JPH01119650A - Manufacture of channel box for nuclear reactor fuel assembly - Google Patents
Manufacture of channel box for nuclear reactor fuel assemblyInfo
- Publication number
- JPH01119650A JPH01119650A JP62277438A JP27743887A JPH01119650A JP H01119650 A JPH01119650 A JP H01119650A JP 62277438 A JP62277438 A JP 62277438A JP 27743887 A JP27743887 A JP 27743887A JP H01119650 A JPH01119650 A JP H01119650A
- Authority
- JP
- Japan
- Prior art keywords
- channel box
- phase
- temp
- temperature
- nuclear reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 239000003758 nuclear fuel Substances 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 23
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 22
- 239000000956 alloy Substances 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 238000000137 annealing Methods 0.000 claims abstract description 16
- 238000003466 welding Methods 0.000 claims abstract description 14
- 238000005097 cold rolling Methods 0.000 claims abstract description 13
- 238000005098 hot rolling Methods 0.000 claims abstract description 11
- 229910052718 tin Inorganic materials 0.000 claims abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 238000005452 bending Methods 0.000 claims abstract 2
- 239000000446 fuel Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 23
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 238000005253 cladding Methods 0.000 claims description 3
- 239000008188 pellet Substances 0.000 claims description 2
- 238000005242 forging Methods 0.000 claims 2
- 238000000638 solvent extraction Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 41
- 238000005260 corrosion Methods 0.000 abstract description 41
- 229910052758 niobium Inorganic materials 0.000 abstract description 8
- 229910001093 Zr alloy Inorganic materials 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 6
- 238000005482 strain hardening Methods 0.000 abstract description 6
- 239000010955 niobium Substances 0.000 description 21
- 238000010791 quenching Methods 0.000 description 17
- 230000000171 quenching effect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 8
- 229910001257 Nb alloy Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229910000765 intermetallic Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- GFUGMBIZUXZOAF-UHFFFAOYSA-N niobium zirconium Chemical compound [Zr].[Nb] GFUGMBIZUXZOAF-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910007744 Zr—N Inorganic materials 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000001192 hot extrusion Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、原子炉燃料集合体に係り、特に、原子炉内で
長時間使用に好適なチャンネルボックスの製造方法に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nuclear reactor fuel assembly, and particularly to a method for manufacturing a channel box suitable for long-term use in a nuclear reactor.
BWR燃料集合体は、第2図に示すように、多数の燃料
棒1とそれらを相互に所定の間隔で保持するスペーサ2
.更に、それらを収納する角筒のチャンネルボックス3
、燃料被覆管内に燃料ペレットが入った燃料棒1の両端
を保持する上部タイプレート4、及び、下部タイプレー
ト5、並びに。As shown in FIG. 2, a BWR fuel assembly includes a large number of fuel rods 1 and spacers 2 that hold them at predetermined intervals.
.. Furthermore, there is a rectangular channel box 3 to store them.
, an upper tie plate 4 and a lower tie plate 5 that hold both ends of the fuel rod 1 containing fuel pellets in the fuel cladding tube.
全体を搬送するためのハンドルから構成される。It consists of a handle for transporting the whole thing.
また、これら燃料集合体の製造に際しては複雑な製造工
程を経ており、各構造共に溶接で組立てられる。Furthermore, these fuel assemblies are manufactured through a complicated manufacturing process, and each structure is assembled by welding.
燃料チャンネルボックスは燃料スペーサで組込まれた燃
料棒を内部に収納し、上部タイプレート4と下部タイプ
レート5で燃料棒を固定した状態で使用される。第3図
は燃料チャンネルボックスを拡大した図を示すが、二分
割した板加工材を溶接10で接合した角筒形状を呈する
。この部材はプラント運転時に燃料棒で発生した高温水
及び蒸気を強制的に上部へ導く働きをさせるものであり
、角筒が外側に広がる応力が常時負荷される状態で長時
1間使用される。The fuel channel box houses fuel rods assembled with fuel spacers therein, and is used with the fuel rods fixed between an upper tie plate 4 and a lower tie plate 5. FIG. 3 shows an enlarged view of the fuel channel box, which has a rectangular cylindrical shape made by welding 10 together two divided plates. This member works to forcibly guide high-temperature water and steam generated in the fuel rods during plant operation to the top, and the square tube is used for a long time under constant stress that spreads outward. .
燃料集合体チャンネルボックスは使用中に高温高圧の炉
水にさらされ、かつ、中性子照射を受ける。また、角筒
内部の圧力が外部に比べて高いため、内圧を受ける。そ
の結果、高温高圧環境下での耐食性、中性子照射下での
高いクリープ変形抵抗が要求される。During use, the fuel assembly channel box is exposed to high-temperature, high-pressure reactor water and neutron irradiation. Also, since the pressure inside the rectangular tube is higher than that outside, it is subject to internal pressure. As a result, corrosion resistance under high temperature and high pressure environments and high creep deformation resistance under neutron irradiation are required.
ジルコニウム基合金は、一般に、耐食性が高く。Zirconium-based alloys generally have high corrosion resistance.
中性子吸収断面積が小さい。これら特性は原子炉用燃料
集合体用材料として適しており、燃料集合体を構成する
燃料被覆管、チャンネルボックス、スペーサ等に使用さ
れている。これらの用途に使用されるジルコニウム基合
金には、ジルカロイ−2(Sn1.2〜1.7 wt
%、Fe0.07〜0.2wt%、Cr0.05〜0.
15wt%、NiO,03〜0.08 wt%、残Z
r)、ジルカロイ−4(Sn1.2〜1.7 wt%
、Fe0.18〜0.24wt%、Cr’0.05〜0
.15 wt%、残Zr) 、Zr−1wt%Nb−
合金、Zr−3,5wt%5n−0,8wt%Nb−0
,8wt%Mo合金(Exce1合金)、Zr−1wt
%Sn−1wt%Nb−0,5wt%Fe合金Zr−N
b(0,5〜5.0wt%)−8n(0〜3.0wt%
)−Fe、Ni、Cr、Tat pci、Mo。Neutron absorption cross section is small. These characteristics make it suitable as a material for fuel assemblies for nuclear reactors, and it is used for fuel cladding tubes, channel boxes, spacers, etc. that constitute fuel assemblies. Zirconium-based alloys used in these applications include Zircaloy-2 (Sn1.2-1.7 wt
%, Fe0.07-0.2wt%, Cr0.05-0.
15 wt%, NiO, 03-0.08 wt%, balance Z
r), Zircaloy-4 (Sn1.2-1.7 wt%
, Fe0.18~0.24wt%, Cr'0.05~0
.. 15 wt%, remaining Zr), Zr-1wt%Nb-
Alloy, Zr-3,5wt%5n-0,8wt%Nb-0
, 8wt% Mo alloy (Exce1 alloy), Zr-1wt
%Sn-1wt%Nb-0,5wt%Fe alloy Zr-N
b(0.5-5.0wt%)-8n(0-3.0wt%
)-Fe, Ni, Cr, Tat pci, Mo.
Wのいずれか1種(〜2wt%)合金等がある。There is an alloy of any one type of W (up to 2 wt%).
ジルカロイと呼ばれるZr−5n−Fe−Cr−(Ni
)合金は沸騰水型原子炉中で使用されると、局部酸化(
ノジュラ腐食)が発生する。ノジュラ腐食の発生は、部
材の健全部の肉厚を減少させると共に、腐食反応に伴っ
て発生する水素が部材に吸収され、合金部材中に脆い水
素化物が形成されるので強度低下の原因となる。腐食現
象は時間経過と共に進行するので、これら部材を長期間
使用する高燃焼度運転条件下では、部材の腐食が燃料集
合体の寿命を決定する因子となるとの考え方が一般的で
ある。Zr-5n-Fe-Cr-(Ni
) alloys undergo local oxidation (
Nodular corrosion) occurs. The occurrence of nodular corrosion reduces the wall thickness of the healthy part of the component, and the hydrogen generated during the corrosion reaction is absorbed into the component, forming brittle hydrides in the alloy component, which causes a decrease in strength. . Since the corrosion phenomenon progresses over time, it is generally believed that under high burnup operating conditions where these members are used for a long period of time, corrosion of the members becomes a factor that determines the life of the fuel assembly.
Nbを含むジルコニウム−ニオブ合金は、強度が高く、
クリープ特性に優れ、水素吸収率が低いことが知られて
いる。ノジュラ腐食と呼ばれる局部腐食も発生しない。Zirconium-niobium alloys containing Nb have high strength and
It is known to have excellent creep properties and low hydrogen absorption rate. Localized corrosion called nodular corrosion also does not occur.
これらは、燃料集合体部材用材料として好ましい特性で
あるが、溶接部及び熱影響部の腐食が加速され剥離性の
厚い白色酸化物が形成される問題がある。These have favorable properties as materials for fuel assembly members, but there is a problem in that corrosion of welded parts and heat-affected zones is accelerated and thick white oxides that are peelable are formed.
なお、ニオブ−ジルコニウム系多元合金として、特開昭
61−170552号公報には、0 、5〜2 、 O
w t%のNbと、1.5重量%までのSnと、Fe。In addition, as a niobium-zirconium based multi-component alloy, 0,5-2,O
wt% Nb, up to 1.5 wt% Sn, and Fe.
Cr、Mo、V、Cu、Ni及びWからなる群から選択
された0、25 wt%までの第三合金元素を含むジ
ルコニウム合金が示され、高温蒸気環境内で耐食性を付
与する特殊なミクロ構造をもつことが開示されている。A zirconium alloy containing up to 0.25 wt% of a tertiary alloying element selected from the group consisting of Cr, Mo, V, Cu, Ni and W is presented, with a special microstructure imparting corrosion resistance in high temperature steam environments. It has been disclosed that it has
しかし、実際に例示された合金は、Zr−Nb−8n−
Fe合金だけであり、溶接部の白色腐食についても全熱
開示されていない。However, the alloy actually exemplified is Zr-Nb-8n-
Only the Fe alloy is used, and the white corrosion of the welded part is not disclosed.
米国特許3,121,034号にはZrベースの二元合
金(Zr−0,5〜5wt%Nb) 、三元合金(Zr
−0,5〜5wt%N b −0〜3 w t%Sn)
または四元合金(Zr−0,5〜5wt%Nb−o〜3
wt%5n−Fe、Ni、Cr、Ta。U.S. Pat. No. 3,121,034 discloses a Zr-based binary alloy (Zr-0.5~5wt%Nb), a ternary alloy (Zr-based
-0,5~5wt%Nb -0~3wt%Sn)
Or quaternary alloy (Zr-0,5~5wt%Nb-o~3
wt%5n-Fe, Ni, Cr, Ta.
Pd、Mo、Wのいずれか1種をO〜2 w t%)に
おいて、冷間圧延(加工度:50〜60%)後550〜
600℃、1〜240時間焼なましく、空気中冷却)す
ることによって高耐食性が増すことが開示されている。550~2 wt% of any one of Pd, Mo, and W after cold rolling (working degree: 50~60%)
It is disclosed that high corrosion resistance is increased by annealing at 600° C. for 1 to 240 hours and cooling in air.
しかし、溶接構造部材では、溶接後、数十%の強加工を
溶接部に施すことは困難である。However, in welded structural members, it is difficult to subject the welded portion to severe processing of several tens of percent after welding.
ここに開示された技術は、溶接構造となる原子炉用燃料
集合体には適用できない。The technology disclosed herein cannot be applied to nuclear reactor fuel assemblies that have a welded structure.
経済性の高い高燃焼度炉心に適用されるチャンネルボッ
クスは、以下に記す特性を具備する必要がある。A channel box applied to a highly economical high burnup core must have the following characteristics.
第一は、耐食性が高く、運転期間が長期化しても腐食に
よる健全部の肉厚減少が少な、く、かつ。First, it has high corrosion resistance, and even if the operating period is extended, there is little decrease in wall thickness of healthy parts due to corrosion.
水素吸収に伴う材料劣下が少ないことである。There is little material deterioration due to hydrogen absorption.
第二は、肉厚が従来のチャンネルボックスより薄くても
充分な強度をもち、かつ、クリープ変形抵抗が高いこと
である。厚いチャンネルボックスは、中性子経済性を低
下させるからである。Second, even though the wall thickness is thinner than that of conventional channel boxes, it has sufficient strength and has high resistance to creep deformation. This is because a thick channel box reduces neutron economy.
第三は、製造が容易であり、特殊な製造設備を必要とせ
ず、従来の製造設備を用いて製造できることである。Third, it is easy to manufacture, and can be manufactured using conventional manufacturing equipment without requiring special manufacturing equipment.
従来技術を高燃焼度炉心用スペーサに適用しようとする
と種々の問題点がある。ジルカロイ−2及びジルカロイ
−4は、ノジュラ腐食が発生し、かつ1強度はZr−N
b系合金に比べて低い。There are various problems when trying to apply the conventional technology to spacers for high burnup cores. Zircaloy-2 and Zircaloy-4 undergo nodular corrosion, and the strength of 1 is lower than that of Zr-N.
lower than that of b-based alloys.
Zr−Nb系合金は高強度で高いクリープ変形抵抗をも
っているが、溶接部、及び、その熱影響部に剥離性の白
色腐食が発生し、適用できない。さらにZr−Nb系合
金は、高強度をもつため、その加工性が低く、加工性を
改善するために、種々の熱処理を施すと、耐食性、ある
いは、強度特性が劣下するという問題点があった。Zr--Nb alloys have high strength and high resistance to creep deformation, but peeling white corrosion occurs in welds and heat-affected zones, making them unsuitable for use. Furthermore, since Zr-Nb alloys have high strength, their workability is low, and when various heat treatments are applied to improve workability, corrosion resistance or strength characteristics deteriorate. Ta.
この問題点を解決し、上記第一ないし第三の特性をもつ
スペーサの製造法を提供することが本発明の目的である
。It is an object of the present invention to solve this problem and provide a method for manufacturing a spacer having the above-mentioned first to third characteristics.
本発明は、合金組成、並びに、製造プロセスにおける熱
処理温度、加工温度を限定することにより、前記問題点
を解決したものである。即ち、Nb : 0.5〜2.
5 wt%、Sn:0.5〜2、0wt%、Mo :
0.1 〜1.0wt%を含有するZr合金を使用し
、第1図の製造プロセスに゛おいて熱間圧°延温度二6
50℃〜750’C1冷間加工と冷間加工との間の焼な
まし温度:550℃〜650℃、最終冷間加工前の焼入
れ温度:α+β相温度範囲、溶接組立て後の熱処理温度
二500〜650℃とすることにより、スペーサの耐食
性、引張特性、クリープ変形特性、及び、その製造性の
最適化を図った。The present invention solves the above problems by limiting the alloy composition and the heat treatment temperature and processing temperature in the manufacturing process. That is, Nb: 0.5-2.
5 wt%, Sn: 0.5-2, 0 wt%, Mo:
Using a Zr alloy containing 0.1 to 1.0 wt%, in the manufacturing process shown in Figure 1, the hot rolling temperature was
50℃~750'C1 Annealing temperature between cold working and cold working: 550℃~650℃, quenching temperature before final cold working: α+β phase temperature range, heat treatment temperature after welding assembly 2500℃ By setting the temperature to 650°C, the corrosion resistance, tensile properties, creep deformation properties, and manufacturability of the spacer were optimized.
Zr−Nb系合金よりなるスペーサの溶接部、及び、そ
の熱影響部に白色腐食が生じるのは、金属組織中に非平
衡相が現われるためである。The reason why white corrosion occurs in the welded part of the spacer made of Zr--Nb alloy and its heat-affected zone is because a non-equilibrium phase appears in the metal structure.
ジルコニウムーニオブニ元合金の平衡状態図における平
衡相は、Nbを約1重要%前後固溶した六方晶α相Zr
と、Zrを15重量%(以下、wt%とも言う)以下固
溶したβ相Nbである。The equilibrium phase in the equilibrium phase diagram of the zirconium niobium alloy is a hexagonal α phase Zr with approximately 1 significant % of Nb dissolved in it.
and β-phase Nb in which 15% by weight (hereinafter also referred to as wt%) or less of Zr is solidly dissolved.
ニオブ量を増減することによって、これらの平衡相が単
独で存在したり、或いは、混在するようになる。By increasing or decreasing the amount of niobium, these equilibrium phases can exist alone or in a mixture.
これら平衡相(α相Zr及びβ−Nb相)からなる金属
組織を溶接すると、冷却過程で平衡状態図には現われな
い非平衡相が発生する。この非平衡相は針状に生成して
おり、Nbを過飽和に固溶したマルテンサイト相(α′
相)、Nbを多量に固溶したβ−Zr相及びα相からな
る複雑な組織である。白色腐食発生防止には、これに非
平衡相の量を低減させるか、あるいは、Nb固溶量を低
減させるのが有効である0合金中にSnを添加した理由
は、Sn添加により非平衡相の生成量を大幅に低減でき
るためである。Moを添加した理由は、Moを含む微細
な金属間化合物相を核として非平衡相中に固溶している
Nbが金属間化合物として析出し、固溶したNb量を低
減させ、かつ、非平衡相の分解(α相ZrとZr−Nb
−Mo析出相とに分解)を促進する効果をもっためであ
る。When a metal structure consisting of these equilibrium phases (α phase Zr and β-Nb phase) is welded, a non-equilibrium phase that does not appear in the equilibrium phase diagram is generated during the cooling process. This non-equilibrium phase is formed in the shape of a needle, and is a martensitic phase (α'
phase), a β-Zr phase containing a large amount of Nb as a solid solution, and an α phase. In order to prevent the occurrence of white corrosion, it is effective to reduce the amount of non-equilibrium phase or to reduce the amount of Nb solid solution. This is because the amount of production can be significantly reduced. The reason for adding Mo is that Nb dissolved in solid solution in the non-equilibrium phase is precipitated as an intermetallic compound with the fine intermetallic compound phase containing Mo as the nucleus, reducing the amount of Nb dissolved in solid solution, and Decomposition of equilibrium phase (α phase Zr and Zr-Nb
This is because it has the effect of promoting decomposition into -Mo precipitated phase).
同時に、これら微細析出物は、合金の静的引張強度、及
び、クリープ変形抵抗を高めるのに極めて有効である。At the same time, these fine precipitates are extremely effective in increasing the static tensile strength and creep deformation resistance of the alloy.
このような理由により、ZrZr−Nb−8n−合金を
チャンネルボックス用材料として、Nb : 0.5〜
2.5 wt%、Sn:0.5〜2.o wt%、M
o : 0.1〜1.0wt%を含むZr合金を選定し
た。For these reasons, ZrZr-Nb-8n- alloy is used as a channel box material, and Nb: 0.5~
2.5 wt%, Sn: 0.5-2. o wt%, M
o: A Zr alloy containing 0.1 to 1.0 wt% was selected.
熱間塑性加工とは、再結晶温度(530℃)以上での加
工を意味し1本発明では、板材の熱間圧延、及び、管材
の熱間押出し加工を意味する。熱間加工により、大幅な
板厚減少が可能であり、鍛造材を薄肉化するのに有効で
ある。第4図は本発明において使用するZrZr−Nb
−8n−合金の各温度における変形抵抗とジルカロイ−
4材の変形抵抗とを比較して示す。従来材であるジルカ
ロイ−4材の熱間圧延、あるいは、熱間押出しは600
℃前後で行われてきた。本発明材の600℃における変
形抵抗はジルカロイ−4材に比べて約100 M P
a変形抵抗が高く、この温度で加工するためには、熱間
圧延機の容量を大きくする必要があることを意味し、製
造コストが上昇する。Hot plastic working means working at a temperature equal to or higher than the recrystallization temperature (530°C), and in the present invention, means hot rolling of plate materials and hot extrusion of pipe materials. Hot working allows for a significant reduction in plate thickness, and is effective in reducing the thickness of forged materials. Figure 4 shows ZrZr-Nb used in the present invention.
-Deformation resistance and Zircaloy of 8n-alloy at various temperatures
A comparison of the deformation resistance of the four materials is shown. Hot rolling or hot extrusion of conventional Zircaloy-4 material is 600
It has been carried out at around ℃. The deformation resistance of the present invention material at 600°C is approximately 100 MP compared to Zircaloy-4 material.
a The deformation resistance is high, which means that it is necessary to increase the capacity of the hot rolling mill in order to process at this temperature, which increases manufacturing costs.
ZrZr−Nb−8n−合金において、ジルカロイ−4
の変形抵抗と同等の変形抵抗となるのは650”C以上
での温度である。よって、650℃以上の温度でZrZ
r−Nb−5n−合金の熱間塑性加工を行うと、従来と
同一容量の圧延機が使用できる。In ZrZr-Nb-8n-alloy, Zircaloy-4
The deformation resistance equivalent to that of ZrZ is obtained at a temperature of 650"C or higher.
When performing hot plastic working of r-Nb-5n-alloy, a rolling mill with the same capacity as the conventional one can be used.
第5図は、熱間加工後の限界冷間圧延加工度に及ぼす、
熱間塑性加工温度の影響を示す。温度が高くなるに従っ
て限界冷間圧延加工度も上昇し。Figure 5 shows the effect on the limit cold rolling degree after hot working.
The influence of hot plastic working temperature is shown. As the temperature increases, the critical cold rolling workability also increases.
650℃以上の熱間加工温度を選択することにより、5
0%以上の冷間圧延加工が可能になることがわかる。熱
間圧延温度を750℃以上にすると金属組織の粗大化を
ひきおこし好ましくない。よって熱間塑性加工温度は6
50〜750℃が適切である。この温度範囲を選定する
ことにより、すぐれた冷間加工性及び熱間加工性が得ら
れる。By selecting a hot working temperature of 650℃ or higher,
It can be seen that cold rolling of 0% or more is possible. If the hot rolling temperature is 750° C. or higher, the metal structure will become coarser, which is not preferable. Therefore, the hot plastic working temperature is 6
A temperature of 50 to 750°C is suitable. By selecting this temperature range, excellent cold workability and hot workability can be obtained.
第6図は、50%の冷間圧延したジルカロイ−4材及び
Zr Nb Sn−Mo合金の伸びに及ぼす焼なま
し温度の影響を示す。550℃以上の焼なましを施こす
ことにより、伸びが回復する。Figure 6 shows the effect of annealing temperature on the elongation of 50% cold rolled Zircaloy-4 material and ZrNbSn-Mo alloy. The elongation is restored by annealing at 550°C or higher.
よって、中間腕なまし温度を550℃以上とすることに
より、すぐれた冷間加工性が得られることがわかる。6
50℃以上に温度を高くしても伸びは高くならず、結晶
粒の粗大化をひきおこすので好ましくない。よって中間
腕なまし温度は550〜650℃の範囲が適切である。Therefore, it can be seen that excellent cold workability can be obtained by setting the intermediate arm annealing temperature to 550° C. or higher. 6
Even if the temperature is raised to 50° C. or higher, the elongation will not increase and the crystal grains will become coarser, which is not preferable. Therefore, the appropriate intermediate arm annealing temperature is in the range of 550 to 650°C.
熱間塑性加工、冷間加工、中間腕なましにより金属組織
中の析出物は粗大化し、強度は低下する。Hot plastic working, cold working, and intermediate annealing cause the precipitates in the metal structure to become coarser and the strength to decrease.
製造プロセス下流での焼入れ処理は、粗大化した析出物
を微細化させ、強度を、再び、高めることを目的とした
熱処理である。The quenching treatment downstream of the manufacturing process is a heat treatment aimed at refining coarse precipitates and increasing the strength again.
第7図は強度及び伸びに及ぼす焼入れ温度の並びに焼入
れ後の熱処理温度の影響を示す。β相温度より焼入れし
た材料の強度は高くなるが、延性が著しく低下し、破断
形能も不安定となり好ましくない。α+β温度からの焼
入れ材は高延性で強度も比較的高い。この優れた特性は
、微細析出が生じた部分と延性の高い微細析出がほとん
どないα−Zr相の結晶粒が混在するためにもたらされ
る。第8図は腐食増量と焼入温度の関係を示す。FIG. 7 shows the influence of quenching temperature and post-quenching heat treatment temperature on strength and elongation. Although the strength of the material quenched above the β-phase temperature increases, the ductility decreases significantly and the fracture formability becomes unstable, which is not preferable. The material quenched from the α+β temperature has high ductility and relatively high strength. This excellent property is caused by the coexistence of areas with fine precipitation and α-Zr phase crystal grains with high ductility and almost no fine precipitation. Figure 8 shows the relationship between corrosion weight increase and quenching temperature.
当材の腐食はいずれの焼入温度でも白色腐食は生じない
が880℃以上で腐食増量が増大する傾向にある。また
、焼入温度は次工程の冷間加工性にも影響を及ぼし、8
50℃付近を越えると加工性が著しく低下する(第9図
)。Regarding corrosion of this material, white corrosion does not occur at any quenching temperature, but corrosion weight tends to increase at temperatures above 880°C. In addition, the quenching temperature also affects the cold workability of the next process,
When the temperature exceeds around 50°C, workability decreases significantly (Figure 9).
よって焼入れ温度はα+β相温度範囲(790〜870
℃)が適切であり、830〜870℃が好ましい。Therefore, the quenching temperature is within the α+β phase temperature range (790~870
°C) is suitable, and 830-870 °C is preferred.
また、焼入後の冷間圧延は従来のZr−Nb合金では、
10%程度(以後の時効処理で再結晶が生じない範囲)
で行うのが通常の方法である。これは冷間圧延によって
強化することを目的としている。本製造工程ではMo添
加によって強化されているため必ずしも冷間圧延を組み
入れる必要はない。In addition, cold rolling after quenching is difficult for conventional Zr-Nb alloys.
Approximately 10% (range where recrystallization does not occur during subsequent aging treatment)
The usual method is to do so. This is intended to be strengthened by cold rolling. In this manufacturing process, since the steel is strengthened by adding Mo, it is not necessarily necessary to incorporate cold rolling.
最終熱処理は、α+β焼入れにより固溶したNbを微細
析出させて1強度及び耐食性を改善するために行う。The final heat treatment is performed in order to improve the strength and corrosion resistance by finely precipitating Nb dissolved in solid solution by α+β quenching.
溶接1組立工程後の最終熱処理は、α相の400〜65
0℃で実施する。第10図に示すように引張強さは40
0〜500℃で時効効果による強化が生じ、最大強度が
得られる。伸びは20%前後でやや低く、高延性を出す
には600〜650’Cで実施するのがよい。The final heat treatment after welding 1 assembly process is 400 to 65
Perform at 0°C. As shown in Figure 10, the tensile strength is 40
Strengthening occurs due to the aging effect at 0 to 500°C, and maximum strength is obtained. The elongation is rather low at around 20%, and to achieve high ductility it is best to carry out the process at 600 to 650'C.
当合金の強度については、従来材のZr−2,5wt%
Nbに比べ高温度の焼なましでも十分な高強度が得られ
、かつ、高延性である。これはMo添加によってZr(
Mo)の金属間化合物が微細に析出するためである。最
終熱処理は耐食にも大きく影響を及ぼす。処理は前工程
のα+β焼入で生成した非平衡相組織(β−Zr及びω
相)及び、溶接時の熱サイクルで生じた溶接金属、及び
、溶接熱影響部の非平衡相組織(β−Zr相。Regarding the strength of this alloy, the strength of the conventional material is Zr-2.5wt%.
Compared to Nb, sufficient high strength can be obtained even when annealing at a high temperature, and it has high ductility. This is due to the addition of Mo to Zr(
This is because the intermetallic compound Mo) precipitates finely. Final heat treatment also has a large effect on corrosion resistance. The treatment consists of non-equilibrium phase structures (β-Zr and ω
phase) and non-equilibrium phase structure (β-Zr phase) of the weld metal and weld heat-affected zone generated during the thermal cycle during welding.
ω相を含む)を低減させ、耐食性を改善させる効果があ
る。第11図は母材及び溶接部の耐食性に及ぼす最終熱
処理温度の影響を示す。α+β焼入れ、あるいは溶接に
より低下した耐食性は400℃以上の温度での最終熱処
理により回復し、再び、高い耐食性が得られる。(including ω phase) and improves corrosion resistance. FIG. 11 shows the influence of the final heat treatment temperature on the corrosion resistance of the base metal and weld zone. Corrosion resistance reduced by α+β quenching or welding is recovered by final heat treatment at a temperature of 400°C or higher, and high corrosion resistance can be obtained again.
耐食性改善効果は400〜650℃、0.5〜30hで
達成できる。400℃を下まわる温度ではNbの析出が
なく非平衡相が残り、高耐食が得られない。650℃を
越える温度では非平衡相が消失し、耐食性が向上するも
のの析出物が凝集、粗大化して強度低下を招くので好ま
しくない。The effect of improving corrosion resistance can be achieved at 400-650°C for 0.5-30 hours. At temperatures below 400°C, Nb does not precipitate and a non-equilibrium phase remains, making it impossible to obtain high corrosion resistance. Temperatures exceeding 650° C. are not preferred because the non-equilibrium phase disappears and although corrosion resistance is improved, the precipitates aggregate and become coarse, resulting in a decrease in strength.
最終焼なまし温度、及び、時間は、転位密度にも影響を
及ぼす。冷間加工により導入された転位は、焼なまし温
度の上昇及び焼なまし時間の増加に伴って消失し、その
密度を減らす。クリープ変形は、初期の転位密度により
異なり、転位密度が低いほどクリープ変形量も小さくな
る。好適な転位密度は3X10”ケ/d以下である。こ
のような転位密度とするためには、500℃以上の温度
では少なくとも一時間以上その温度に保持する必要があ
る。二十四時間程度保持することにより、クリープ変形
抵抗の高チャンネルボックスが得られる。Final annealing temperature and time also affect dislocation density. The dislocations introduced by cold working disappear with increasing annealing temperature and annealing time, reducing its density. Creep deformation varies depending on the initial dislocation density, and the lower the dislocation density, the smaller the amount of creep deformation. The preferred dislocation density is 3 x 10"ke/d or less. To achieve such a dislocation density, if the temperature is 500°C or higher, it is necessary to hold the temperature for at least one hour. Hold for about 24 hours. By doing so, a channel box with high creep deformation resistance can be obtained.
〔実施例〕
以下、本発明を実施例により、さらに具体的に説明する
。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.
表1は、合金の化学組成を示す。合金成分及び組成を調
整したブリケットを真空アーク溶解し、第一次インゴッ
トを作製した。このインゴットを表1 合金の化学組成
電極として第二次真空アーク溶解を行いインゴットを作
製した。このインゴットを1020℃で鍛造し75mm
の断面とした。700℃で二回熱間圧延し厚さ4nI+
の板材とした。即ち、第一熱間圧延で40nvnの厚さ
とし、第二次熱間圧延で4mnとした。Table 1 shows the chemical composition of the alloy. Briquettes with adjusted alloy components and composition were vacuum arc melted to produce a primary ingot. This ingot was used as an electrode for the chemical composition of the alloy shown in Table 1 and was subjected to secondary vacuum arc melting to produce an ingot. This ingot was forged at 1020℃ to 75mm.
The cross section of Hot rolled twice at 700℃ to a thickness of 4nI+
It was made into a plate material. That is, the thickness was set to 40nvn in the first hot rolling, and the thickness was set to 4mm in the second hot rolling.
その後、冷間圧延と600℃、二時間の中間焼なましに
より厚さ2.1 mの板材とした。この板材を870℃
に加熱し約−時間保持後、平均冷却速度50”C/Sで
室温まで冷却した。この板材をコの字形に曲げ加工し、
曲げ加工した二枚の板材を突き合せ溶接した後、溶接後
ビードを平坦化するため溶接部をロールで圧延した。こ
の内部にステンレス製マンドレルを挿入し、550’C
に十時間保持した。ステンレスの線膨張係数はZr合金
より高いため、チャンネルボックスは拡管され所定の寸
法に整形されると同時に、α+βクエンチにより固溶し
たNb及びMOは析出し、非平衡相は消失した。以上の
方法で製造されたチャンネルボックスの引張強度は、約
80 kg/ mm”以上であり、伸びは約22%であ
った。転位密度は、lXl0”ケ/dに減じていた。Thereafter, it was cold-rolled and intermediately annealed at 600°C for two hours to produce a plate with a thickness of 2.1 m. This plate material is heated to 870℃
After heating and holding for about an hour, it was cooled to room temperature at an average cooling rate of 50" C/S. This plate material was bent into a U-shape,
After butt-welding the two bent plates, the welded portion was rolled with a roll to flatten the bead after welding. Insert a stainless steel mandrel inside this and heat to 550'C.
It was held for ten hours. Since the coefficient of linear expansion of stainless steel is higher than that of Zr alloy, the channel box was expanded and shaped to predetermined dimensions, and at the same time, Nb and MO dissolved in solid solution were precipitated by α+β quenching, and the non-equilibrium phase disappeared. The tensile strength of the channel box manufactured by the above method was about 80 kg/mm" or more, and the elongation was about 22%. The dislocation density was reduced to 1X10"/d.
このチャンネルボックス溶接部より試験片を切り出し、
288℃、圧力86kg/cdの高温水中に三百時間浸
漬し、耐食性を調べた。その結果、溶接部にも、母材と
同様な黒色の均一酸化膜が形成され、白色の異常腐食の
発生は認められなかった。Cut out a test piece from this channel box weld,
It was immersed in high-temperature water at 288°C and a pressure of 86 kg/cd for 300 hours to examine its corrosion resistance. As a result, a black uniform oxide film similar to that of the base metal was formed on the welded part, and no abnormal white corrosion was observed.
表2はこれら結果をまとめて示す、水素吸収率も従来材
であるジルカロイ−4材の約1/4〜115であり水素
脆化の心配もないことがわかる。Table 2 summarizes these results, and it can be seen that the hydrogen absorption rate is about 1/4 to 115 of that of the conventional Zircaloy-4 material, and there is no fear of hydrogen embrittlement.
本発明によれば、高強度で、かつ、耐食性の優れたチャ
ンネルボックスの製造ができるので、原子炉内での長時
間使用にも耐えられる。According to the present invention, a channel box with high strength and excellent corrosion resistance can be manufactured, so that it can withstand long-term use inside a nuclear reactor.
第1図は本発明の一実施例の燃料チャンネルボックス製
造プロセス、第2図は燃料集合体の断面図、第3図はチ
ャンネルボックスの斜視図、第4図は変形抵抗と加工温
度の関係図、第5図は限界冷間圧延加工度と熱間圧延加
工温度の関係図、第6図は伸びと焼なまし温度の関係図
、第7図は引張強さ及び伸びと焼入後の熱処理温度の関
係図、第8図は腐食増量と焼入温度の関係図、第9図は
限界冷間圧延加工度と焼入温度の関係図、第10は引張
強さと最終熱処理温度の関係図、第11図は腐食増量と
最終熱処理温度の関係図である。
1・・・燃料棒、2・・・スペーサ、3・・・チャンネ
ルボックス、4・・・上部タイプレート、5・・・下部
タイプレート、1o・・・溶接部。
第 l の
第 2 口
第 3 阻
第 4 口
カロエ、温度 (”cつ
箒 、5 口
jif4−Zr −/・Swt X Nb −7・0w
t%S?1−o5vt%M。
@間圧話切肛農度(’cつ
第 6 口
焼なれ温度(°り
第 7 口
RFl−: h −2wt%Nb−1wf、5Sn−0
,5wt4rr’l。
焼入俊の@処理温度(°C)
第 8 目
材+4 )lr−o占〜20wtirJb−10wtX
s九−o2〜oSwt%M。
焼入温度(°り
第 9 町
材料: Zy −0!545wt Nb −7・0wt
1 S?I −0−2〜θ5vvt%M11)焼入温度
(°C)
早 10 の
最終灯処理51度(°C)
早 /l 口
条#熟処理温度(°すFig. 1 is a fuel channel box manufacturing process according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a fuel assembly, Fig. 3 is a perspective view of the channel box, and Fig. 4 is a diagram of the relationship between deformation resistance and processing temperature. , Figure 5 is a diagram showing the relationship between limit cold rolling workability and hot rolling temperature, Figure 6 is a diagram showing the relationship between elongation and annealing temperature, and Figure 7 is a diagram showing the relationship between tensile strength, elongation, and heat treatment after quenching. Figure 8 is a diagram showing the relationship between corrosion weight gain and quenching temperature, Figure 9 is a diagram showing the relationship between limit cold rolling workability and quenching temperature, Figure 10 is a diagram showing the relationship between tensile strength and final heat treatment temperature, FIG. 11 is a diagram showing the relationship between corrosion weight increase and final heat treatment temperature. DESCRIPTION OF SYMBOLS 1... Fuel rod, 2... Spacer, 3... Channel box, 4... Upper tie plate, 5... Lower tie plate, 1o... Welding part. 2nd mouth, 3rd mouth, 4th mouth, temperature ("c", 5 mouth jif4-Zr -/・Swt
t%S? 1-o5vt%M. @ Temperature of the 6th mouth RFl-: h -2wt%Nb-1wf, 5Sn-0
,5wt4rr'l. Quenching @ processing temperature (°C) 8th grain material + 4) lr-o fortune ~ 20wtirJb-10wtX
s9-o2~oSwt%M. Quenching temperature (°9) Material: Zy -0!545wt Nb -7.0wt
1 S? I -0-2~θ5vvt%M11) Quenching temperature (°C) Early 10 final light treatment 51 degrees (°C) Early/l Mouth #ripening temperature (°C)
Claims (1)
る燃料棒、複数の前記燃料棒を収納するチャンネルボッ
クス、前記チャンネルボックス内の前記燃料棒の間を仕
切るスペーサを含む燃料集合体のうち、Nb:0.5〜
2.5wt%、Sn:0.5〜2.0wt%、Mo:0
.1〜1.0wt%、残部Zrの合金からなる溶接構造
部材であるチャンネルボックスの製造法において、 (1)溶解インゴットをβ相温度範囲で鍛造する工程 (2)鍛造材を再びβ相温度範囲に加熱し、急冷する溶
体化処理工程 (3)熱間圧延加工する工程 (4)冷間圧延加工と焼なましとを交互に繰返す工程 (5)α+β相温度範囲に加熱後急冷する工程(6)冷
間圧延する工程 (7)曲げ加工を施す工程 (8)溶接により角筒を形成する工程 (9)応力を負荷してα相温度範囲で熱処理する工程 からなる工程をこの順に行うことを特徴とする原子炉燃
料集合体用チャンネルボックスの製造方法。 2、特許請求の範囲第1項において、 前記(6)の工程を省略したことを特徴とする原子炉燃
料集合体用チャンネルボックスの製造方法。 3、特許請求の範囲第1項または第2項において、前記
工程(3)の熱間圧延加工の温度が 600℃〜750℃であることを特徴とする原子炉燃料
集合体用チャンネルボックスの製造方法。 4、特許請求の範囲第1項または第2項において、前記
工程(4)の焼なまし温度が550℃〜650℃である
ことを特徴とする原子炉燃料集合体用チャンネルボック
スの製造方法。 5、特許請求の範囲第1項または第2項において、前記
工程(5)のα+β相加熱温度範囲が790℃〜870
℃であることを特徴とする原子炉燃料集合体用チャンネ
ルボックスの製造方法。 6、特許請求の範囲第1項または第2項において、前記
工程(9)の相加熱温度が400〜650℃であること
を特徴とする原子炉燃料集合体用チャンネルボックスの
製造方法。 7、特許請求の範囲第1項または第2項または第5項に
おいて、 前記工程(9)の合金部材中の転位密度が3×10^1
^0ケ/cm^3以下となるようにα相温度範囲での加
熱時間を制御することを特徴とする原子炉燃料集合体用
チャンネルボックスの製造方法。[Scope of Claims] 1. A fuel comprising a fuel rod made of fuel pellets built into a fuel cladding tube, a channel box housing a plurality of the fuel rods, and a spacer partitioning between the fuel rods in the channel box. Among the aggregates, Nb: 0.5~
2.5wt%, Sn: 0.5-2.0wt%, Mo: 0
.. In the manufacturing method of a channel box, which is a welded structural member made of an alloy of 1 to 1.0 wt% Zr and the balance, (1) the process of forging a molten ingot in the β-phase temperature range; (2) the process of forging the forged material again in the β-phase temperature range; (3) A step of hot rolling (4) A step of alternately repeating cold rolling and annealing (5) A step of rapidly cooling after heating to the α+β phase temperature range ( 6) The process of cold rolling (7) The process of bending (8) The process of forming a rectangular tube by welding (9) The process of applying stress and heat treatment in the α phase temperature range is performed in this order. A method for manufacturing a channel box for a nuclear reactor fuel assembly, characterized by: 2. A method for manufacturing a channel box for a nuclear reactor fuel assembly according to claim 1, characterized in that the step (6) is omitted. 3. Manufacturing a channel box for a nuclear reactor fuel assembly according to claim 1 or 2, characterized in that the temperature of the hot rolling process in step (3) is 600°C to 750°C. Method. 4. A method for manufacturing a channel box for a nuclear reactor fuel assembly according to claim 1 or 2, characterized in that the annealing temperature in step (4) is 550°C to 650°C. 5. In claim 1 or 2, the α+β phase heating temperature range in step (5) is 790°C to 870°C.
A method for manufacturing a channel box for a nuclear reactor fuel assembly, characterized in that the temperature is ℃. 6. A method for manufacturing a channel box for a nuclear reactor fuel assembly according to claim 1 or 2, characterized in that the phase heating temperature in step (9) is 400 to 650°C. 7. In claim 1, 2, or 5, the dislocation density in the alloy member in step (9) is 3×10^1
A method for manufacturing a channel box for a nuclear reactor fuel assembly, characterized by controlling heating time in the α-phase temperature range so that the temperature is below ^0ke/cm^3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62277438A JPH01119650A (en) | 1987-11-04 | 1987-11-04 | Manufacture of channel box for nuclear reactor fuel assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62277438A JPH01119650A (en) | 1987-11-04 | 1987-11-04 | Manufacture of channel box for nuclear reactor fuel assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01119650A true JPH01119650A (en) | 1989-05-11 |
Family
ID=17583566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62277438A Pending JPH01119650A (en) | 1987-11-04 | 1987-11-04 | Manufacture of channel box for nuclear reactor fuel assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01119650A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5297177A (en) * | 1991-09-20 | 1994-03-22 | Hitachi, Ltd. | Fuel assembly, components thereof and method of manufacture |
KR100382997B1 (en) * | 2001-01-19 | 2003-05-09 | 한국전력공사 | Method of Manufacturing A Tube and A Sheet of Niobium-containing Zirconium Alloys for High Burn-up Nuclear Fuel |
FR2831984A1 (en) * | 2001-11-08 | 2003-05-09 | Mitsubishi Nuclear Fuel | Nuclear fuel supporting grid manufacture involves assembling plate, welding at intersections and annealing |
CN102728771A (en) * | 2012-06-26 | 2012-10-17 | 江苏金源锻造股份有限公司 | Method for forging nuclear island spindle |
JP2014518330A (en) * | 2011-06-16 | 2014-07-28 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | Zirconium alloy with excellent corrosion resistance and creep resistance by final heat treatment |
US9285172B2 (en) | 2009-04-29 | 2016-03-15 | Westinghouse Electric Company Llc | Modular plate and shell heat exchanger |
US9725791B2 (en) | 2004-03-23 | 2017-08-08 | Westinghouse Electric Company Llc | Zirconium alloys with improved corrosion/creep resistance due to final heat treatments |
WO2018023178A1 (en) * | 2016-08-03 | 2018-02-08 | Indústrias Nucleares Do Brasil Sa - Inb | Metal alloy composition based on zirconium having enhanced mechanical properties and high resistance to corrosion and embrittlement, that is used to form the structural part of nuclear reactor components and the lining of nuclear fuel elements |
US10221475B2 (en) | 2004-03-23 | 2019-03-05 | Westinghouse Electric Company Llc | Zirconium alloys with improved corrosion/creep resistance |
US10337800B2 (en) | 2009-04-29 | 2019-07-02 | Westinghouse Electric Company Llc | Modular plate and shell heat exchanger |
CN112458338A (en) * | 2020-04-13 | 2021-03-09 | 国核锆铪理化检测有限公司 | Zirconium alloy, preparation method of zirconium alloy and zirconium alloy section |
CN112662973A (en) * | 2020-12-14 | 2021-04-16 | 西部新锆核材料科技有限公司 | Method for manufacturing zirconium alloy pressure pipe of fuel channel of nuclear reactor |
-
1987
- 1987-11-04 JP JP62277438A patent/JPH01119650A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5297177A (en) * | 1991-09-20 | 1994-03-22 | Hitachi, Ltd. | Fuel assembly, components thereof and method of manufacture |
KR100382997B1 (en) * | 2001-01-19 | 2003-05-09 | 한국전력공사 | Method of Manufacturing A Tube and A Sheet of Niobium-containing Zirconium Alloys for High Burn-up Nuclear Fuel |
FR2831984A1 (en) * | 2001-11-08 | 2003-05-09 | Mitsubishi Nuclear Fuel | Nuclear fuel supporting grid manufacture involves assembling plate, welding at intersections and annealing |
US10221475B2 (en) | 2004-03-23 | 2019-03-05 | Westinghouse Electric Company Llc | Zirconium alloys with improved corrosion/creep resistance |
US9725791B2 (en) | 2004-03-23 | 2017-08-08 | Westinghouse Electric Company Llc | Zirconium alloys with improved corrosion/creep resistance due to final heat treatments |
US9285172B2 (en) | 2009-04-29 | 2016-03-15 | Westinghouse Electric Company Llc | Modular plate and shell heat exchanger |
US10175004B2 (en) | 2009-04-29 | 2019-01-08 | Westinghouse Electric Company Llc | Method of servicing modular plate and shell heat exchanger |
US10337800B2 (en) | 2009-04-29 | 2019-07-02 | Westinghouse Electric Company Llc | Modular plate and shell heat exchanger |
JP2014518330A (en) * | 2011-06-16 | 2014-07-28 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | Zirconium alloy with excellent corrosion resistance and creep resistance by final heat treatment |
CN102728771A (en) * | 2012-06-26 | 2012-10-17 | 江苏金源锻造股份有限公司 | Method for forging nuclear island spindle |
WO2018023178A1 (en) * | 2016-08-03 | 2018-02-08 | Indústrias Nucleares Do Brasil Sa - Inb | Metal alloy composition based on zirconium having enhanced mechanical properties and high resistance to corrosion and embrittlement, that is used to form the structural part of nuclear reactor components and the lining of nuclear fuel elements |
CN112458338A (en) * | 2020-04-13 | 2021-03-09 | 国核锆铪理化检测有限公司 | Zirconium alloy, preparation method of zirconium alloy and zirconium alloy section |
CN112458338B (en) * | 2020-04-13 | 2021-09-14 | 国核宝钛锆业股份公司 | Zirconium alloy, preparation method of zirconium alloy and zirconium alloy section |
CN112662973A (en) * | 2020-12-14 | 2021-04-16 | 西部新锆核材料科技有限公司 | Method for manufacturing zirconium alloy pressure pipe of fuel channel of nuclear reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6902634B2 (en) | Method for manufacturing zirconium-based alloys containing niobium for use in nuclear fuel rod cladding | |
EP1225243B1 (en) | Method for manufacturing a tube and a sheet of niobium-containing zirconium alloy for a high burn-up nuclear fuel | |
EP0475159B1 (en) | Zirlo material composition and fabrication processing | |
US6811746B2 (en) | Zirconium alloy having excellent corrosion resistance and mechanical properties for nuclear fuel cladding tube | |
US20100128834A1 (en) | Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance | |
JPH01119650A (en) | Manufacture of channel box for nuclear reactor fuel assembly | |
JP2941796B2 (en) | Corrosion resistant reactor components, nuclear fuel rod cladding, zirconium alloys for use in aqueous environments, and structural components for reactor fuel assemblies | |
US10221475B2 (en) | Zirconium alloys with improved corrosion/creep resistance | |
US9725791B2 (en) | Zirconium alloys with improved corrosion/creep resistance due to final heat treatments | |
EP3064605A1 (en) | Zirconium alloys with improved creep resistance due to final heat treatments | |
EP0745258B1 (en) | A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same | |
JPH01116057A (en) | Manufacture of nuclear reactor spacer | |
JPS62182258A (en) | Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member | |
JPH07173587A (en) | Production of zirconium alloy welded member | |
JP2600057B2 (en) | Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same | |
JPS62297449A (en) | Production of zirconium alloy member | |
JPS62180027A (en) | Zirconium alloy member | |
JPS62180047A (en) | Manufacture of zirconium base alloy member | |
JPH1073690A (en) | Highly anticorrosive cladding tube for nuclear fuel, spacer, channel box, fuel assembly thereof and method for manufacturing it | |
JPH0762225B2 (en) | Manufacturing method of highly corrosion resistant zirconium alloy products | |
JPS62287059A (en) | Production of spacer for nuclear reactor | |
JPS6240349A (en) | Manufacture of zirconium base alloy member | |
JPS62290854A (en) | Production of channel box for nuclear reactor | |
JPS6196048A (en) | Zirconium-base alloy and fuel assembly | |
JPH0456277B2 (en) |