JPS5825467A - Manufacture of zirconium base alloy-clad pipe - Google Patents

Manufacture of zirconium base alloy-clad pipe

Info

Publication number
JPS5825467A
JPS5825467A JP57116328A JP11632882A JPS5825467A JP S5825467 A JPS5825467 A JP S5825467A JP 57116328 A JP57116328 A JP 57116328A JP 11632882 A JP11632882 A JP 11632882A JP S5825467 A JPS5825467 A JP S5825467A
Authority
JP
Japan
Prior art keywords
manufacturing
temperature
cold rolling
based alloy
silicone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57116328A
Other languages
Japanese (ja)
Other versions
JPS6151626B2 (en
Inventor
グンナ−・ベステルルンド
トマス アンデルソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Sweden AB
Original Assignee
ASEA Atom AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA Atom AB filed Critical ASEA Atom AB
Publication of JPS5825467A publication Critical patent/JPS5825467A/en
Publication of JPS6151626B2 publication Critical patent/JPS6151626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は鳳す炉の燃料棒のためのジルコニウム基合金製
のクラツド管の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a cladding tube made of a zirconium-based alloy for a fuel rod in a carving furnace.

原子炉の燃料棒のためのクラツド管としては晋通ジルカ
ロイなる名称で知られたジルコニウム基合金の肉薄の管
が使用されている。これらの合金には錫、鉄、ニッケル
などの如き合金材料が含まれている。ジルカロイの場合
、C相は790℃以下で安定しβ相は950℃以上で安
定し、これに対し二相領域即ち礪シラスβ相領域は79
0℃と950℃との間において発生する。直相ではジル
コニウム原子は六角缶詰格子状に配置され、β相では体
心立方格子状に配列されている。腐食特性改善すどのよ
うな所望の特性を得るためのジルカロイのいわゆるβ急
冷時には材料はβ相域の温度に加熱しβ相域における温
度に急冷される。
Thin-walled zirconium-based alloy tubes known as Jintong Zircaloy are used as cladding tubes for fuel rods in nuclear reactors. These alloys include alloying materials such as tin, iron, nickel, etc. In the case of Zircaloy, the C phase is stable at temperatures below 790°C and the β phase is stable at temperatures above 950°C.
Occurs between 0°C and 950°C. In the normal phase, zirconium atoms are arranged in a hexagonal canned lattice, and in the β phase, they are arranged in a body-centered cubic lattice. In so-called β-quenching of Zircaloy to obtain desired properties such as improving corrosion properties, the material is heated to a temperature in the β-phase region and rapidly cooled to a temperature in the β-phase region.

従来ジルカロイのクラツド管の製造に当っては。When manufacturing conventional Zircaloy clad pipes.

イン♂ットvロッドに鍛造した後β急冷を実施する。ロ
ンドの押出しビレットの製造後ビレットは680℃以下
の温度で1相域状態に押出しされその後この押出し品は
数段階にわたる冷間圧延馨受は相次ぐ冷間圧延工程間で
後の冷間圧延を可能ならしめるよう625’−700℃
で焼鈍、中間焼鈍%:施す。夫々の中間焼鈍後の押出し
品の冷却は焼鈍温度のすぐ下の温度範囲でかついかなる
冷却剤も使用せずに毎分最大6℃の割合で比較的ゆるや
かに行われる。最後の冷間圧延工程の後で最終焼鈍な施
し所望特性な材料に付与する。この最終焼鈍は400°
から700℃の温度で実施される。
After forging into an input V-rod, β-quenching is performed. After the production of Ronde's extruded billet, the billet is extruded to a single-phase state at a temperature below 680°C, and then this extrudate is cold-rolled in several stages, allowing subsequent cold rolling between successive cold-rolling steps. 625'-700℃ to adjust
Annealed, intermediate annealing %: Applicable. Cooling of the extrudate after each intermediate annealing takes place relatively slowly at a rate of up to 6° C. per minute in a temperature range just below the annealing temperature and without the use of any coolant. After the final cold rolling step, a final annealing process imparts the desired properties to the material. This final annealing is 400°
It is carried out at temperatures from 700°C to 700°C.

従来採用された条件の下でシリカロイから製造した管は
一般VcWL子炉に適用される運転条件で腐食に対する
十分な抵抗をもつ奄のと立証されている。しかしながら
、情勢の発展は燃料組立体の作動時間が更に長びくこと
Kある。従って、クラッド材料は従来より長時間にわた
り腐食水にさらされその結果腐食損傷の危険が増大する
。従って、この機械的特性の好ましヵ為らざる変化をと
もなうことなしに使用合金により良好な腐食特性ヲ得る
のが望ましいことである。
Tubes made from silicaloy under conventionally employed conditions have proven to have sufficient resistance to corrosion under the operating conditions commonly applied to VcWL child furnaces. However, the evolving situation is such that the operating time of the fuel assembly becomes even longer. Therefore, the cladding material is exposed to corrosive water for a longer period of time than before, increasing the risk of corrosion damage. It is therefore desirable to obtain good corrosion properties from the alloy used without undesirable changes in its mechanical properties.

特に米国特許明細畳第4,238.251号より既に知
られている如くシリカロイの仕上がりttβ急冷するこ
とKよりいわゆる水中および高圧蒸気におけるいわゆる
加速ノジュラー腐食に対する管の抵抗性を改善すること
ができる。米国特許明細書第3,865.655号より
明らかなようK、押出し品を最終冷間圧延工程kかける
前にβ急冷を施丁こと忙より良好な機械的特性を有する
ジルカロイの管を得ることができる。
In particular, as already known from US Pat. No. 4,238,251, the resistance of the pipe to so-called accelerated nodular corrosion in water and high-pressure steam can be improved by quenching the finish of silicalloy. As is clear from U.S. Pat. No. 3,865,655, it is possible to obtain a Zircaloy tube with better mechanical properties by subjecting the extrudate to β quenching before subjecting it to a final cold rolling step. I can do it.

β急冷により加速ノジュラー腐食に対する抵抗の向上が
達成される正確な理由については未だ完全には確定され
てはいない。しかし、改良点は材料における金属間化合
物のサイズならびにその分布に係るものと考えられる。
The exact reason why β-quenching achieves improved resistance to accelerated nodular corrosion has not yet been fully determined. However, the improvements appear to be related to the size of the intermetallic compounds as well as their distribution in the material.

金属間化合物いわゆル第二相はジルコニウム以外に主と
して鉄、クローム、ニッケルの諸成分を含有する化合物
より成り粒状の形態な呈する。β急冷により達成される
溶解ならびに沈殿により、粒子サイズが減少し均轡分布
粒からβ相変独特形成される5粒の結晶粒界における配
列%:S成する粒子への再分布が得られる◎ 仕上がりクラツド管のβ急冷により管の延性が減少しこ
れKより製造方法の欠点が生じる。押出し品を冷関圧砥
前にその最終寸法にβ急冷することKより仕上がり管の
機械的特性の劣等化が減少する。しかしながら、β急冷
はそれが仕上がり管上に行われようが或は最終冷間圧延
工程の前に行われようがスクラップ量の増大と更に!表
面に除去せねばならぬ酸化物層の形成により生産高が低
下するととKなる。
The so-called second phase of the intermetallic compound is composed of a compound containing mainly iron, chromium, and nickel in addition to zirconium, and has a granular form. Due to the dissolution and precipitation achieved by β quenching, the particle size decreases and redistribution from uniformly distributed grains to grains with an arrangement of % S at the grain boundaries of 5 grains formed uniquely by β phase change is obtained. Beta quenching of the finished cladding tube reduces the ductility of the tube and this results in drawbacks of the manufacturing process. Beta-quenching the extrudate to its final dimensions before cold abrasion reduces deterioration of the mechanical properties of the finished tube. However, β-quenching, whether it is done on the finished tube or before the final cold rolling process, increases the amount of scrap and even more! The yield is reduced due to the formation of an oxide layer on the surface that must be removed.

本発明によれば、少くとも従来知られた最良のクラッド
管程の良好なノジュラー腐食九対する抵抗ならびにかか
るクラツド管より良好な延性を有する原子炉のための燃
料棒のためのクラツド管を製造できることが立証されて
いる。押出し後β急冷を使用する従来知られたクラツド
管の製造方法に比較して、同様にβ急冷を用いる本発明
の使用により製造工程の初期段階にβ急冷を実施するこ
とくより小表面上に形成酸化物が除去できるのでスクラ
ップの減少更に材料ロスの減少により生産高が向上する
ことKなる。
In accordance with the present invention, it is possible to produce cladding tubes for fuel rods for nuclear reactors that have good resistance to nodular corrosion and better ductility than at least the best cladding tubes previously known. has been proven. Compared to previously known methods of manufacturing clad tubes that use β-quenching after extrusion, the use of the present invention, which also uses β-quenching, allows for the production of tubes on small surfaces rather than carrying out β-quenching early in the manufacturing process. Since the formed oxides can be removed, production yields are improved due to less scrap and less material loss.

本発明は、原子炉の燃料棒のためのシリコニウム基合金
のクラツド管の製造方法にして、シリコニウム基合金が
押出しされ、その押出し品が冷間圧延と少くとも1つの
焼鈍、2つの連続する冷間圧延の間における中間焼鈍と
最終冷間圧延前のβ急冷とを受ける方法において、β急
冷が冷間圧延の前に実施され、その後少くとも1つの中
間焼鈍が500−610℃の温度で行われること1に特
徴とする方法に係る。中間焼鈍のための好適温度は50
0−610℃特に好適には550−600℃である。
The present invention provides a method for manufacturing silicone-based alloy cladding tubes for nuclear reactor fuel rods, in which the silicone-based alloy is extruded and the extrudate is subjected to cold rolling and at least one annealing process. A method of undergoing intermediate annealing during inter-rolling and β-quenching before final cold rolling, wherein β-quenching is carried out before cold rolling, and then at least one intermediate annealing is carried out at a temperature of 500-610°C. The method is characterized in that: The preferred temperature for intermediate annealing is 50
0-610°C, particularly preferably 550-600°C.

押出しは1相域で任意の温度で行われる。Extrusion is carried out in a one-phase region at any temperature.

最後の冷間圧延の後押出し品は400−675℃好遍に
は400−610℃好適には550−500℃の温度で
最終焼鈍を受ける。
After the final cold rolling, the extrudate is subjected to a final annealing at a temperature of 400-675°C, preferably 400-610°C, preferably 550-500°C.

押出し品のβ急冷はβ相域の温度適当には950−12
50℃好適には1000−1150℃の温度に加熱しそ
の後ぽ相域における温度に急冷することkより実施され
る。次にβ相域に使用する温度から790℃の温度に適
当に冷却が毎秒20−400℃の割合で行われ、790
℃から500℃又はそれ以下の温度に毎分5°C以上の
割合で冷却が行われる。
For β quenching of extruded products, the temperature in the β phase region is suitably 950-12.
It is carried out by heating to a temperature of 50°C, preferably 1000-1150°C, and then rapidly cooling to a temperature in the apophase region. Next, cooling is performed at a rate of 20-400°C per second from the temperature used in the β phase region to a temperature of 790°C.
℃ to 500 ℃ or less at a rate of 5 ℃ or more per minute.

本発明のクラツド管の製造に当り、仕上がり管の第二相
粒子のサイズはβ急冷を使用した場合の如く、押出し後
β急冷なともなわない従来のり2ツド管製造の場合のサ
イズよりかなり小さい点が判っている。しかしながら、
β急冷後の場合とはる。ノジュラー腐食に対する良好な
抵抗力と良好な機械的特性との好適な組合せを与えるも
のは本発明により達せられる第二相粒子の小サイズなら
びkその均等な分布であり得る。
In manufacturing the clad tube of the present invention, the size of the second phase particles in the finished tube is considerably smaller than that in the case of conventional glued two-layer tube manufacturing that does not involve β quenching after extrusion, such as when β quenching is used. is known. however,
β It is the case after rapid cooling. It may be the small size of the second phase particles and their uniform distribution achieved by the present invention that provides a suitable combination of good resistance to nodular corrosion and good mechanical properties.

シリコニウム基合金は好適忙はシリコニウム錫合金であ
り、例えば商品名シリカロイ2およびシリカ日イ4とし
て知られた合金であり、この合金成分含有量は錫で1.
2−1.7 %%鉄で0.07−0.24 Ls、りo
−hテ0.05−0.151 ニッケルでo −o、o
 s o sの範曲内にあり、残りはシリコニウムなら
びに通常の現存する不純物であり、そのチは本文記載の
他のチと同様重量当りチで記載されている。シリカロイ
2は1.2−1.7%の錫。
The siliconium-based alloy is preferably a siliconium-tin alloy, such as the alloys known under the trade names Silicaloy 2 and Silicaloy 4, which have a tin content of 1.
2-1.7%% iron with 0.07-0.24 Ls, Rio
-hte0.05-0.151 nickel o -o, o
It is within the range of s o s, the remainder being silicone as well as the usual existing impurities, which are stated in units of units per weight like the other units mentioned in the text. Silicaloy 2 is 1.2-1.7% tin.

0.07−0.20チの鉄、0.05−0.15%のク
ロムおよび肌03−0.08 %のニッケルを含有して
イル。ジ!J 力o(4t! 1.2−1.711b)
錫、0.18−0.24 %の鉄、0.07−0.13
チのクロムを含み、ニッケルは含まない。
Contains 0.07-0.20% iron, 0.05-0.15% chromium and 0.3-0.08% nickel. Ji! J force o (4t! 1.2-1.711b)
Tin, 0.18-0.24% Iron, 0.07-0.13
Contains chromium and does not contain nickel.

シリコニウム基合金は好適には、押出し罰にβ急冷処理
即ちβ相領域における温度に加熱し直相餉域における温
度に急冷する。しかしながら、ゾルコニウム基合金をβ
急冷処理を施さずに使用することが可能である。押出し
前のβ急冷は合金を適当には950−1250℃好適に
は1000−1150℃の温度に熱し一8Im域の温度
に急冷することにより行われる。次に、β相領域の使用
温度から750℃の温度への冷却が毎秒1−50℃の割
合で省われ、790℃から500℃又はそれ以下のkM
Eへの冷却は毎分5℃より大きな割合で好適に行われる
The siliconium-based alloy is preferably subjected to a beta quench treatment prior to extrusion, ie, heated to a temperature in the beta phase region and rapidly cooled to a temperature in the direct phase region. However, β
It can be used without quenching. Beta quenching prior to extrusion is carried out by heating the alloy suitably to a temperature of 950 DEG-1250 DEG C., preferably 1000 DEG-1150 DEG C., and rapidly cooling it to a temperature in the 18 Im range. Then, the cooling of the β-phase region from the working temperature to a temperature of 750°C is omitted at a rate of 1-50°C per second, and the cooling from 790°C to 500°C or less is
Cooling to E is preferably carried out at a rate of greater than 5° C. per minute.

次に本発明をその実施例をあけて詳述する。Next, the present invention will be explained in detail with reference to examples thereof.

ジルカロイ2のインボラトラ直径150−200腸のロ
ッドに鍛造する。このロッド片を1050℃の温度で1
5分間加熱し毎秒5−10℃の割合で室温に冷却するこ
と罠よりβ急冷処理する。押出しビレットなロッドから
作る。これらのビレットは700−740℃即ち一相域
の温度で押出しされる。その後押出し品には6段の冷間
圧延工程な施しそれにより管のR11,終外径は12.
3111となる。
Forged into a Zircaloy 2 Inborator diameter 150-200 diameter rod. This rod piece was heated to 1050℃ for 1
β-quenching treatment is performed by heating for 5 minutes and cooling to room temperature at a rate of 5-10°C per second. Made from extruded billet rod. These billets are extruded at temperatures of 700-740°C, ie in the one-phase range. The extruded product is then subjected to a six-stage cold rolling process, which gives the tube an R of 11 and a final outer diameter of 12.
It becomes 3111.

第1と第2の圧延の間および第2と最後の圧延の間で押
出し品は1時間にわたり700℃の温度に焼鈍される。
Between the first and second rolling and between the second and last rolling the extrudate is annealed to a temperature of 700° C. for 1 hour.

夫々の中間焼鈍後押出し品は焼鈍温度即ち700℃から
650℃の温度範囲における冷却速度が毎分10℃にな
るようヘリウムを満たした炉内で冷却される。最後の冷
間圧延後管は565℃の温度で最終的に焼鈍される。中
間焼鈍と最終焼鈍の両方は真空炉内で行われる。仕上が
り管において、第二相粒子はは’x 0.01−0.2
 pmの範囲のサイズと約0.1 pmの平均粒子サイ
ズをもつ、在米の方法で製造され仕上がり状態又は押出
し状態の初期においてβ急冷を受けなかったクラツド管
においては、第二相粒子はは’f0.1−0.6pmの
範Hのサイズと約0.3amの平均粒子サイズをもつ。
After each intermediate annealing, the extrudates are cooled in a helium-filled furnace at a cooling rate of 10°C per minute at the annealing temperature, i.e., in the temperature range from 700°C to 650°C. After the final cold rolling, the tube is finally annealed at a temperature of 565°C. Both intermediate and final annealing are performed in a vacuum furnace. In the finished tube, the second phase particles are 'x 0.01-0.2
In clad tubes manufactured by American methods and not subjected to beta quenching in the finished or early extruded state, with sizes in the pm range and average particle size of about 0.1 pm, the second phase particles are 'f with a size range H of 0.1-0.6 pm and an average particle size of about 0.3 am.

原子炉運転条件をそっくり模擬するものと立証されてい
る腐食テスト時1本発明により作られたクラツド管は、
押出し後β急冷処理をしない在来の製造で得られるもの
のほんの一部でかつ押出し後β急冷処理して製造特待ら
れるものとはソ同じ位の大きさのウェートゲインを示し
、本発明の場合50−10011717 am”でβ急
冷を使用せざる在来の製造時には350−4000”j
’/dm2である0本発明により作られたクラツド管の
蝿性は、仕上げ状態でβ急冷を受けた管よりも良好であ
り且つ最終冷間圧延の直前にβ急冷を受けた管よりも良
好である。
Clad pipes made according to the present invention were tested during corrosion tests that have been shown to closely simulate nuclear reactor operating conditions.
This is only a fraction of what can be obtained by conventional manufacturing without β-quenching treatment after extrusion, and shows a weight gain of about the same magnitude as that obtained by manufacturing with special treatment by β-quenching treatment after extrusion, and in the case of the present invention, the weight gain is 50%. -10011717 am” and 350-4000”j in conventional manufacturing without β quenching
'/dm2 is 0. The fly resistance of the clad tube made according to the present invention is better than that of a tube that has undergone β quenching in the finished state and is better than that of a tube that has undergone β quenching immediately before final cold rolling. It is.

上記腐食試験は、9.8MPaの圧力で且つ500℃の
温度で水蒸気の圧力容器内でおこなわれた。
The above corrosion tests were carried out in a steam pressure vessel at a pressure of 9.8 MPa and a temperature of 500°C.

ウェートゲインは、管が受けた腐食の程度を示す。Weight gain indicates the degree of corrosion that the tube has undergone.

代理人 浅 村   皓 外4名Agent Asamura Hao 4 other people

Claims (1)

【特許請求の範囲】 (1)  原子炉の燃料棒のためのシリコニウム基合金
のクラツド管の製造方法にして、シリコニウム基合金が
押出しされ、この押出し品が、冷間圧延と少くとも1つ
の焼鈍、2つの連続する冷間圧延量における中間焼鈍な
らびに最後の冷間圧延前におけるβ急冷な受けるような
方法において、β急冷が冷間圧延の前に実施されその後
に少くとも1つの中間焼鈍が500−675℃の温度で
実施されることt−特徴とする製造方法。 (2、特許請求の範囲第1項による製造方法にして、中
間焼鈍は500−610℃好適には550−600℃の
温度で実施されることな%徴とする製造方法。 (3)  411’Ffil求の範囲第1項又は第2項
のいづれかKよる製造方法にして、シリコニウム基合金
は′Nゞ量当り1.2−1.7 %の錫と、1蓋当り0
.07−0.241の鉄と、重量当り0.05−0.1
5 %のクロムと、重量当りo −o、o s sのニ
ッケルを含有し、残りはシリコニウムと普通の種類の任
意の現存する不純物であることVw像とする製造方法。 (4)特許請求の範囲第1項から第3項のいづれか1つ
の項による製造方法にして、押出し時使用されるシリコ
ニウム基合金はβ急冷されることを特徴とする製造方法
。 (5)%許論求の範囲第1項から第4項のいづれか1つ
の項による製造方法にして、押出し品は最後の冷間圧延
後400−675℃の温度で最終焼鈍を受けることを%
像とする製造方法。
[Scope of Claims] (1) A method of manufacturing a silicone-based alloy cladding tube for a nuclear reactor fuel rod, wherein the silicone-based alloy is extruded, and the extrudate is subjected to cold rolling and at least one annealing process. , an intermediate annealing in two successive cold rolling volumes as well as a β quench before the last cold rolling, wherein the β quench is carried out before the cold rolling and is followed by at least one intermediate annealing of 500 A manufacturing method characterized in that it is carried out at a temperature of -675°C. (2. The manufacturing method according to claim 1, wherein the intermediate annealing is carried out at a temperature of 500-610°C, preferably 550-600°C. (3) 411' In the manufacturing method according to either the first or second term of the Ffil requirement, the silicone-based alloy contains 1.2-1.7% tin per 'N' amount and 0 per lid.
.. 0.07-0.241 iron and 0.05-0.1 per weight
5% of chromium and o - o, o s s of nickel by weight, the remainder being silicone and any existing impurities of the common type. (4) A manufacturing method according to any one of claims 1 to 3, characterized in that the siliconium-based alloy used during extrusion is β-quenched. (5) Range of Permissible Percentage Percentage Percentage per cent of the manufacturing method according to any one of paragraphs 1 to 4, in which the extruded product undergoes a final annealing at a temperature of 400-675°C after the final cold rolling.
Manufacturing method for making images.
JP57116328A 1981-07-07 1982-07-06 Manufacture of zirconium base alloy-clad pipe Granted JPS5825467A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8104213A SE426890B (en) 1981-07-07 1981-07-07 SET TO MANUFACTURE Capsules of Zirconium-Based Alloy for Fuel Rods for Nuclear Reactors
SE8104213-7 1981-07-07

Publications (2)

Publication Number Publication Date
JPS5825467A true JPS5825467A (en) 1983-02-15
JPS6151626B2 JPS6151626B2 (en) 1986-11-10

Family

ID=20344212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116328A Granted JPS5825467A (en) 1981-07-07 1982-07-06 Manufacture of zirconium base alloy-clad pipe

Country Status (9)

Country Link
JP (1) JPS5825467A (en)
BE (1) BE893787A (en)
CA (1) CA1211344A (en)
DE (1) DE3224686A1 (en)
ES (1) ES8401665A1 (en)
FI (1) FI72006C (en)
FR (1) FR2509509B1 (en)
IT (1) IT1191203B (en)
SE (1) SE426890B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3504031A1 (en) * 1984-02-08 1985-09-19 Hitachi, Ltd., Tokio/Tokyo Coated sleeve for nuclear fuel and manufacturing process therefor
JPS62228442A (en) * 1985-12-09 1987-10-07 Hitachi Ltd Highly corrosion-resistant zirconium-base alloy and reactor fuel assembly by use of same
JPH06317687A (en) * 1985-12-09 1994-11-15 Hitachi Ltd High corrosion-resistant nuclear fuel sheathed tube, spacer, channel box and fuel assembly, and manufacture thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576654A (en) * 1982-04-15 1986-03-18 General Electric Company Heat treated tube
DE3429567A1 (en) * 1984-08-10 1986-02-20 Kraftwerk Union AG, 4330 Mülheim METHOD FOR STABILIZING THE CORROSION RESISTANCE OF A PIPE PIPE MADE OF A ZIRCONIUM ALLOY FOR A CORE REACTOR FUEL
FR2575764B1 (en) * 1985-01-10 1992-04-30 Cezus Co Europ Zirconium PROCESS FOR MANUFACTURING A STRIP OF ZIRCONIUM ALLOY ZIRCALOY 2 OR ZIRCALOY 4 RESTORED, AND STRIP OBTAINED
JPS62195938U (en) * 1986-05-31 1987-12-12
US5437747A (en) * 1993-04-23 1995-08-01 General Electric Company Method of fabricating zircalloy tubing having high resistance to crack propagation
SE514678C2 (en) * 1998-11-12 2001-04-02 Westinghouse Atom Ab Process for producing a component exposed to elevated radiation in a corrosive environment
CN113667914B (en) * 2021-08-09 2022-04-19 燕山大学 Method for preparing high-strength pure zirconium through cold deformation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1014833A (en) * 1974-07-12 1977-08-02 Stuart R. Macewen Zirconium base alloy and method of production
AU498717B2 (en) * 1975-02-25 1979-03-22 General Electric Company Zirconium alloy heat treatment
FR2334763A1 (en) * 1975-12-12 1977-07-08 Ugine Aciers PROCESS FOR IMPROVING THE HOT RESISTANCE OF ZIRCONIUM AND ITS ALLOYS
CA1139023A (en) * 1979-06-04 1983-01-04 John H. Davies Thermal-mechanical treatment of composite nuclear fuel element cladding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3504031A1 (en) * 1984-02-08 1985-09-19 Hitachi, Ltd., Tokio/Tokyo Coated sleeve for nuclear fuel and manufacturing process therefor
JPS62228442A (en) * 1985-12-09 1987-10-07 Hitachi Ltd Highly corrosion-resistant zirconium-base alloy and reactor fuel assembly by use of same
JPH06317687A (en) * 1985-12-09 1994-11-15 Hitachi Ltd High corrosion-resistant nuclear fuel sheathed tube, spacer, channel box and fuel assembly, and manufacture thereof

Also Published As

Publication number Publication date
FI72006C (en) 1987-03-09
ES513793A0 (en) 1983-12-16
ES8401665A1 (en) 1983-12-16
DE3224686C2 (en) 1987-02-19
JPS6151626B2 (en) 1986-11-10
DE3224686A1 (en) 1983-01-27
SE426890B (en) 1983-02-14
FI822394A0 (en) 1982-07-06
FI72006B (en) 1986-11-28
CA1211344A (en) 1986-09-16
BE893787A (en) 1982-11-03
FR2509509B1 (en) 1985-07-12
SE8104213L (en) 1983-01-08
IT8267860A0 (en) 1982-07-06
FI822394L (en) 1983-01-08
FR2509509A1 (en) 1983-01-14
IT1191203B (en) 1988-02-24

Similar Documents

Publication Publication Date Title
US4450020A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
US4450016A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
JP2575644B2 (en) Method for producing article made of zirconium-niobium alloy containing tin and third alloy element
US4689091A (en) Process for producing zirconium-based alloy
US4584030A (en) Zirconium alloy products and fabrication processes
EP0198570A2 (en) Process for producing a thin-walled tubing from a zirconium-niobium alloy
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
JP2976992B2 (en) Method for producing strip-shaped Zircaloy 4
JPH11509927A (en) Tube for nuclear fuel assembly and method of manufacturing the same
US3645800A (en) Method for producing wrought zirconium alloys
JPS6145699B2 (en)
JPS5825467A (en) Manufacture of zirconium base alloy-clad pipe
US4360389A (en) Zirconium alloy heat treatment process
JPS6234095A (en) Nuclear fuel coated tube
JPS5825466A (en) Manufacture of zirconium base alloy-clad pipe
JP4137181B2 (en) Zirconium-based alloy tubes for nuclear reactor fuel assemblies and processes for making such tubes
US2596485A (en) Titanium base alloy
JPH03209191A (en) Manufacture of clad tube for nuclear fuel rods
JPS6050869B2 (en) Method for manufacturing zirconium alloy structural members for boiling water reactors
US4717434A (en) Zirconium alloy products
JPS5822365A (en) Preparation of zirconium base alloy
JP3692006B2 (en) High corrosion resistance zirconium alloy, structural material for reactor core, and method for producing the same
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JPS59226158A (en) Manufacture of fuel structural member with high corrosion resistance
JPS5822366A (en) Preparation of zirconium base alloy