくとも一部
が接触するミスト捕集層を設けたことを特徴とす
る、熱交換器。 2 ミスト捕集層は金網層であることを特徴とす
る、特許請求の範囲第1項記載の熱交換器。 3 ミスト捕集層は、伝熱管と平行に配設された
多数の板状金網であることを特徴とする特許請求
の範囲第1項記載の熱交換器。 4 ミスト捕集層は伝熱管と同心状に配設された
金網層であることを特徴とする、特許請求の範囲
第1項記載の熱交換器。 5 ミスト捕集層は、伝熱管に直交する面内に配
設された金網層であることを特徴とする特許請求
の範囲第1項記載の熱交換器。
[Scope of Claims] 1. In a counterflow type heat exchanger that causes fluid flowing inside and outside of a heat transfer tube to flow in opposite directions, a mist trap is provided on the outside of the heat transfer tube, at least a part of which contacts the heat transfer tube. A heat exchanger characterized by having a laminated layer. 2. The heat exchanger according to claim 1, wherein the mist collection layer is a wire mesh layer. 3. The heat exchanger according to claim 1, wherein the mist collection layer is a large number of plate-shaped wire meshes arranged in parallel with the heat exchanger tubes. 4. The heat exchanger according to claim 1, wherein the mist collection layer is a wire mesh layer arranged concentrically with the heat transfer tube. 5. The heat exchanger according to claim 1, wherein the mist collection layer is a wire mesh layer disposed in a plane perpendicular to the heat transfer tubes.
JP2639884A 1984-02-15 1984-02-15 Heat exchanger Granted JPS60171386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2639884A JPS60171386A (en) 1984-02-15 1984-02-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2639884A JPS60171386A (en) 1984-02-15 1984-02-15 Heat exchanger

Publications (2)

Publication Number Publication Date
JPS60171386A JPS60171386A (en) 1985-09-04
JPH0213233B2 true JPH0213233B2 (en) 1990-04-03

Family

ID=12192446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2639884A Granted JPS60171386A (en) 1984-02-15 1984-02-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS60171386A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541705A (en) * 1977-06-07 1979-01-08 Toshiba Corp Heat exchanger system using sea water as cooling water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541705A (en) * 1977-06-07 1979-01-08 Toshiba Corp Heat exchanger system using sea water as cooling water

Also Published As

Publication number Publication date
JPS60171386A (en) 1985-09-04

Similar Documents

Publication Publication Date Title
US4688399A (en) Heat pipe array heat exchanger
JPS5888A (en) Wet type/dry type combination type steam condenser
US4567736A (en) Absorption heat pump
US4553409A (en) Multiple regeneration multiple absorption type heat pump
JP2576292B2 (en) Condenser and power plant using the same
US4617800A (en) Apparatus for producing power using concentrated brine
JPS597862A (en) Absorption type heat pump system
JPS58198648A (en) Loop type heat pipe system solar heat water heater
JPH0213233B2 (en)
JPH0148373B2 (en)
SU1255827A1 (en) Method of empoyment of heat of weak solution
JPH0518634A (en) Absorption refrigerating apparatus
JPH0447570Y2 (en)
US4468934A (en) Absorption refrigeration system
JPS5922441Y2 (en) Heat exchanger
JP2945972B1 (en) Absorption chiller / heater
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JPS5612997A (en) Heat exchanger
JPS60181587A (en) Cascade cycle type heat converting system
JPS58210439A (en) Heat pipe type solar heat water heater
JPH0354377Y2 (en)
JPH0260958B2 (en)
JPS6337638Y2 (en)
GB2166539A (en) Heat pipe array heat exchanger
JP2000081289A (en) Plate fin type heat exchanger