JP2976992B2 - Method for producing strip-shaped Zircaloy 4 - Google Patents

Method for producing strip-shaped Zircaloy 4

Info

Publication number
JP2976992B2
JP2976992B2 JP3076994A JP7699491A JP2976992B2 JP 2976992 B2 JP2976992 B2 JP 2976992B2 JP 3076994 A JP3076994 A JP 3076994A JP 7699491 A JP7699491 A JP 7699491A JP 2976992 B2 JP2976992 B2 JP 2976992B2
Authority
JP
Japan
Prior art keywords
annealing
zircaloy
final
hot
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3076994A
Other languages
Japanese (ja)
Other versions
JPH04224664A (en
Inventor
オースチン ウスター サムュエル
パトリック ドジャティー ジェームズ
ポール フォスター ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23965323&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2976992(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Publication of JPH04224664A publication Critical patent/JPH04224664A/en
Application granted granted Critical
Publication of JP2976992B2 publication Critical patent/JP2976992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

本発明は、ジルコニウムを基材とする材料に関し、より
詳細には、ストリップ状ジルカロイ4の耐蝕性(他の合
金類または管状ジルカロイ4の耐蝕性とは異なる)を改
善する方法に関する。
The present invention relates to a zirconium-based material, and more particularly, to a method for improving the corrosion resistance of strip-shaped zircaloy 4 (which is different from the corrosion resistance of other alloys or tubular zircaloy 4).

【0001】 原子炉、例えば加圧水型原子炉や沸騰水
型原子炉の開発において、燃料設計の観点から、コアス
トリップ及び被覆管(ストリップは、グリッド、案内管
等の形成に用いられる)の全てにつき要望が著しく増大
している。ストリップの腐食挙動は被覆管とは幾分異な
っている。というのはこれら2つは構造が著しく異なる
からである(つまり、ストリップは圧延加工され、被覆
管はピルガー製管法により形成される)。かかる構成要
素は従来ジルコニウム基合金、ジルカロイ2及びジルカ
ロイ4で出来ている。かかる構成要素に対し増大してい
る要望は、所要の滞留時間をより長くし構造部材をより
薄くしたいという形をとっているが、これらは共に潜在
的な腐蝕と水素化の双方あるいは何れか一方の問題を生
じさせている。
In the development of a nuclear reactor, for example, a pressurized water reactor or a boiling water reactor, from the viewpoint of fuel design, all of the core strips and cladding tubes (strips are used to form grids, guide tubes, etc.) The demand has increased significantly. The corrosion behavior of the strip is somewhat different from the cladding. The two are significantly different in structure (i.e., the strip is rolled and the cladding is formed by the Pilger tube process). Such components are conventionally made of a zirconium-based alloy, Zircaloy 2 and Zircaloy 4. Increasing demands for such components have taken the form of longer residence times and thinner structural components, both of which involve potential corrosion and / or hydrogenation. Is causing the problem.

【0002】商用原子炉では一般にジルカロイ2または
ジルカロイ4の何れかが用いられている(これについて
は米国特許第2,772,964号及び第3,148,
055号を参照されたい)。ジルカロイ2は、約1.2
〜1.7重量%の錫(以下全ての%表示は重量%を意味
するものとする)、0.07〜0.20%の鉄、約0.
05〜0.15%のクロム、約0.03〜0.08%の
ニッケルを含有するジルコニウム合金である。ジルカロ
イ4は、約1.2〜1.7%の錫、約0.18〜0.2
4%の鉄、約0.07〜0.13%のクロムを含有して
いる。
[0002] Commercial reactors generally use either Zircaloy 2 or Zircaloy 4 (see US Pat. Nos. 2,772,964 and 3,148,387).
No. 055). Zircaloy 2 is about 1.2
-1.7% by weight of tin (hereinafter all percentages are by weight), 0.07-0.20% of iron, approx.
Zirconium alloy containing 0.5-0.15% chromium and about 0.03-0.08% nickel. Zircaloy 4 contains about 1.2-1.7% tin, about 0.18-0.2
It contains 4% iron and about 0.07-0.13% chromium.

【0003】 ジルカロイ4の製造プロセスは耐食性に
着目して開発されてきた。一般に、加工法が異なると、
腐食が腐食面全体に均一に進行する全面腐食(uniform
corrosion)又は不均一な(nodular)腐食の何れか一方が
生じるが、両方とも生じることは無い。熱処理のばらつ
きによる影響は累積的なAパラメータで説明されていた
(これについては、Steinberg氏等の論文“Z
irconium in the Nuclear I
ndustry: Sixth Internatio
nal Symposium,ASTM STP 82
4、American Society for Te
sting and Materials、 Phil
adelphia,1984)。Charquet氏等
は、全面腐食(400℃)及び不均一腐食(500゜
C)に対する初期段階の管加工法の影響を研究した(こ
れについては、D.Charquet氏等の論文“In
fluence of Variations in
Early Fabrication Steps o
n Corrosion、 Mechanical P
roperties and Structures
of Zircaloy−4 Products” Z
irconium in theNuclear In
dustry: Seventh Internati
onal Symposium,ASTM,STP 9
39,ASTM,1987,pp.431−447を参
照されたい)。Charquet氏等の研究結果は、累
積的Aパラメータの増大につれ、不均一腐食は増大する
が全面腐食は減少することを示している。Charqu
et氏等の上記論文の441ページにも示されるよう
に、Aパラメータは当該技術分野で公知の正規化された
焼きなまし時間を表わし、下式により定義される: A=t x exp(−Q/RT) 上式において、 t=焼きなまし時間(in hours); Q=工程の活性化エネルギー(カロリー/モル); R=一般的なガス定数(カロリー/モル・度); T=絶対温度(in ゜K) 累積的Aパラメータは、焼入れ後のチューブのα−熱処
理履歴を示す。
The manufacturing process of Zircaloy 4 has been developed with a focus on corrosion resistance. Generally, if the processing method is different,
Uniform corrosion (uniform where corrosion progresses uniformly over the entire corroded surface)
Either corrosion or nodular corrosion occurs, but not both. The effect of heat treatment variations was described by a cumulative A-parameter (see Steinberg et al.
irconium in the Nuclear I
ndustry: Sixth International
nal Symposium, ASTM STP 82
4. American Society for Te
sting and Materials, Phil
adelphia, 1984). Charquet et al. Studied the effects of early stage tube processing methods on general corrosion (400 ° C.) and heterogeneous corrosion (500 ° C.) (see D. Charquet et al.
fluence of Variations in
Early Fabrication Steps o
n Corrosion, Mechanical P
rightsies and Structures
of Zircaloy-4 Products "Z
irconium in theNuclear In
dusty: Seventh International
onal Symposium, ASTM, STP 9
39, ASTM, 1987, pp. 431-447). The results of the study by Charquet et al. Show that as the cumulative A-parameter increases, heterogeneous corrosion increases but overall corrosion decreases. Charqu
As also shown on page 441 of the et al. article, et al., the A parameter represents the normalized annealing time as known in the art and is defined by: A = t x exp (−Q / RT) where: t = annealing time (in hours); Q = activation energy of the process (calories / mol); R = general gas constant (calories / mol-degree); T = absolute temperature (in ゜). K) Cumulative A parameter indicates the α-heat treatment history of the quenched tube.

【0004】本発明はストリップ状ジルカロイ4の改良
製造方法に関する。
[0004] The present invention relates to an improved method for producing strip-shaped Zircaloy 4.

【0005】本発明の要旨は、ジルカロイ4材料の真空
溶融、鍛造、熱間変形、β−焼なまし、焼入れ、熱間圧
延及び熱間圧延後焼なましを行い、次に、最終寸法への
最終冷間圧延を含む少なくとも2つの冷間圧延工程によ
る変形を行うが、冷間圧延工程間で中間焼なましを行
い、最終の冷間圧延工程実施後に最終焼なましを行うス
トリップ状ジルカロイ4の製造方法において、前記焼入
れ工程と最終寸法への最終冷間圧延工程との間における
最大加工温度を620゜Cにし、520゜Cの最大中間
焼なまし温度で応力除去焼なましを行い、熱間圧延、熱
間圧延後焼なまし、中間焼なまし時間と温度を組合わせ
て用いて4×10−19〜7×10−18時間の間のAパラ
メータを与え、セグメントパラメータを熱間圧延工程及
び各焼なまし工程について計算し、セグメントパラメー
タを、時間で表したその工程の実施時間と、exp(−
40000/T)を掛け合わせることによって算出し、
上記においてTは前記工程の実施時の絶対温度、Aパラ
メータはセグメントパラメータの和であることを特徴と
するストリップ状ジルカロイ4の製造方法にある。
[0005] The gist of the present invention is to perform vacuum melting, forging, hot deformation, β-annealing, quenching, hot rolling and annealing after hot rolling of Zircaloy 4 material, and then to final dimensions. Deformation by at least two cold rolling steps including final cold rolling, wherein an intermediate annealing is performed between the cold rolling steps and a final annealing is performed after the final cold rolling step is performed. In the manufacturing method 4, the maximum working temperature between the quenching step and the final cold rolling step to the final size is set to 620 ° C., and the stress relief annealing is performed at the maximum intermediate annealing temperature of 520 ° C. Hot rolling, annealing after hot rolling, intermediate annealing time and temperature in combination to give an A parameter between 4 × 10 -19 and 7 × 10 -18 hours, Cold rolling process and each annealing process And the segment parameter is calculated as the execution time of the process in time, exp (-
40000 / T).
In the above, T is the absolute temperature at the time of performing the above step, and the A parameter is the sum of the segment parameters.

【0006】 本発明の要旨は、ジルカロイ4材料の真
空溶融、鍛造、熱間変形、β−焼なまし、焼入れ、熱間
圧延及び熱間圧延後焼なましを行い、次に、最終寸法へ
の最終冷間圧延を含む少なくとも2つの冷間圧延工程に
よる変形を行うが、冷間圧延工程間で中間焼なましを行
い、最終の冷間圧延工程実施後に最終焼なましを行うス
トリップ状ジルカロイ4の製造方法において、前記焼入
れ工程と最終寸法への最終冷間圧延工程との間における
最大加工温度を620゜Cにし、520゜Cの最大中間
焼なまし温度で応力除去焼なましを行い、Aパラメータ
が4×10−19〜7×10−18時間の間の値となる、熱
間圧延、熱間圧延後焼なまし、中間焼なましの時間と温
度の組合わせを用いることを特徴とし、Aパラメータ
は、熱間圧延工程及び各焼なまし工程につき、時間で表
したその工程の実施時間と、exp(−40000/
T)を掛け合わせることによって算出したセグメントパ
ラメータの和であり、上式のTは前記工程の実施時の絶
対温度である、ストリップ状ジルカロイ4の製造方法に
ある。
The gist of the present invention is to perform vacuum melting, forging, hot deformation, β-annealing, quenching, hot rolling and annealing after hot rolling of Zircaloy 4 material, and then to final dimensions. Deformation by at least two cold rolling steps including final cold rolling, wherein an intermediate annealing is performed between the cold rolling steps and a final annealing is performed after the final cold rolling step is performed. In the manufacturing method 4, the maximum working temperature between the quenching step and the final cold rolling step to the final size is set to 620 ° C., and the stress relief annealing is performed at the maximum intermediate annealing temperature of 520 ° C. , a parameter has a value between 4 × 10- 19 ~7 × 10- 18 hours, hot rolling, after hot rolling annealing, the use of a combination of time and temperature intermediate anneal Characteristic, A parameter is the hot rolling process and Per annealing step, the execution time of the process in terms of time, exp (-40000 /
T) is the sum of the segment parameters calculated by multiplying by T), and T in the above equation is the method for producing the strip-shaped zircaloy 4, which is the absolute temperature at the time of performing the above step.

【0007】 ジルカロイ4を第2図に概略的に示すプ
ロセス順序に従って加工した。ジルカロイ4を真空溶融
(ブロック60)し鍛造(ブロック62)し、押出し加
工(ブロック64)し、次にβ−焼き入れ加工(ブロッ
ク66)した。β−焼入れ加工を、大径中空シリンダを
4分間の間、誘導加熱し、次に水で焼入れすることによ
って行った。チャンネル用ストリップの製造に当たり、
β−焼入れした材料を580゜Cで熱間圧延(ブロック
68)し、580゜Cの温度で2時間の間、再結晶焼な
まし(ブロック70)し、2工程(各工程で40%の減
少)で冷間圧延(ブロック72,76)し、510゜C
で2時間の間、中間の応力除去焼なまし(ブロック7
4)し、次に最終の熱処理(ブロック78)を行った。
スペーサの製造のためには、β−焼入れした材料を58
0゜Cで熱間圧延(ブロック80)し、580゜Cで2
時間の間、再結晶焼なまし(ブロック82)し、510
゜Cで3時間の間、冷間圧延(ブロック84)し、51
0゜Cで3時間の間応力除去焼きなまし(ブロック8
6)し、2工程で(各工程で45%の減少)冷間圧延
(ブロック88,92)し、それぞれ2時間、3時間の
間、510℃で応力除去焼なまし(ブロック90,9
4)し、最終寸法(44%の減少)まで冷間圧延(ブロ
ック96)し、最終の熱処理(ブロック98)を行っ
た。
[0007] Zircaloy 4 was processed according to the process sequence schematically illustrated in FIG. Zircaloy 4 was vacuum melted (block 60), forged (block 62), extruded (block 64), and then β-quenched (block 66). β-quenching was performed by induction heating a large diameter hollow cylinder for 4 minutes and then quenching with water. In producing channel strips,
The β-quenched material is hot rolled at 580 ° C. (block 68), recrystallized and annealed at a temperature of 580 ° C. for 2 hours (block 70), and subjected to two steps (40% of each step). Cold rolling (blocks 72 and 76) at 510 ° C
Intermediate stress relief annealing (block 7) for 2 hours
4) Then, a final heat treatment (block 78) was performed.
For the manufacture of the spacer, the β-quenched material is 58
Hot rolling (block 80) at 0 ° C, 2 at 580 ° C
Recrystallization annealing for a period of time (block 82), 510
Cold rolling (block 84) for 3 hours at ゜ C, 51
Stress relief annealing at 0 ° C for 3 hours (Block 8
6) Cold rolled (blocks 88, 92) in two steps (45% reduction in each step), stress relief annealing at 510 ° C. for 2 hours and 3 hours, respectively (blocks 90, 9)
4) and cold rolled (block 96) to final dimensions (44% reduction) and final heat treatment (block 98).

【0008】本発明の内容は添付の図面を参照しながら
以下の詳細な説明を読むと一層明らかになろう。
The content of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.

【0009】現行のプロセス順序が第1図に概略的に示
されている。第1図を参照すると、ストリップ状ジルカ
ロイ4は、真空溶融工程10、鍛造工程12、次に熱間
圧延工程14、次にβ−焼なまし工程16を経て製造さ
れる。β−焼なまし工程16は、1015゜C〜113
0゜Cの温度で2〜30分間、流動床式焼なまし処理を
行い、次に水で焼入れして行う。ジルカロイ4のチャン
ネル用ストリップの製造のため、β−焼入れ処理をした
材料を600゜Cで熱間圧延(ブロック20)し、60
0゜Cで2時間の間焼なまし(22)し、2工程で冷間
圧延(ブロック24,28)し(各工程で40%)、5
10゜Cで2時間の間、中間の応力除去焼なまし(ブロ
ック26)し、650゜Cの温度で約3時間の間、最終
の再結晶焼なまし(ブロック30)をする。ジルカロイ
4スペーサ用ストリップの製造のためには、β−焼入れ
した材料を600゜Cで熱間圧延(ブロック40)し、
600゜Cの温度で2時間の間、焼なまし(ブロック4
2)し、1工程で冷間圧延し(ブロック44)し(40
%)、510゜Cの温度で2時間の間、応力除去焼なま
し(ブロック46)し、2工程で冷間圧延(ブロック4
8,52)し(各工程で40%)、次に510゜Cで3
時間の間、応力除去焼なまし(ブロック50,54)を
し、冷間圧延(ブロック56)して最終寸法(44%)
にし、次に650゜Cの温度で3時間の間、最終の再結
晶焼なまし(ブロック58)をする。このプロセス順序
により、4×10−19〜7×10−18時間の累積的Aパ
ラメータの値が得られた。
The current process sequence is schematically illustrated in FIG. Referring to FIG. 1, the strip-shaped Zircaloy 4 is manufactured through a vacuum melting step 10, a forging step 12, then a hot rolling step 14, and then a β-annealing step 16. β-annealing step 16 is 1015 ° C. to 113
A fluidized bed annealing treatment is performed at a temperature of 0 ° C. for 2 to 30 minutes, followed by quenching with water. To produce a channel strip of Zircaloy 4, the β-quenched material was hot rolled at 600 ° C. (block 20),
Anneal at 0 ° C. for 2 hours (22), cold-roll in two steps (blocks 24, 28) (40% in each step), 5
An intermediate stress relief anneal at 10 ° C for 2 hours (block 26) and a final recrystallization anneal at 650 ° C for about 3 hours (block 30). For the production of the Zircaloy 4 spacer strip, the β-quenched material is hot rolled at 600 ° C. (block 40).
Anneal at 600 ° C for 2 hours (Block 4
2) Then, cold rolling is performed in one step (block 44) and (40)
%), Stress relief annealing at a temperature of 510 ° C. for 2 hours (block 46) and cold rolling in two steps (block 4).
8,52) (40% in each step), then 3% at 510 ° C
During the time, stress relief annealing (blocks 50, 54) and cold rolling (block 56) to final dimensions (44%)
Followed by a final recrystallization anneal (block 58) at a temperature of 650 ° C. for 3 hours. This process sequence resulted in a cumulative A-parameter value of 4 × 10 −19 to 7 × 10 −18 hours.

【0010】ジルカロイ4を第2図に概略的に示すプロ
セス順序に従って加工した。ジルカロイ4を真空溶融
(ブロック60)し鍛造(ブロック62)し、押出し加
工(ブロック64)し、次にβ−焼き入れ加工(ブロッ
ク66)した。β−焼入れ加工を、大径中空シリンダを
4分間の間、誘導加熱し、次に水で焼入れすることによ
って行った。チャンネル用ストリップの製造に当たり、
β−焼入れした材料を580゜Cで熱間圧延(ブロック
68)し、580゜Cの温度で2時間の間、再結晶焼な
まし(ブロック70)し、2工程(各工程で40%の減
少)で冷間圧延(ブロック72,76)し、510゜C
で2時間の間、中間の応力除去焼なまし(ブロック7
4)し、次に最終の熱処理(ブロック78)を行った。
スペーサの製造のためには、β−焼入れした材料を58
0゜Cで熱間圧延(ブロック80)し、580゜Cで2
時間の間、再結晶焼なまし(ブロック82)し、510
゜Cで3時間の間、冷間圧延(ブロック84)し、2工
程で(各工程で45%の減少)冷間圧延(ブロック8
8,92)し、それぞれ2時間、3時間の間、510℃
で応力除去焼なまし(ブロック90,94)し、最終寸
法(44%の減少)まで冷間圧延(ブロック96)し、
最終の熱処理(ブロック98)を行った。
Zircaloy 4 was processed according to the process sequence shown schematically in FIG. Zircaloy 4 was vacuum melted (block 60), forged (block 62), extruded (block 64), and then β-quenched (block 66). β-quenching was performed by induction heating a large diameter hollow cylinder for 4 minutes and then quenching with water. In producing channel strips,
The β-quenched material is hot rolled at 580 ° C. (block 68), recrystallized and annealed at a temperature of 580 ° C. for 2 hours (block 70), and subjected to two steps (40% of each step). Cold rolling (blocks 72 and 76) at 510 ° C
Intermediate stress relief annealing (block 7) for 2 hours
4) Then, a final heat treatment (block 78) was performed.
For the manufacture of the spacer, the β-quenched material is 58
Hot rolling (block 80) at 0 ° C, 2 at 580 ° C
Recrystallization annealing for a period of time (block 82), 510
Cold rolling for 3 hours at ゜ C (block 84) and cold rolling in two steps (45% reduction in each step) (block 8)
8,92), and for 2 hours and 3 hours, respectively, at 510 ° C.
Stress relief annealing (blocks 90 and 94) and cold rolling (block 96) to final dimensions (44% reduction);
A final heat treatment (block 98) was performed.

【0011】不均一腐食に関する試験を、静止したオー
トクレーブ内において500゜Cで1日間実施した。蒸
気による全面腐食に関する試験を、460゜Cの温度状
態にて3〜88日間の暴露時間で実施した。これらの結
果を第3図に示す。符号“+”は、チャンネル用ストリ
ップのデータを示し、符号“□”はスペーサのデータを
示している。
The test for heterogeneous corrosion was carried out in a stationary autoclave at 500 ° C. for one day. The test for general corrosion by steam was carried out at a temperature of 460 ° C. for an exposure time of 3 to 88 days. These results are shown in FIG. The sign “+” indicates channel strip data, and the sign “□” indicates spacer data.

【0012】第2図に示すプロセス順序を用いると共に
最終の再結晶焼なまし処理を制御することにより、全面
腐食に対する最大抵抗(400゜C、第3A図)及び不
均一腐食に対する最大抵抗(500゜C、第3B図)が
得られた。第3図は、累積的Aパラメータが4×10
−19〜7×10−18時間の場合に全面腐食に対する最大
抵抗(腐食速度:mg/dm−日数)、不均一腐食に
対する最大抵抗(重量増加−mg/dm−日数)が得
られた。
By using the process sequence shown in FIG. 2 and controlling the final recrystallization annealing process, the maximum resistance to general corrosion (400 ° C., FIG. 3A) and the maximum resistance to non-uniform corrosion (500 ΔC, FIG. 3B) was obtained. FIG. 3 shows that the cumulative A parameter is 4 × 10
In the case of −19 to 7 × 10 −18 hours, the maximum resistance to general corrosion (corrosion rate: mg / dm 2 -days) and the maximum resistance to uneven corrosion (weight increase-mg / dm 2 -days) were obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1図は、加工順序の一例を示す概略ブロック
図である。
FIG. 1 is a schematic block diagram showing an example of a processing order.

【図2】第2図は、加工順序のもう1つの例を示す概略
的なブロック図である。
FIG. 2 is a schematic block diagram showing another example of a processing order.

【図3】第3A図及び第3B図は、それぞれ400゜
C、500゜Cにおける腐食試験結果を表わすグラフ図
である。
FIGS. 3A and 3B are graphs showing corrosion test results at 400 ° C. and 500 ° C., respectively.

フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 683 C22F 1/00 684Z 684 685Z 685 686Z 686 691B 691 691C 694B 694 G21C 3/06 N (72)発明者 ジョン ポール フォスター アメリカ合衆国 ペンシルベニア州 モ ンロービル ロンドンデリー コート 200 (56)参考文献 特開 昭61−170552(JP,A) 特開 昭61−163254(JP,A) 特開 昭64−73060(JP,A) 特開 昭61−210166(JP,A) journal of nuclea r materials,Vol.173, No.2,pp.164−178(1990) (58)調査した分野(Int.Cl.6,DB名) C22F 1/18 G21C 3/07 Continued on the front page (51) Int.Cl. 6 Identification FI C22F 1/00 683 C22F 1/00 684Z 684 685Z 685 686Z 686 691B 691 691C 694B 694 G21C 3/06 N (72) Inventor John Paul Foster United States of America Pennsylvania Courtesy of Monroeville, London 200 Delhi Court 200 (56) Reference JP-A-61-170552 (JP, A) JP-A-61-163254 (JP, A) JP-A-64-73060 (JP, A) JP-A 61-170 210166 (JP, A) Journal of Nuclear Materials, Vol. 173, no. 2, pp. 164-178 (1990) (58) Field surveyed (Int. Cl. 6 , DB name) C22F 1/18 G21C 3/07

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ジルカロイ4材料の真空溶融、鍛造、熱
間変形、β−焼なまし、焼入れ、熱間圧延及び熱間圧延
後焼なましを行い、次に、最終寸法への最終冷間圧延を
含む少なくとも2つの冷間圧延工程による変形を行う
が、冷間圧延工程間で中間焼なましを行い、最終の冷間
圧延工程実施後に最終焼なましを行うストリップ状ジル
カロイ4の製造方法において、前記焼入れ工程と最終寸
法への最終冷間圧延工程との間における最大加工温度を
620゜Cにし、520゜Cの最大中間焼なまし温度で
応力除去焼なましを行い、Aパラメータが4×10−19
〜7×10−18時間の間の値となる、熱間圧延、熱間圧
延後焼なまし、中間焼なましの時間と温度の組合わせを
用いることを特徴とし、Aパラメータは、熱間圧延工程
及び各焼なまし工程につき、時間で表したその工程の実
施時間と、exp(−40000/T)を掛け合わせる
ことによって算出したセグメントパラメータの和であ
り、上式のTは前記工程の実施時の絶対温度である、ス
トリップ状ジルカロイ4の製造方法。
1. Zircaloy 4 material is vacuum-melted, forged, hot-deformed, β-annealed, quenched, hot-rolled and post-hot-rolled, and then cold-finished to final dimensions. A method for producing a strip-shaped zircaloy 4 in which deformation is performed by at least two cold rolling steps including rolling, wherein intermediate annealing is performed between the cold rolling steps, and final annealing is performed after the final cold rolling step is performed. In the above, the maximum working temperature between the quenching step and the final cold rolling step to the final dimensions is set to 620 ° C., stress relief annealing is performed at the maximum intermediate annealing temperature of 520 ° C., and the A parameter is 4 × 10- 19
A value between the to 7-× 10- 18 hours, hot rolling, after hot rolling annealing, characterized by using a combination of time and temperature of the intermediate anneal, A parameter, hot For each of the rolling step and each annealing step, it is the sum of segment parameters calculated by multiplying the execution time of the step in time and exp (-40000 / T), and T in the above equation is A method for producing a strip-shaped Zircaloy 4, which is an absolute temperature at the time of implementation.
【請求項2】 熱間圧延工程及び熱間圧延後焼なまし工
程を560〜620゜C、中間焼なまし工程を400〜
520゜C、最終の冷間圧延工程実施後に実施する最終
焼なまし工程を560〜710゜Cの温度状態でそれぞ
れ実施することを特徴とする請求項1のストリップ状ジ
ルカロイ4の製造方法。
2. The hot rolling step and the post-hot rolling annealing step are performed at 560 to 620 ° C., and the intermediate annealing step is performed at 400 to 620 ° C.
The method for producing a strip-shaped zircaloy 4 according to claim 1, wherein the final annealing step performed at 520 ° C and after the final cold rolling step is performed at a temperature of 560 to 710 ° C, respectively.
【請求項3】 熱間圧延工程及び熱延圧延段階後焼なま
し工程の実施時間は1.5〜3時間、最終の焼なまし工
程の実施時間は1.5〜15時間、最終の冷間圧延工程
実施後に行う最終焼なまし工程の実施時間は1〜5時間
であることを特徴とする請求項2のストリップ状ジルカ
ロイ4の製造方法。
3. The implementation time of the annealing step after the hot rolling step and the hot rolling step is 1.5 to 3 hours, the execution time of the final annealing step is 1.5 to 15 hours, 3. The method for producing a strip-shaped zircaloy 4 according to claim 2, wherein the time of the final annealing step performed after the cold rolling step is 1 to 5 hours.
【請求項4】 β−焼なまし工程を、1015〜113
0゜Cの温度状態で2〜30分間、実施することを特徴
とする請求項2のストリップ状ジルカロイ4の製造方
法。
4. The method of claim 1, wherein the β-annealing step comprises:
3. The method for producing a strip-shaped zircaloy 4 according to claim 2, wherein the method is performed at a temperature of 0 ° C. for 2 to 30 minutes.
JP3076994A 1990-03-16 1991-03-15 Method for producing strip-shaped Zircaloy 4 Expired - Fee Related JP2976992B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/494,638 US5194101A (en) 1990-03-16 1990-03-16 Zircaloy-4 processing for uniform and nodular corrosion resistance
US494638 1990-03-16

Publications (2)

Publication Number Publication Date
JPH04224664A JPH04224664A (en) 1992-08-13
JP2976992B2 true JP2976992B2 (en) 1999-11-10

Family

ID=23965323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3076994A Expired - Fee Related JP2976992B2 (en) 1990-03-16 1991-03-15 Method for producing strip-shaped Zircaloy 4

Country Status (7)

Country Link
US (1) US5194101A (en)
EP (1) EP0446924B1 (en)
JP (1) JP2976992B2 (en)
KR (1) KR100199776B1 (en)
CA (1) CA2038383C (en)
DE (1) DE69105311T2 (en)
ES (1) ES2064789T3 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683828B1 (en) * 1991-11-18 1994-08-26 Cezus Cie Europ Zirconium PROCESS FOR THE MANUFACTURE OF SHEETS WITH A HOMOGENEOUS STRUCTURE IN ZIRCALOY 2 OR ZIRCALOY 4.
SE502865C2 (en) * 1993-06-23 1996-02-05 Asea Atom Ab Heat treatment of casing and piping at nuclear fuel elements for pressurized water reactors
US5417780A (en) * 1993-10-28 1995-05-23 General Electric Company Process for improving corrosion resistance of zirconium or zirconium alloy barrier cladding
FR2713009B1 (en) * 1993-11-25 1996-01-26 Framatome Sa Method of manufacturing a cladding tube for a nuclear fuel rod and tubes in accordance with those thus obtained.
US5480498A (en) * 1994-05-20 1996-01-02 Reynolds Metals Company Method of making aluminum sheet product and product therefrom
SE513488C2 (en) * 1994-06-22 2000-09-18 Sandvik Ab Methods of Manufacturing Zirconium Base Alloy Tubes for Nuclear Reactors and Using the Method of Manufacturing Such Tubes
FR2723965B1 (en) * 1994-08-30 1997-01-24 Cezus Co Europ Zirconium PROCESS FOR THE MANUFACTURE OF ZIRCONIUM ALLOY SHEETS WITH GOOD RESISTANCE TO NODULAR CORROSION AND DEFORMATION UNDER IRRADIATION
FR2730090B1 (en) * 1995-01-30 1997-04-04 Framatome Sa ZIRCONIUM-BASED ALLOY TUBE FOR NUCLEAR FUEL ASSEMBLY AND METHOD FOR MANUFACTURING SUCH A TUBE
US6423164B1 (en) 1995-11-17 2002-07-23 Reynolds Metals Company Method of making high strength aluminum sheet product and product therefrom
US5900083A (en) * 1997-04-22 1999-05-04 The Duriron Company, Inc. Heat treatment of cast alpha/beta metals and metal alloys and cast articles which have been so treated
US20030052000A1 (en) * 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
JPH11194189A (en) * 1997-10-13 1999-07-21 Mitsubishi Materials Corp Production for zr alloy tube for reactor fuel clad superior in corrosion resistivity and creep characteristic
WO2000058973A2 (en) * 1999-03-29 2000-10-05 Framatome Anp Gmbh Fuel element for a pressurised-water reactor and method for producing the cladding tube thereof
US6878250B1 (en) * 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US20040072009A1 (en) * 1999-12-16 2004-04-15 Segal Vladimir M. Copper sputtering targets and methods of forming copper sputtering targets
US7517417B2 (en) * 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
KR100382997B1 (en) * 2001-01-19 2003-05-09 한국전력공사 Method of Manufacturing A Tube and A Sheet of Niobium-containing Zirconium Alloys for High Burn-up Nuclear Fuel
US20060227924A1 (en) * 2005-04-08 2006-10-12 Westinghouse Electric Company Llc High heat flux rate nuclear fuel cladding and other nuclear reactor components
US7625453B2 (en) 2005-09-07 2009-12-01 Ati Properties, Inc. Zirconium strip material and process for making same
US20070084527A1 (en) * 2005-10-19 2007-04-19 Stephane Ferrasse High-strength mechanical and structural components, and methods of making high-strength components
US20070251818A1 (en) * 2006-05-01 2007-11-01 Wuwen Yi Copper physical vapor deposition targets and methods of making copper physical vapor deposition targets
FR2909388B1 (en) 2006-12-01 2009-01-16 Areva Np Sas CORROSION RESISTANT ZIRCONIUM ALLOY FOR FUEL ASSEMBLING COMPONENT FOR BOILING WATER REACTOR, COMPONENT PRODUCED THEREBY, FUEL ASSEMBLY AND USE THEREOF.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3278571D1 (en) * 1981-07-29 1988-07-07 Hitachi Ltd Process for producing zirconium-based alloy
JPS5822366A (en) * 1981-07-29 1983-02-09 Hitachi Ltd Preparation of zirconium base alloy
US4584030A (en) * 1982-01-29 1986-04-22 Westinghouse Electric Corp. Zirconium alloy products and fabrication processes
CA1214978A (en) * 1982-01-29 1986-12-09 Samuel G. Mcdonald Zirconium alloy products and fabrication processes
JPS58224139A (en) * 1982-06-21 1983-12-26 Hitachi Ltd Zirconium alloy with high corrosion resistance
JPS60190554A (en) * 1984-03-08 1985-09-28 Hitachi Ltd Structural member made of zirconium base alloy and its manufacture
DE3663372D1 (en) * 1985-03-12 1989-06-22 Santrade Ltd Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
FR2584097B1 (en) * 1985-06-27 1987-12-11 Cezus Co Europ Zirconium METHOD FOR MANUFACTURING A BLIND CORROSIVE CLADDING TUBE BLANK IN ZIRCONIUM ALLOY
FR2599049B1 (en) * 1986-05-21 1988-07-01 Cezus Co Europ Zirconium PROCESS FOR THE MANUFACTURE OF A ZIRCALOY 2 OR ZIRCALOY 4 SHEET PARTIALLY RECRYSTALLIZED AND SHEET OBTAINED
JPH0794703B2 (en) * 1987-08-03 1995-10-11 株式会社神戸製鋼所 Method for manufacturing zirconium alloy nuclear fuel cladding tube

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
journal of nuclear materials,Vol.173,No.2,pp.164−178(1990)

Also Published As

Publication number Publication date
DE69105311T2 (en) 1995-04-06
EP0446924A1 (en) 1991-09-18
US5194101A (en) 1993-03-16
ES2064789T3 (en) 1995-02-01
KR910016946A (en) 1991-11-05
EP0446924B1 (en) 1994-11-30
DE69105311D1 (en) 1995-01-12
CA2038383C (en) 2001-01-23
CA2038383A1 (en) 1991-09-17
JPH04224664A (en) 1992-08-13
KR100199776B1 (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP2976992B2 (en) Method for producing strip-shaped Zircaloy 4
KR100205916B1 (en) Zirlo material composition and fabrication processing
US4689091A (en) Process for producing zirconium-based alloy
US4450020A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
US4450016A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
EP0098996B2 (en) Zirconium alloy having superior corrosion resistance
JPS6145699B2 (en)
JP3923557B2 (en) Zirconium-based alloy tube for nuclear fuel assemblies and method for producing the same
EP0899747B1 (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US4671826A (en) Method of processing tubing
JP2940558B2 (en) Method for producing tube made of zirconium alloy
KR100353125B1 (en) Method for the manufacture of tubes of a zirconium based alloy for nuclear reactors and their usage
JPH01119650A (en) Manufacture of channel box for nuclear reactor fuel assembly
US5242515A (en) Zircaloy-4 alloy having uniform and nodular corrosion resistance
JP3522760B2 (en) Fuel element for a pressurized water reactor with guide tubes that are finalized in two stages
JPS5825467A (en) Manufacture of zirconium base alloy-clad pipe
JPS6358223B2 (en)
JPS5822366A (en) Preparation of zirconium base alloy
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JPH0421746B2 (en)
JPS59226158A (en) Manufacture of fuel structural member with high corrosion resistance
JPH07173587A (en) Production of zirconium alloy welded member
JPH0114993B2 (en)
JPS6331543B2 (en)
JP2001074872A (en) Method for manufacturing zirconium alloy for nuclear reactor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990823

LAPS Cancellation because of no payment of annual fees