JPS59110872A - Compound generation device which utilizes sea temperature difference and solar heat - Google Patents

Compound generation device which utilizes sea temperature difference and solar heat

Info

Publication number
JPS59110872A
JPS59110872A JP57220235A JP22023582A JPS59110872A JP S59110872 A JPS59110872 A JP S59110872A JP 57220235 A JP57220235 A JP 57220235A JP 22023582 A JP22023582 A JP 22023582A JP S59110872 A JPS59110872 A JP S59110872A
Authority
JP
Japan
Prior art keywords
solar heat
temperature difference
water
sea
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57220235A
Other languages
Japanese (ja)
Inventor
Kentaro Aikawa
賢太郎 相川
Masaatsu Fukuda
福田 征孜
Shinya Takeno
武野 眞也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57220235A priority Critical patent/JPS59110872A/en
Publication of JPS59110872A publication Critical patent/JPS59110872A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Abstract

PURPOSE:To improve the efficiency of the cycle of sea temperature difference power generation by pumping-up the hot surface sea-water and forming the sea water having a relatively high temperature by a solar heat collector and evaporating working medium in an evaporator by said sea water and operating a turbine by said vapor. CONSTITUTION:The hot surface sea-water is pumped-up and sent into an evaporator 3 by a pump 2, and the thermal medium 4 having a low boiling point is formed into the steam having a high temperature and a high pressure through heat exchange, and said vapor is sent into a turbine 5, in which work is performed and a generator 6 is driven. The vapor having a low pressure which is sent from the turbine 5 is introduced into a condenser 7, and cooled, condensed, and liquefied by the cold sea water 8 in a deep layer, and the formed liquid is returned into the evaporator 3 by a circulating pump 9. In such a generation set which utilizes the sea temperature difference, a solar heat collector 20 is installed onto the downstream side of the evaporator 3 in a hot sea-water line or in a working medium line. Said heat collector 20 is preferably installed on the sandy beach on land, and the sea water and the working medium which passes through the heat absorbing pipe in the heat collector 20 can be heated efficiently.

Description

【発明の詳細な説明】 本発明は海洋温度差および太陽熱を利用して発電を行な
う複合発電装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combined power generation device that generates power using ocean temperature differences and solar heat.

従来、海洋温度差を利用した発電装置は、第1図におい
て概略の構成が示されているように、海洋の表層温海水
(1)と深層冷海水(8)との温度差を利用するもので
、表層温海水(1)は温海水ポンプ(2)により汲み上
げられ、蒸発器(3)に送られる。蒸発器(3)で温海
水と熱交換をして高温高圧の蒸気になった作動媒体(4
)(例えばアンモニア、フロン・プロパン等の低沸点熱
媒体)はタービン(5)に送られる。
Conventionally, power generation devices that utilize ocean temperature differences utilize the temperature difference between surface warm seawater (1) and deep cold seawater (8), as shown in the schematic configuration of Figure 1. The surface warm seawater (1) is pumped up by the warm seawater pump (2) and sent to the evaporator (3). The working medium (4) exchanges heat with warm seawater in the evaporator (3) and becomes high-temperature, high-pressure steam.
) (for example, ammonia, a low boiling point heat medium such as chlorofluorocarbon/propane) is sent to the turbine (5).

作動媒体(4)はターピノ(5)で低圧側に膨張してタ
ービン(5)を駆動し、タービン(5)に連結された発
電機(6)によって発電が行われる。
The working medium (4) is expanded to the low pressure side in the terpino (5) to drive the turbine (5), and power is generated by the generator (6) connected to the turbine (5).

タービ/(5)から排出され低圧に力つだ作動媒体(4
)は凝縮器(力に流れ、ここで深層冷海水(8)と熱交
換し、凝縮して液化し、作動媒体循環ポンプ(9)によ
って高圧側°の蒸発器(3)に送られ、ランキンサ契ク
ルを完成する。
The working medium (4) is discharged from the turbine (5) and is forced to low pressure.
) flows into the condenser (power), where it exchanges heat with deep cold seawater (8), condenses and liquefies, and is sent by the working medium circulation pump (9) to the evaporator (3) on the high pressure side, where it is sent to the Rankinsa Complete the contract.

ここで、表層温海水(1)は温海水ポンプ(2)によっ
て汲み上げられ前記したように蒸発器(3)に送られ作
動媒体(4)を加熱蒸発させた後、海洋に還元される。
Here, the surface warm seawater (1) is pumped up by the warm seawater pump (2) and sent to the evaporator (3) as described above, where the working medium (4) is heated and evaporated, and then returned to the ocean.

また、深層冷海水(8)は冷海水ポンプ00)によって
汲み上げられ、前記したような凝縮器(力において作動
媒体(4)を冷却凝縮させた後、海洋に還元される。
In addition, the deep cold seawater (8) is pumped up by a cold seawater pump 00), cooled and condensed in the working medium (4) in the aforementioned condenser (power), and then returned to the ocean.

上記海洋の表層海水温度は季節、場所によって差異があ
るがほぼ20°C〜30℃であり、これに対して、水深
500m以上の深層の海水温度は4〜10°Cであるの
で、両者間の温度差はせいぜい20°C程度のものであ
る。
The surface seawater temperature of the ocean mentioned above varies depending on the season and location, but it is approximately 20°C to 30°C, whereas the seawater temperature in the deep layer of 500 m or more is 4 to 10°C, so there is a difference between the two. The temperature difference is at most about 20°C.

このように、海洋の表層海水温度と深層海水温度との温
度差が比較的小さいので、サイクル効率が低く、単位海
水量から得られる電力が小さい。
As described above, since the temperature difference between the surface seawater temperature and the deep seawater temperature of the ocean is relatively small, the cycle efficiency is low and the electric power obtained from a unit amount of seawater is small.

そして、実用規模の電力を得ようとすれば、膨大な量の
海水が必要となシ、したがって、巨大な装置が必要とな
り、設備費と所内動力が犬となり、正味発生電力の単価
は高くなり、結局、海洋温度差発電装置の経済性は低い
という欠点がある。
In order to obtain electricity on a practical scale, a huge amount of seawater is required, which requires huge equipment, equipment costs and internal power costs, and the unit price of net generated electricity becomes high. , After all, the ocean temperature difference power generation device has the disadvantage of being low in economic efficiency.

一方、自然界には太陽熱エネルギーがあシ、日本の全天
日射量は日中でO03〜1゜OKVm2で、年間テハ1
400 KWH/ m’年と云われて因る。これは日中
でI Km’当り30〜100 KWのエネルギーが地
上にふりそそいでいることに等しい。
On the other hand, solar thermal energy is abundant in the natural world, and the total solar radiation in Japan is 003 to 1°OKVm2 during the day, and the annual solar radiation is
It is said to be 400 KWH/m' year. This is equivalent to 30 to 100 KW of energy being poured onto the ground per I km' during the day.

上記太陽エネルギーの熱エネルギーを利用して発電を行
なう太陽熱利用発電装置も特開昭52−4624、5号
公報、特開昭56−44411号公報等において公知で
ある。その1例の概略の構成は、第2図に示すように、
太陽熱を集熱器(11)によって集熱し、系を流れる蒸
気が集熱器0】)により、加熱蒸発されて蓄熱器(1つ
を経てタービン03)に入り、ター(3) 一ビン(13)を駆動してタービン(13)と連結され
ている発電機α4)によって発電する。タービン(13
)から排出された蒸気は凝縮器(151によって凝縮し
、ポンプtteによって集熱器(11)にもどる。
Solar thermal power generation devices that generate power using the thermal energy of the solar energy are also known in Japanese Patent Application Laid-open No. 52-4624, No. 5, Japanese Patent Application Laid-Open No. 56-44411, and the like. The schematic configuration of one example is as shown in Figure 2.
Solar heat is collected by a collector (11), and the steam flowing through the system is heated and evaporated by the collector (0), enters the heat storage unit (1), then enters the turbine (13). ) to generate electricity by a generator α4) connected to the turbine (13). Turbine (13
) is condensed by the condenser (151) and returned to the collector (11) by the pump tte.

この太陽熱利用発電装置は、夜間は太陽熱を利用するこ
とができず、また、雨天や曇天の時にはわずかの太陽熱
しか利用できないので、発電量の変動が大きく、これを
防止するために蓄熱器が必要である。このため設備費が
大きくなり、発電単価が高価になる欠点がある。
This solar power generation device cannot use solar heat at night, and only a small amount of solar heat can be used on rainy or cloudy days, so the amount of power generated fluctuates greatly, and a heat storage device is required to prevent this. It is. This has the drawback of increasing equipment costs and increasing the unit price of power generation.

本発明は、上述した海洋温度差利用発電と太陽熱利用発
電の欠点を解消し、海洋温度差発電サイクルの効率を高
めるために太陽熱利用の集熱設備を併用することを特徴
とする複合発電装置を提供することを目的とするもので
ある。
The present invention solves the above-mentioned drawbacks of power generation using ocean temperature difference and power generation using solar heat, and provides a combined power generation device characterized in that a solar heat collecting facility is used in combination to improve the efficiency of the ocean temperature difference power generation cycle. The purpose is to provide

このだめに、本発明の、海洋温度差および太陽熱利用複
合発電装置は、表層温海水を汲み上げるポンプと、前記
汲み上げられた温海水に太陽熱を吸収させて比較的高温
の海水にする太陽熱集熱器と、同集熱器により得られた
比較的高温の海水に(4) より作動媒体を蒸発する蒸発器と、取水した深層冷海水
によシ前記作動媒体を凝縮する凝縮器と、前記蒸発器と
前記凝縮器との間を循環する前記作動媒体によシ作動す
るタービンとを備えたことを特徴とする。
To avoid this, the combined power generation system using ocean temperature difference and solar heat according to the present invention includes a pump that pumps up surface warm seawater, and a solar heat collector that absorbs solar heat into the pumped warm seawater and turns it into relatively high-temperature seawater. (4) an evaporator that evaporates the working medium into the relatively high temperature seawater obtained by the heat collector; a condenser that condenses the working medium into the taken deep cold seawater; and the evaporator. and a turbine operated by the working medium circulating between the condenser and the condenser.

また、本発明の海洋温度差および太陽熱利用複合発電装
置は、前記太陽熱集熱器が陸上の砂浜を利用して設置し
たことを特徴とする。
Further, the combined power generation device using ocean temperature difference and solar heat according to the present invention is characterized in that the solar heat collector is installed using a sandy beach on land.

更に、本発明の海洋温度差および太陽熱利用複合発電装
置は、前記太陽熱集熱器が砂浜又はコンクリート等の表
面に吸熱管を配置したものからなり、輻射熱によシ海水
を加熱することを特徴とする。
Further, the combined power generation device using ocean temperature difference and solar heat according to the present invention is characterized in that the solar heat collector is composed of heat absorption pipes arranged on a surface of a sandy beach or concrete, and heats seawater by radiant heat. do.

更にまた本発明の海洋温度差および太陽熱利用複合発電
装置は、前記太陽熱集熱器が水を含有した砂又は水中に
吸熱管を埋設し、この吸熱管上を被覆したものからなる
ことを特徴とする。
Furthermore, the combined power generation device using ocean temperature difference and solar heat according to the present invention is characterized in that the solar heat collector is composed of a heat absorption tube buried in water-containing sand or water, and a coating on the heat absorption tube. do.

以下、本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図(イ)、(ロ)は本発明に係る海洋温度差および
太陽熱利用複合発電装置の概略の構成を示す系統図で、
第3図(イ)において、海洋の表層温海水(1)は温海
水ポンプ(2)によって汲み上げられ、太陽熱集熱器(
20)によって加熱され、ついで蒸発器(3)に送られ
て作動媒体(4)を加熱蒸発させた後、海洋に還元され
る。他の部分の構成は第1図に示した海洋温度差発電装
置と同一であるのでその説明は省略する。
FIGS. 3(a) and 3(b) are system diagrams showing the general configuration of the combined cycle power generation device using ocean temperature difference and solar heat according to the present invention,
In Figure 3 (a), warm ocean surface seawater (1) is pumped up by a warm seawater pump (2), and is pumped up by a solar heat collector (
20) and then sent to an evaporator (3) to heat and evaporate the working medium (4), which is then returned to the ocean. The configuration of other parts is the same as that of the ocean temperature difference power generation device shown in FIG. 1, so the explanation thereof will be omitted.

上記装置は太陽熱集熱器が温海水ラインに設けているが
、第3図(ロ)に示すように作動媒体ラインに設け、作
動媒体を直接加熱してもよい。この場合は、作動媒体(
4)は蒸発器(3)において蒸発した後、太陽熱集熱器
(20)によって加熱され、しかる後タービン(5)に
送られて発電が行われる。他の部分の構成は第1図に示
した海洋温度差発電装置と異々るところがないので、そ
の説明は省略する。
In the above device, the solar heat collector is provided in the warm seawater line, but as shown in FIG. 3 (b), it may be provided in the working medium line to directly heat the working medium. In this case, the working medium (
4) is evaporated in the evaporator (3), heated by the solar collector (20), and then sent to the turbine (5) to generate electricity. Since the configuration of other parts is the same as the ocean temperature difference power generation device shown in FIG. 1, the explanation thereof will be omitted.

なお、第3図〔イ)、1口)において、太陽熱集熱器(
20)の下流に蓄熱器を設けて加熱効率を高めてもよい
In addition, in Fig. 3 (a), 1 outlet), the solar heat collector (
A heat storage device may be provided downstream of 20) to increase heating efficiency.

ところで、太陽熱利用の集熱器は建設が容易で、建設費
が安価で耐久性があシ台風等の異常気象によって破壊さ
れ々いもので女ければならな1/1゜本発明はこれらの
ことから集熱器は洋上に設置するのでなく、陸上の砂浜
に設置する点に特長がある。以下、太陽熱集熱器につい
て説明すると、第4図は太陽熱集熱器の概略平面図であ
る。同図において、温海水または作動媒体は入口管(2
])よりヘッダ(22)に入り、ついでヘッダ(翌の長
手にわたって多数設けられた吸熱管(23)に分配され
て通り、再びヘッダ(22’)に収集されてから出口管
(24)から排出される。
By the way, solar heat collectors are easy to construct, inexpensive to construct, durable, and are not likely to be destroyed by abnormal weather such as typhoons. The unique feature of the heat collector is that it is installed on land, on a sandy beach, rather than on the ocean. The solar heat collector will be explained below. FIG. 4 is a schematic plan view of the solar heat collector. In the same figure, warm seawater or working medium is inlet pipe (2
]), enters the header (22), is then distributed to the header (next), is distributed to heat absorption pipes (23) provided in large numbers along its length, is collected again in the header (22'), and is then discharged from the outlet pipe (24). be done.

この際太陽熱集熱器(20)には陸上の砂浜又はコンク
リート等の上に設置する乾式集熱器と水を含有した砂又
は水中に埋設する湿式集熱器がある。
In this case, the solar heat collector (20) includes a dry type heat collector installed on a sandy beach or concrete on land, and a wet type heat collector buried in water-containing sand or water.

第5図は乾式集熱器の要部側面図で、吸熱管(23)を
砂浜又はコンクリ−1・等の表面に設置し、太陽光線の
輻射熱により吸熱管(23)を加熱し、吸熱管中の海水
又は作動媒体を加熱する。
Figure 5 is a side view of the main part of a dry type heat collector, in which the heat absorbing tube (23) is installed on the surface of a sandy beach or concrete 1, etc., and the heat absorbing tube (23) is heated by the radiant heat of the sun's rays. Heats the seawater or working medium inside.

また第6図に示されている例は、湿式集熱器で、水(海
水を含む)を含有した砂又は水(海水)中に吸熱管(2
3)を埋設し、その上に吸熱率の大きい黒色のポリエチ
レンフィルム09等の被膜が被覆され(7) ている。
The example shown in Figure 6 is a wet type heat collector, in which two heat absorbing tubes are placed in sand or water containing water (including seawater).
3) is buried and covered with a film such as black polyethylene film 09 which has a high heat absorption rate (7).

本発明は、表層温海水を汲み上げるポンプと、前記汲み
上げられた温海水に太陽熱を吸収させて比較的高温の海
水にする太陽熱集熱器と、同集熱器により得られた比較
的高温の海水により作動媒体を蒸発する蒸発器と、取水
した深層冷海水によシ前記作動媒体を凝縮する凝縮器と
、前記蒸発器と前記凝縮器との間の循環する前記作動媒
体により作動するタービンとを備えたことによシ、海洋
温度差発電と太陽熱発電の両者の欠点を除去し、補い合
って太陽熱を有効に利用することができ、産業上極めて
有益なものである。
The present invention provides a pump that pumps up surface warm seawater, a solar heat collector that absorbs solar heat into the pumped warm seawater and converts it into relatively high-temperature seawater, and a relatively high-temperature seawater obtained by the collector. an evaporator that evaporates a working medium by using water, a condenser that condenses the working medium using taken deep cold sea water, and a turbine that is operated by the working medium that circulates between the evaporator and the condenser. By providing this, the drawbacks of both ocean thermal power generation and solar thermal power generation can be eliminated, and solar heat can be used effectively by complementing each other, which is extremely useful industrially.

次に、本発明の太陽熱集熱器が陸上の砂浜等を利用した
ことにより、設置場所を陸地より遠い洋上としたものに
比べて建設が容易で建設費が安く耐久性のあるものが設
置できる。
Next, because the solar heat collector of the present invention uses a sandy beach on land, it is easier to construct and can be installed at a lower construction cost and is more durable than when it is installed on the ocean, which is farther away from land. .

また、本発明の太陽熱集熱器が砂浜又はコンクリート等
の表面に吸熱管を配置したものからなることにより、構
造が簡単で建設費が安い。そして太陽の光線及び地面の
輻射熱により直接熱を吸収(8) するので一段と熱効率を高めることができる。
Furthermore, since the solar heat collector of the present invention is made of heat absorbing tubes arranged on the surface of a sandy beach, concrete, etc., the structure is simple and the construction cost is low. It also absorbs heat directly from the sun's rays and the radiant heat from the ground (8), further increasing thermal efficiency.

更に、本発明の太陽熱集熱器が水を含有した砂又は水中
に吸熱管を埋設し、収熱管上を被膜で被覆したものから
なることにより、比熱の大きい水中(海水)に吸熱管が
配設され、太陽光線の強弱の影響が滑らかになり、気温
、風の影響を比較的受けにくい等の効果を奏する。
Furthermore, since the solar heat collector of the present invention is constructed by burying heat absorbing tubes in water-containing sand or water and coating the heat absorbing tubes with a film, the heat absorbing tubes can be placed in water (seawater) with a large specific heat. This has the effect of smoothing out the effects of the strength of sunlight and making it relatively less susceptible to the effects of temperature and wind.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は海洋温度差発電装置の概略系統図、第2図は太
陽熱発電装置の概略系統図、第3図(4+は本発明に係
る太陽熱集熱器が温海水ラインに設けられた海洋温度差
及び太陽熱利用複合発電装置の概略系統図、第3図(ロ
)は本発明に係る太陽熱集熱器が作動媒体ラインに設け
られた第3図C)と同様の図、第4図は本発明に係る太
陽熱集熱器の概略平面図、第5図は本発明に係る乾式吸
熱器の要部横断面図、第6図は本発明に係る湿式吸熱器
の要部横断面図である。 ■・・ 表層温海水、2・・温海水ポンプ、3・・蒸発
器、4・・作動媒体、5・・タービン、6・・発電機、
7・・凝縮機、8・・深層冷海水、9・・作動媒体循環
ポンプ、IO・・冷海水ポンプ、11・・集熱器、12
・・蓄熱器、13・・タービン、14・・発電機、15
・・凝縮器、16働・ポンプ、20・・太陽熱集熱器、
21・Φ入ロ管、22.22’ ・・ヘッダ、23・・
吸熱管、24・・出口管、25・・被膜。 第 3 図(イ) 第 3 図(ロ) 穿4図 第5 菌 第6図 手続補正書(自発) 昭和58年2月10日 特許庁長官 若杉和夫 殿 1、事件の表示 特願昭 57  年 220235号
2、発明の名称 海洋温度差および太陽熱全利用した複
合発電装慣3、補正をする者  事件との関係  出願
人名称  三菱重工業株式会社 4、後代  理  人 5、補正命令の日付  昭和   年   月   日
7、補正の内容 (A)明細書を次のように訂正します。 (1)特許請求の範囲を別紙のとおり訂正します。 (2+  第3頁第5−6行「ランキンサイクル」をし
ランキンサイクル」と訂正します。 (3)第4頁において、第3行「単位海水量から」を「
単位海水量から」と訂正し、第12行「30〜100K
WJを「30万〜100万KWJと訂正します。 (4)第7頁第16−17行「太陽熱・・・してもよい
。」を[発電量の変動を緩和するために、太陽熱集熱器
(20)の下流に蓄熱器を設けてもよい。」と訂正しま
す。 (5)第8頁第2行「砂浜」を「砂浜等」と訂正します
。 CB)図面中、第4頁に別紙コピーに朱書のように符号
24とその引出線を加入します。 特許請求の範囲 置。 ′光用−図
Fig. 1 is a schematic system diagram of an ocean temperature difference power generation device, Fig. 2 is a schematic system diagram of a solar thermal power generation device, and Fig. 3 (4+ indicates the ocean temperature at which the solar heat collector according to the present invention is installed in a warm seawater line). Figure 3 (B) is a diagram similar to Figure 3 (C) in which the solar heat collector according to the present invention is installed in the working medium line, and Figure 4 is a schematic system diagram of a solar heat combined cycle power generation device. FIG. 5 is a schematic plan view of a solar heat collector according to the present invention, FIG. 5 is a cross-sectional view of a main part of a dry heat absorber according to the present invention, and FIG. 6 is a cross-sectional view of a main part of a wet-type heat absorber according to the present invention. ■... Surface warm seawater, 2... Warm seawater pump, 3... Evaporator, 4... Working medium, 5... Turbine, 6... Generator,
7. Condenser, 8. Deep cold seawater, 9. Working medium circulation pump, IO. Cold seawater pump, 11. Heat collector, 12
... Heat storage device, 13 ... Turbine, 14 ... Generator, 15
・・Condenser, 16 working・Pump, 20・・Solar heat collector,
21. Φ inlet pipe, 22.22'...header, 23...
Endothermic pipe, 24... Outlet pipe, 25... Coating. Figure 3 (A) Figure 3 (B) Drill 4 Figure 5 Bacteria Figure 6 Procedural Amendment (Voluntary) February 10, 1982 Commissioner of the Patent Office Kazuo Wakasugi 1, Indication of Case Patent Application 1982 No. 220235 2, Title of the invention Combined power generation system that makes full use of ocean temperature difference and solar heat 3, Person making the amendment Relationship to the case Applicant name Mitsubishi Heavy Industries, Ltd. 4, Successor agent 5, Date of amendment order Showa year, month Day 7: Contents of amendment (A) The description will be amended as follows. (1) The scope of patent claims will be amended as shown in the attached sheet. (2+ On page 3, lines 5-6, ``Rankine cycle'' is corrected to ``Rankine cycle''.) (3) On page 4, line 3, ``From unit seawater volume'' is changed to
"From the unit seawater volume," and the 12th line reads "30 to 100K.
WJ is corrected to ``300,000 to 1 million KWJ.'' (4) Page 7, lines 16-17, ``Solar heat... may be used.'' A heat storage device may be provided downstream of the heat device (20). ” I am corrected. (5) On page 8, line 2, "sandy beach" is corrected to "sandy beach, etc." CB) Add the code 24 and its leader line in red on the attached copy on page 4 of the drawing. Claims. 'For light - diagram

Claims (4)

【特許請求の範囲】[Claims] (1)表層温海水を汲み上げるポンプと、前記汲み上げ
られた温海水に太陽熱を吸収させて比較的高温の海水に
する太陽熱集熱器と同集熱器により得られた比較的高温
の海水により作動媒体を蒸発する蒸発器と取水した深層
冷海水により前記作動媒体を凝縮する凝縮器と、前記蒸
発器と前記凝縮器との間を循環する前記作動媒体により
作動するタービンとを備えたことを特徴とする海洋温度
差及び太陽熱利用複合発電装置。
(1) A pump that pumps up surface warm seawater, a solar heat collector that absorbs solar heat into the pumped warm seawater and turns it into relatively high-temperature seawater, and is operated by the relatively high-temperature seawater obtained by the collector. It is characterized by comprising an evaporator that evaporates a medium, a condenser that condenses the working medium using taken deep cold sea water, and a turbine that is operated by the working medium that circulates between the evaporator and the condenser. A combined power generation device that uses ocean temperature difference and solar heat.
(2)前記太陽熱集熱器が陸上の砂浜等を利用して設置
されたことを特徴とする特許請求の範囲第1項記載の海
洋温度差および太陽熱利用複合発電装置。
(2) The combined power generation system utilizing ocean temperature difference and solar heat according to claim 1, wherein the solar heat collector is installed using a sandy beach or the like on land.
(3)前記太陽熱集熱器が砂浜又はコンクリート等の表
面に吸熱管を配置したものからなり輻射熱によシ海水を
加熱することを特徴とする特許請求の範囲第2項記載の
海洋温度差および太陽熱利用複合発電装置。
(3) The ocean temperature difference according to claim 2, wherein the solar heat collector is made of heat absorbing tubes arranged on the surface of a sandy beach or concrete, and heats seawater by radiant heat; Solar thermal combined power generation device.
(4)前記太陽熱集熱器が水を含有した砂又は水中に吸
熱管を埋設し、同吸熱管上を被覆したものからなること
を特徴とする特許請求の範囲第2項記載の海洋温度差お
よび太陽熱利用複合発電装置。
(4) The ocean temperature difference according to claim 2, wherein the solar heat collector is made of a heat absorbing tube buried in water-containing sand or water, and the top of the heat absorbing tube is covered. and solar thermal combined cycle power generation equipment.
JP57220235A 1982-12-17 1982-12-17 Compound generation device which utilizes sea temperature difference and solar heat Pending JPS59110872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57220235A JPS59110872A (en) 1982-12-17 1982-12-17 Compound generation device which utilizes sea temperature difference and solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57220235A JPS59110872A (en) 1982-12-17 1982-12-17 Compound generation device which utilizes sea temperature difference and solar heat

Publications (1)

Publication Number Publication Date
JPS59110872A true JPS59110872A (en) 1984-06-26

Family

ID=16748002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57220235A Pending JPS59110872A (en) 1982-12-17 1982-12-17 Compound generation device which utilizes sea temperature difference and solar heat

Country Status (1)

Country Link
JP (1) JPS59110872A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164603A1 (en) * 2011-05-30 2012-12-06 株式会社 日立製作所 Steam turbine power generation system
JP2013503299A (en) * 2009-08-27 2013-01-31 マクアリスター テクノロジーズ エルエルシー Increased efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
US8991182B2 (en) 2009-02-17 2015-03-31 Mcalister Technologies, Llc Increasing the efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
KR101534996B1 (en) * 2009-08-27 2015-07-08 맥알리스터 테크놀로지즈 엘엘씨 Increasing the efficiency of supplemented ocean thermal energy conversion (sotec) systems

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8991182B2 (en) 2009-02-17 2015-03-31 Mcalister Technologies, Llc Increasing the efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
JP2013503299A (en) * 2009-08-27 2013-01-31 マクアリスター テクノロジーズ エルエルシー Increased efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
KR101534996B1 (en) * 2009-08-27 2015-07-08 맥알리스터 테크놀로지즈 엘엘씨 Increasing the efficiency of supplemented ocean thermal energy conversion (sotec) systems
WO2012164603A1 (en) * 2011-05-30 2012-12-06 株式会社 日立製作所 Steam turbine power generation system

Similar Documents

Publication Publication Date Title
Mousavi et al. Development and life cycle assessment of a novel solar-based cogeneration configuration comprised of diffusion-absorption refrigeration and organic Rankine cycle in remote areas
Kalogirou Use of parabolic trough solar energy collectors for sea-water desalination
Delyannis Status of solar assisted desalination: a review
US4134393A (en) Solar energy collection
US4856281A (en) Solar power plant and still
Singh et al. Comparative Performance and parametric study of solar still: A review
EP0649985A1 (en) Thermal power generator
JPS5820286A (en) Sea water-desalinator using solar heat
CN106839513A (en) Electric power plant circulating water residual heat pump utilizes the energy conserving system combined with natural water accumulation of heat
Sharon Energy, exergy, environmental benefits and economic aspects of novel hybrid solar still for sustainable water distillation
Ahmed et al. A review on application of renewable energy for desalination technologies with emphasis on concentrated solar power
Sharon et al. Viability assessment of solar distillation for desalination in coastal locations of Indian sub-continent–thermodynamic, condensate quality and enviro-economic aspects
US4110174A (en) Power generation and potable water recovery from salinous water
US4191594A (en) Solar energy conversion
CN109028269B (en) Absorption heat pump unit and heat supply system for recycling low-temperature water source waste heat
Assareh et al. A new analysis for a concentrated solar power-based cogeneration system with molten salt energy storage and heat recovery steam generator–Case study–(USA, France, Canada)
US4121977A (en) Power generation and potable water recovery from salinous water
JPS59110872A (en) Compound generation device which utilizes sea temperature difference and solar heat
WO2006005242A1 (en) Method and equipment of power generation
CN201545714U (en) Solar high-temperature heat-collecting desalination water processing system
Moustafa et al. Design specifications and application of a100 kWc (700 kWth) cogeneration solar power plant
Darwish et al. Solar cogeneration power-desalting plant with assisted fuel
US4072579A (en) Power generation and potable water recovery from salinous water
Yamada et al. Thermal efficiency enhancement of ocean thermal energy conversion (OTEC) using solar thermal energy
CN207760377U (en) Coal gas of converter diffuses Tower System