JPH0354377Y2 - - Google Patents

Info

Publication number
JPH0354377Y2
JPH0354377Y2 JP12083084U JP12083084U JPH0354377Y2 JP H0354377 Y2 JPH0354377 Y2 JP H0354377Y2 JP 12083084 U JP12083084 U JP 12083084U JP 12083084 U JP12083084 U JP 12083084U JP H0354377 Y2 JPH0354377 Y2 JP H0354377Y2
Authority
JP
Japan
Prior art keywords
temperature regenerator
low
dual
effect absorption
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12083084U
Other languages
Japanese (ja)
Other versions
JPS6136268U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12083084U priority Critical patent/JPS6136268U/en
Publication of JPS6136268U publication Critical patent/JPS6136268U/en
Application granted granted Critical
Publication of JPH0354377Y2 publication Critical patent/JPH0354377Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の利用分野〕 本考案は二重効用吸収冷温水機に係り、特に低
温再生器を改良した二重効用吸収冷温水器に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a dual-effect absorption chiller/heater, and more particularly to a dual-effect absorption chiller/heater with an improved low-temperature regenerator.

〔考案の背景〕[Background of the idea]

まず、第2図を用いて二重効用吸収冷温水機の
構成を説明する。高温再生器1はバーナ等の加熱
源2により稀溶液を加熱して、冷媒蒸気を発生す
る。高温再生器分離器3は、前記高温再生器1か
らの冷媒蒸気と冷媒蒸気分離後の中間濃度溶液を
分離させる。低温再生器4は前記分離器3から送
り出された冷媒蒸気を熱源として、前記分離器3
から送り出された中間濃度溶液を加熱・濃縮し、
冷媒蒸気を発生させる。低温再生器分離器5は、
前記低温再生器で発生した冷媒蒸気と濃溶液とを
分離させる。凝縮器6は冷却水熱交換器7によ
り、前記両再生器1及び4から流入する冷媒蒸気
及び液体冷媒を凝縮して冷却する。蒸発器8は凝
縮器6からの液体冷媒が気化する際の潜熱を利用
し、冷温水熱交換器9から熱を得る。吸収器10
は溶液を冷却し前記蒸発器8からの冷媒蒸気を吸
収する。11,12は溶液の熱交換を行う低温熱
交換器と高温熱交換器であり、これらは配管にて
接続され冷房回路を構成している。
First, the configuration of the dual-effect absorption chiller/heater will be explained using FIG. The high temperature regenerator 1 heats a dilute solution using a heat source 2 such as a burner to generate refrigerant vapor. The high temperature regenerator separator 3 separates the refrigerant vapor from the high temperature regenerator 1 and the intermediate concentration solution after the refrigerant vapor separation. The low-temperature regenerator 4 uses the refrigerant vapor sent out from the separator 3 as a heat source to
Heat and concentrate the intermediate concentration solution sent from the
Generates refrigerant vapor. The low temperature regenerator separator 5 is
The refrigerant vapor generated in the low temperature regenerator and the concentrated solution are separated. The condenser 6 condenses and cools the refrigerant vapor and liquid refrigerant flowing from the regenerators 1 and 4 through the cooling water heat exchanger 7 . The evaporator 8 uses latent heat when the liquid refrigerant from the condenser 6 evaporates to obtain heat from the cold/hot water heat exchanger 9 . Absorber 10
cools the solution and absorbs refrigerant vapor from the evaporator 8. Reference numerals 11 and 12 denote a low temperature heat exchanger and a high temperature heat exchanger for exchanging heat of the solution, and these are connected by piping to form a cooling circuit.

以上の構成において、低温再生器4の方式とし
ては、第3図に示すものと第4図に示すものとが
ある。第3図に示す低温再生器は、シエルアンド
コイル方式と称されるもので、加熱媒体である冷
媒蒸気は、低温再生器4の容器内に設置されたら
せん状のコイル16内を流れて熱交換した後凝縮
して液体冷媒となり、低温再生器4外に流出す
る。また、被加熱媒体である溶液は配管17より
流入して加熱、凝縮され、冷媒蒸気は配管18
を、高濃度溶液は配管19を通つて低温再生器4
の外に流出するようにした方式である。
In the above configuration, there are two types of low temperature regenerator 4, one shown in FIG. 3 and the other shown in FIG. 4. The low-temperature regenerator shown in FIG. 3 is of the shell-and-coil type, in which refrigerant vapor as a heating medium flows through a spiral coil 16 installed in the container of the low-temperature regenerator 4 and heats up. After being replaced, it condenses into liquid refrigerant and flows out of the low-temperature regenerator 4. Further, the solution as the medium to be heated flows in through the pipe 17 and is heated and condensed, and the refrigerant vapor flows through the pipe 18.
The high concentration solution passes through the pipe 19 to the low temperature regenerator 4.
This method allows the water to flow out of the room.

また、第4図に示す低温再生器はシエルアンド
チユーブ方式と呼ばれている方式で、低温再生器
4に入る加熱冷媒蒸気は入口ヘツダー20で胴内
に設置されたチユーブ21に分流され、熱交換の
後凝縮水となり出口ヘツダー22より外部へ流出
する。一方、被加熱側の溶液は入口管23より胴
内に流入しチユーブ21内を流れる冷媒蒸気によ
り加熱、濃縮されて出口管24より胴外へ流出す
る。ここで、25は溶液の流れを乱し熱交換効率
を向上させるためのじやま板である。
The low-temperature regenerator shown in Fig. 4 is a shell-and-tube system, in which the heated refrigerant vapor entering the low-temperature regenerator 4 is diverted to a tube 21 installed in the shell by an inlet header 20, and heats up. After the exchange, it becomes condensed water and flows out from the outlet header 22. On the other hand, the solution on the heated side flows into the shell from the inlet pipe 23, is heated and concentrated by the refrigerant vapor flowing inside the tube 21, and flows out of the shell from the outlet pipe 24. Here, reference numeral 25 is a diagonal board for disturbing the flow of the solution and improving heat exchange efficiency.

さて、以上の方式の低温再生器4はいずれも液
溜め方式により溶液の加熱、凝縮を行うため、低
温再生器4の容積が大きくなり、かつ滞溜溶液量
が多くなる。そのため、低温再生器の占有スペー
スが大きくなつて吸収冷凍機の大形化が避けられ
ず、コスト高となる。
Now, since the low-temperature regenerator 4 of the above-mentioned type all heats and condenses the solution by the liquid reservoir method, the volume of the low-temperature regenerator 4 becomes large and the amount of accumulated solution increases. As a result, the space occupied by the low-temperature regenerator increases, making it inevitable to increase the size of the absorption refrigerator, resulting in increased costs.

〔考案の目的〕[Purpose of invention]

本考案の目的は、二重効用吸収冷温水機におけ
る低温再生器を小形化し、滞溜溶液量を低減しう
る二重効用吸収冷温水機を提供することにある。
An object of the present invention is to provide a dual-effect absorption chiller-heater in which the low-temperature regenerator in the dual-effect absorption chiller-heater can be downsized and the amount of accumulated solution can be reduced.

〔考案の概要〕[Summary of the idea]

上記目的を達成するために、本考案による二重
効用吸収冷温水機は、高温再生器側の気液分離器
からの高温蒸気と高温熱交換器からの中間濃溶液
との熱交換を行う低温再生器を備えた二重効用吸
収冷温水機において、前記低温再生器は、一対の
プレート板により形成された板流路体を複数互に
間隔を置いて積層し、各枝流路体に連通する主流
路を前記枝流路体の一端側および他端側にそれぞ
れ設けてなる熱交換ユニツトと、この熱交換ユニ
ツトを格納する箱体状容器とを備え、前記主流路
の一方側に前記高温蒸気または中間濃溶液のいず
れか一方を、かつ、前記容器の一側に前記高温蒸
気または中間濃溶液の他方をそれぞれ供給する配
管を施し、いわゆるプレートフイン方式とした点
に特徴を有する。前記プレート板は、熱交換の効
率を向上させる点から波形状あるいは半球状の突
状部を有するものとすることが望ましい。
In order to achieve the above object, the dual-effect absorption chiller/heater according to the present invention is a low-temperature absorption water cooler that performs heat exchange between high-temperature steam from the gas-liquid separator on the high-temperature regenerator side and intermediate concentrated solution from the high-temperature heat exchanger. In a dual-effect absorption chiller/heater equipped with a regenerator, the low-temperature regenerator includes a plurality of plate channel bodies formed by a pair of plates stacked at intervals, and communicating with each branch channel body. A heat exchange unit is provided with a main flow path provided at one end and the other end of the branch flow path body, respectively, and a box-like container housing the heat exchange unit, and the high temperature is provided on one side of the main flow path. It is characterized in that piping is provided for supplying either the steam or the intermediately concentrated solution, and the other side of the container is provided with piping for supplying the other of the high temperature steam or the intermediately concentrated solution, resulting in a so-called plate fin system. The plate preferably has a corrugated or hemispherical protrusion in order to improve the efficiency of heat exchange.

〔考案の実施例〕[Example of idea]

次に、本考案による二重効用吸収冷温水機の実
施例を図面に基づいて説明する。
Next, an embodiment of the dual-effect absorption chiller/heater according to the present invention will be described based on the drawings.

第1図に本考案に係る二重効用吸収冷温水機に
用いられる低温再生器の構成を示す。なお、低温
再生器以外の構成は第2図と同様であるので説明
を省略する。
FIG. 1 shows the configuration of a low-temperature regenerator used in a dual-effect absorption chiller/heater according to the present invention. Note that the configuration other than the low-temperature regenerator is the same as that in FIG. 2, so the explanation will be omitted.

第1図に示すように、低温再生器4は大別して
熱交換ユニツト100と、この熱交換ユニツト1
00を格納する容器200とよりなる。熱交換ユ
ニツト100は、一対のプレート板が平行に配さ
れてなる枝流路体25を複数相互に所定の間隔を
置いて積層させ、各枝流路体25を一体に連通す
る主流路体26,27をそれぞれ枝流路体25の
一端側および他端側に設けて一体化されている。
この熱交換ユニツト100は容器200内に格納
されており、容器200の一端側および他端側に
はそれぞれ溶液入口管28および溶液出口管29
が配設されている。
As shown in FIG. 1, the low temperature regenerator 4 is roughly divided into a heat exchange unit 100 and a heat exchange unit 100.
It consists of a container 200 that stores 00. The heat exchange unit 100 has a main channel body 26 which has a plurality of branch passage bodies 25 each formed by a pair of plates arranged in parallel, stacked one on top of the other at a predetermined interval, and which communicates the branch passage bodies 25 together. , 27 are provided at one end and the other end of the branch channel body 25, respectively, and are integrated.
This heat exchange unit 100 is housed in a container 200, and a solution inlet pipe 28 and a solution outlet pipe 29 are provided at one end and the other end of the container 200, respectively.
is installed.

さて、主流路体26の入口30に気液分離器3
により分離された高圧の冷媒蒸気が供給される
と、第1図に示す流れAの方向に送られ、各枝流
路体25を流れて出口31から排出される。この
とき、溶液入口管28に高温熱交換器12からの
中間濃溶液が供給されると、第1図に示す流れB
の方向に送られ、各枝流路25の間を通り抜けて
溶液出口管29から排出される。このように、冷
媒蒸気がAの方向に流れるのと同時に逆方向に中
間濃溶液がBの方向に流れることによつて熱交換
が行われることとなる。したがつて、熱交換の効
率を向上させるため、プレートを断面波形状にし
たり、半球状の突状部を設けて接触面積を大きく
し、乱流を生じさせるようにすることが好まし
い。なお、出口31からは凝縮されて液体冷媒と
なつて排出され、凝縮器6へ送られる。一方、中
間濃溶液はBの方向に流れつつ加熱、濃縮され、
濃溶液および冷媒蒸気となつて溶液出口管29よ
り排出され気泡ポンプ作用により気液混合状態の
まま溶液出口管29内を上昇し、低温再生器分離
器5において濃溶液と冷媒蒸気に分離される。そ
して、冷媒蒸気は凝縮器6へ、また濃溶液は低温
熱交換器11へ流入する。以下、従来と同様な作
用により冷温水熱交換器9から冷水を得ることと
なる。
Now, the gas-liquid separator 3 is connected to the inlet 30 of the main channel body 26.
When the high-pressure refrigerant vapor separated by is supplied, it is sent in the direction of flow A shown in FIG. 1, flows through each branch channel body 25, and is discharged from the outlet 31. At this time, when the intermediate concentrated solution from the high temperature heat exchanger 12 is supplied to the solution inlet pipe 28, the flow B shown in FIG.
The solution is sent in the direction of the solution, passes between the branch channels 25 and is discharged from the solution outlet pipe 29. In this way, heat exchange is performed by the refrigerant vapor flowing in the direction A and the intermediate concentrated solution flowing in the opposite direction in the direction B. Therefore, in order to improve the efficiency of heat exchange, it is preferable to make the plate corrugated in cross section or provide a hemispherical protrusion to increase the contact area and generate turbulent flow. Note that the refrigerant is condensed and discharged from the outlet 31 as a liquid refrigerant, and is sent to the condenser 6. On the other hand, the intermediate concentrated solution is heated and concentrated while flowing in the direction of B.
The concentrated solution and refrigerant vapor are discharged from the solution outlet pipe 29 and rise through the solution outlet pipe 29 in a gas-liquid mixed state due to the bubble pump action, and are separated into a concentrated solution and refrigerant vapor in the low temperature regenerator separator 5. . The refrigerant vapor then flows into the condenser 6 and the concentrated solution flows into the low temperature heat exchanger 11. Thereafter, cold water will be obtained from the cold/hot water heat exchanger 9 by the same operation as in the conventional case.

〔考案の効果〕[Effect of idea]

以上述べた如く、本考案によれば、低温再生器
をいわゆるプレートフイン方式により構成したた
め、単位容積あたりの伝熱面積が大きく、その結
果設置スペースが小さくなる。また、溶液保有量
を少なくすることができる。
As described above, according to the present invention, since the low-temperature regenerator is configured by the so-called plate fin system, the heat transfer area per unit volume is large, and as a result, the installation space is small. Furthermore, the amount of solution retained can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る低温再生器の実施例を示
す断面図、第2図は二重効用吸収冷温水機の一般
的な構成を示す系統図、第3図は従来の低温再生
器の例を示す断面図、第4図は他の従来例を示す
断面図である。 3……高温再生器分離器、4……低温再生器、
5……低温再生器分離器、6……凝縮器、12…
…高温熱交換器、100……熱交換ユニツト、2
00……容器、25……枝流路体、26,27…
…主流路体、28……溶液入口管、29……溶液
出口管、30……入口、31……出口、A……蒸
気流れ方向、B……溶液流れ方向。
Figure 1 is a sectional view showing an embodiment of the low temperature regenerator according to the present invention, Figure 2 is a system diagram showing the general configuration of a dual-effect absorption chiller/heater, and Figure 3 is a diagram of a conventional low temperature regenerator. FIG. 4 is a sectional view showing another conventional example. 3...High temperature regenerator separator, 4...Low temperature regenerator,
5...Low temperature regenerator separator, 6...Condenser, 12...
...High temperature heat exchanger, 100...Heat exchange unit, 2
00... Container, 25... Branch channel body, 26, 27...
... Main channel body, 28 ... Solution inlet pipe, 29 ... Solution outlet pipe, 30 ... Inlet, 31 ... Outlet, A ... Steam flow direction, B ... Solution flow direction.

Claims (1)

【実用新案登録請求の範囲】 (1) 高温再生器側の気液分離器からの高温蒸気と
高温熱交換器からの中間濃溶液との熱交換を行
う低温再生器を備えた二重効用吸収冷温水機に
おいて、前記低温再生器は、一対のプレート板
により形成された枝流路体を複数互に間隔を置
いて積層し、各枝流路体に連通する主流路を前
記枝流路体の一端側および他端側にそれぞれ設
けてなる熱交換ユニツトと、この熱交換ユニツ
トを格納する箱体状容器とを備え、前記主流路
の一方側に前記高温蒸気または中間濃溶液のい
ずれか一方を、かつ、前記容器の一側に前記高
温蒸気または中間濃溶液の他方をそれぞれ供給
する配管を施したことを特徴とする二重効用吸
収冷温水機。 (2) 実用新案登録請求の範囲第1項記載の冷温水
機において、前記一対のプレート板は断面波形
状を有することを特徴とする二重効用吸収冷温
水機。 (3) 実用新案登録請求の範囲第1項記載の冷温水
機において、前記一対のプレート板は断面半球
状の突状部を有することを特徴とする二重効用
吸収冷温水機。
[Claims for Utility Model Registration] (1) Double-effect absorption system equipped with a low-temperature regenerator that exchanges heat between the high-temperature steam from the gas-liquid separator on the high-temperature regenerator side and the intermediate concentrated solution from the high-temperature heat exchanger. In the cold/hot water machine, the low temperature regenerator has a plurality of branch passage bodies formed by a pair of plates stacked at intervals, and a main passage communicating with each branch passage body is connected to the branch passage body. It is equipped with a heat exchange unit provided at one end and the other end, and a box-like container for storing the heat exchange unit, and has either the high temperature steam or the intermediate concentrated solution on one side of the main flow path. A dual-effect absorption chiller-heater, characterized in that one side of the container is provided with piping for supplying the other of the high-temperature steam or the intermediate concentrated solution. (2) Utility Model Registration The dual-effect absorption chiller/heater according to claim 1, wherein the pair of plates have a corrugated cross section. (3) Utility Model Registration The dual-effect absorption chiller/heater according to claim 1, wherein the pair of plates have protrusions having a hemispherical cross section.
JP12083084U 1984-08-06 1984-08-06 Double effect absorption chiller/heater Granted JPS6136268U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12083084U JPS6136268U (en) 1984-08-06 1984-08-06 Double effect absorption chiller/heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12083084U JPS6136268U (en) 1984-08-06 1984-08-06 Double effect absorption chiller/heater

Publications (2)

Publication Number Publication Date
JPS6136268U JPS6136268U (en) 1986-03-06
JPH0354377Y2 true JPH0354377Y2 (en) 1991-11-29

Family

ID=30679639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12083084U Granted JPS6136268U (en) 1984-08-06 1984-08-06 Double effect absorption chiller/heater

Country Status (1)

Country Link
JP (1) JPS6136268U (en)

Also Published As

Publication number Publication date
JPS6136268U (en) 1986-03-06

Similar Documents

Publication Publication Date Title
JP3932241B2 (en) Absorption refrigerator
EP0465592A4 (en)
JPH08105669A (en) Regenerator for absorption refrigerator
JPH0354377Y2 (en)
JP3208161B2 (en) Absorption / evaporator
JPH0581816B2 (en)
KR100213780B1 (en) Water supply system of absortion type cooler
JPH0446339B2 (en)
JPH0518634A (en) Absorption refrigerating apparatus
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JPH10122688A (en) Chiller
JP2002022309A (en) Absorption type refrigerating machine
JP3852891B2 (en) Solution heat exchanger for absorption refrigerator
KR100315627B1 (en) Absorption heating and cooling system having quick boiling function
JP2945972B1 (en) Absorption chiller / heater
KR0143852B1 (en) Evaporator for absorptive airconditioner
GB2314149A (en) Thermosyphon refrigeration apparatus
JP7080001B2 (en) Absorption chiller
JPS5922441Y2 (en) Heat exchanger
JPS60599Y2 (en) low temperature generator
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
JP4282225B2 (en) Absorption refrigerator
JPS6119405Y2 (en)
JPH0350373Y2 (en)
JPH0354378Y2 (en)