JPS6026650A - Fuel cladding pipe for nuclear reactor - Google Patents

Fuel cladding pipe for nuclear reactor

Info

Publication number
JPS6026650A
JPS6026650A JP58132712A JP13271283A JPS6026650A JP S6026650 A JPS6026650 A JP S6026650A JP 58132712 A JP58132712 A JP 58132712A JP 13271283 A JP13271283 A JP 13271283A JP S6026650 A JPS6026650 A JP S6026650A
Authority
JP
Japan
Prior art keywords
zirconium
tube
pipe
cladding tube
hardened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58132712A
Other languages
Japanese (ja)
Inventor
Junjiro Nakajima
中島 潤二郎
Hajime Umehara
梅原 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58132712A priority Critical patent/JPS6026650A/en
Publication of JPS6026650A publication Critical patent/JPS6026650A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Abstract

PURPOSE:To obtain a cladding pipe with superior resistance to corrosion and stress corrosion cracking by hot extruding a Zr alloy to form a pipe, hardening the whole pipe, lining the hardened pipe with a Zr liner layer, and subjecting it to repeated cold rolling and annealing. CONSTITUTION:A Zr alloy is hot extruded to form a pipe, and the whole pipe is hardened. The hardened pipe is lined with a Zr liner layer, and it is subjected to repeated cold rolling and annealing. The hardening is required only to be carried out before the lining and after the hot extrusion. The mechanical characteristics of the hardened layer are comparable to those of a hardened layer formed in a conventional stage, and a cladding pipe with superior corrosion resistance can be manufactured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉燃料用被覆管およびその製造方法に係
り、特に耐食性および耐SCC性を向上させたジルコニ
ウム基合金、ジルコニウムライナ層よりなる原子炉燃料
用被覆管に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a cladding tube for nuclear reactor fuel and a method for manufacturing the same, and in particular to a zirconium-based alloy with improved corrosion resistance and SCC resistance, and an atomic cladding tube made of a zirconium liner layer. Regarding cladding tubes for reactor fuel.

〔発明の背景〕[Background of the invention]

ジルコニウム合金は、優れた耐食性と小さい中性子吸収
断面積とを有しているため、原子カプラント炉内構造部
材である燃料棒被覆管、燃料集合体チャンネルボックス
等に使用される。前記用途に使用されるジルコニウム合
金は、ジルカロイ−2(ジルコニウムにSnH約1.5
’LCr:約0.1チ、Fe:約0.1%、Nl:約0
.05%を添加したもの)及びジルカロイ−4(ジルコ
ニウムにSn:約i、s*、Fe:約0.2%、Cr:
約0.1−を添加したもの)の2種類である。しかし、
耐食性の優れたジルコニウム合金においても、炉内で長
時間にわたシ高温高圧の水あるいは水蒸気にさらされる
と、厚膜化した酸化被膜のために熱伝達係数が低下した
シ、局所的過熱を生じたシして、時には原子炉の運転に
支障をきたす場合がある。かかる事故を防止するために
、熱処理により耐食性を向上させる方法は従来公知であ
る。
Zirconium alloys have excellent corrosion resistance and a small neutron absorption cross section, so they are used for fuel rod cladding tubes, fuel assembly channel boxes, etc., which are structural members in nuclear reactors. The zirconium alloy used in the above application is Zircaloy-2 (zirconium with about 1.5 SnH).
'LCr: approx. 0.1 h, Fe: approx. 0.1%, Nl: approx. 0
.. 05%) and Zircaloy-4 (zirconium with Sn: about i, s*, Fe: about 0.2%, Cr:
There are two types: one with about 0.1- added. but,
Even when a zirconium alloy with excellent corrosion resistance is exposed to high-temperature, high-pressure water or steam in a furnace for a long period of time, the heat transfer coefficient decreases due to the thick oxide film, resulting in local overheating. However, in some cases, it may interfere with the operation of the nuclear reactor. In order to prevent such accidents, methods of improving corrosion resistance by heat treatment are conventionally known.

純ジルコニウムは、約860C以下では稠密六方晶(α
相)の結晶構造を有し、それ以上の温度では体心立方晶
(β相)の結晶構造を有する。ジルコニウム合金におい
ては、一般に、α相安定化元素であるSn及びβ相安定
化元素であるFe。
Pure zirconium forms a dense hexagonal crystal (α
At higher temperatures, it has a body-centered cubic (β phase) crystal structure. In zirconium alloys, generally Sn is an α-phase stabilizing element and Fe is a β-phase stabilizing element.

Cr、 NiあるいはNbが添加されているため、α相
とβ相とが共存する温度範囲(以後〔α十β〕相温度範
囲と記す)がある。ジルカロイ−2あるいはジルカロイ
−4においては、前記〔α斗β〕相温度範囲は、はぼ8
30C〜960Cである。
Since Cr, Ni, or Nb is added, there is a temperature range in which the α phase and β phase coexist (hereinafter referred to as the [α+β] phase temperature range). In Zircaloy-2 or Zircaloy-4, the [α and β] phase temperature range is approximately 8
It is 30C to 960C.

約960C以上では、β相単位(以後、β相温度範囲と
記す)となる。〔α十β〕相温度範囲あるいはβ相温度
範囲から急冷されたジルコニウム合金は、マルテンサイ
ト状組織を有し、合金添加元素の一部あるいは大部分は
ジルコニウムマトリックス中に過飽和に固溶している。
At about 960 C or higher, the temperature becomes a β phase unit (hereinafter referred to as β phase temperature range). Zirconium alloys rapidly cooled from the [α10β] phase temperature range or β phase temperature range have a martensitic structure, and some or most of the alloying elements are supersaturated solid solutions in the zirconium matrix. .

しかし、冷却速度が遅いと、主としてFe、Crは冷却
過程でジルコニウムとの金属間化合物として析出し粗大
化する。
However, if the cooling rate is slow, Fe and Cr mainly precipitate as intermetallic compounds with zirconium during the cooling process and become coarse.

かかるジルコニウム合金の性質を利用し、従来〔α十β
〕相温度範囲あるいはβ相温度範囲から急冷させてジル
コニウム合金部材の金属組織を改善することによυ耐食
性を向上させる熱処理が公知である。前者は、〔α+β
〕クエンチ、後者はβクエンチと称されている。
Utilizing the properties of such zirconium alloy, conventional
] A heat treatment for improving the υ corrosion resistance of a zirconium alloy member by rapidly cooling it from the phase temperature range or β phase temperature range is known. The former is [α+β
] quench, the latter is called β quench.

一方、被優管内面にジルコニウムライナ層を内張すし、
耐SCC特性を向上させる方法も公知である。ライナ管
の耐食性を向上させる方法として、内張シしたライナ層
が熱影響を受けないように、ライチ管表面層のみ高周波
又はレーザにより焼入処理を施すという技術が知られて
いるが、この場合、冷間圧延、酸洗、等を繰り返し施さ
れることによシ、焼入れを施したライナ管外表面層厚が
次第に薄くなり、耐食性に関する信頼性が低下するとい
う欠点があった。
On the other hand, the inner surface of the tube is lined with a zirconium liner layer,
Methods for improving SCC resistance are also known. A known method for improving the corrosion resistance of liner tubes is to harden only the surface layer of the lychee tube using high frequency or laser so that the inner liner layer is not affected by heat. , cold rolling, pickling, etc., the thickness of the outer surface layer of the hardened liner tube gradually becomes thinner, resulting in a decrease in reliability regarding corrosion resistance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の如き欠点を解消し、ジルコニウ
ム基合金およびジルコニウムライナ層からなる耐SCC
性に優れた被覆管において、その耐食性を向上させ、耐
食性、耐SCC性ともに優れた原子炉用燃料被覆管およ
びその製造法全提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks and to provide an SCC resistant material made of a zirconium-based alloy and a zirconium liner layer.
An object of the present invention is to improve the corrosion resistance of a cladding tube with excellent properties, and to provide a fuel cladding tube for a nuclear reactor that is excellent in both corrosion resistance and SCC resistance, and a complete method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明は、ジルコニウム基合金を熱間押出した後冷間圧
延を施すことにより、ジルコニウム基合金よシなる原子
炉燃料用被覆管を製造する方法において、熱間押出後全
体焼入れを施し、その後焼入管内面にジルコニウムライ
ナ層を内張シし、冷間圧延、焼鈍を繰り返し施すことを
特徴とする原子炉燃料用被覆管およびその製造方法全要
旨とするものである。
The present invention relates to a method for manufacturing a nuclear reactor fuel cladding tube made of a zirconium-based alloy by hot-extruding the zirconium-based alloy and then cold-rolling the zirconium-based alloy. The present invention provides a complete summary of a nuclear reactor fuel cladding tube and its manufacturing method, characterized in that the inner surface of the entry tube is lined with a zirconium liner layer and subjected to repeated cold rolling and annealing.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明の原子炉燃料用被覆管の製造方法は、熱間押出後
全体焼入れ金施し、その後焼入管内面にジルコニウムラ
イナ層を内張シし、冷間圧延、650C以下好ましくは
、6’00C以下の焼鈍を行うことに特徴を有し、上記
以外は、通常の製造法と同様に行なわれる。
The method for producing a cladding tube for nuclear reactor fuel according to the present invention includes hot extrusion, quenching the entire body, then lining the inner surface of the quenched tube with a zirconium liner layer, and cold rolling at 650C or less, preferably at 6'00C or less. It is characterized by performing annealing, and other than the above, it is carried out in the same manner as a normal manufacturing method.

全体焼入れは、ジルコニウムライナ層内張り工程の前か
つ熱間押出し後であればよく、その後冷間圧延、焼鈍を
数回性なうことにより、焼入層の機械的特性は、通常の
工程で製造されたものと同等となシ、かつ優れた耐食性
を有する被覆管が製造できる。
The entire quenching can be done before the zirconium liner layer lining process and after hot extrusion, and then cold rolling and annealing are performed several times, so that the mechanical properties of the quenched layer can be maintained in the normal manufacturing process. It is possible to produce a cladding tube that is equivalent to that produced by conventional methods and has excellent corrosion resistance.

全体焼入温度は、870C以上好ましくは930C以上
であればよく、冷間圧延後の焼鈍温度は、650C以下
好ましくは、600C以下であればよい。これは、87
0C以上の温度に加熱されたジルコニウムはその組織が
一部β相に変態しており、このβ相に合金元素であるl
’e、Cr。
The overall quenching temperature may be at least 870C, preferably at least 930C, and the annealing temperature after cold rolling may be at most 650C, preferably at most 600C. This is 87
Zirconium heated to a temperature of 0C or higher has a part of its structure transformed into a β phase, and this β phase contains l, an alloying element.
'e, Cr.

Ni、 Snが充分に固溶し、その後急冷されることに
より、合金元素を過飽和に固溶したα相ができ、耐食性
が向上すること、および、冷間加工後の焼鈍温度を65
0C以下にすることによシ、合全元素の析出を極力おさ
えることができ、加工、焼鈍を繰り返し施されても充分
に焼入処理の効果が残っていることによる。
Ni and Sn are sufficiently dissolved in solid solution and then rapidly cooled to form an α phase with supersaturated solid solution of alloying elements, improving corrosion resistance, and the annealing temperature after cold working is lowered to 65%.
By setting the temperature to 0C or less, precipitation of all combined elements can be suppressed as much as possible, and the effect of the quenching treatment remains even after repeated processing and annealing.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例によシ更に具体的に説明するが、
本発明はその要旨を超えない限り、以下の実施例により
限定されるものではない。
The present invention will be explained in more detail with reference to examples below.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 使用したジルコニウム基合金は、ジルカロイ−2合金で
ある。その主な成分は、1.5wt%Sn%0.15w
t%Fe、0.1wt9!+Cr、0.05WtチNi
と残Zrである。上記成分から成る押出素管に高周波に
よる焼入処理を施し、その後低加工度の冷間圧延を施し
、さらに600tZ’X2hrの焼鈍後、I−(NOs
及びHFの混合溶液によシ酸況し、特に内径の寸法精度
を出、した。上記焼入処理管に別途冷間圧延により製造
したジルコニウム管管 を挿入した。挿入の際には、焼入処理を500C^ に加熱し、挿入性を向上させた。上記方法によシ製造し
た2重管を真空引きし、真空中で、2重管両端面部をエ
レクトロンビーム溶接し、さらに、油圧拡管によシ焼入
処理管とジルコニウム管を密着させた。
Example 1 The zirconium-based alloy used is Zircaloy-2 alloy. Its main components are 1.5wt%Sn%0.15w
t%Fe, 0.1wt9! +Cr, 0.05Wt Chi Ni
and the remaining Zr. The extruded raw tube made of the above components was hardened by high frequency, then cold rolled with a low degree of deformation, and further annealed for 600tZ'X2hr.
Dimensional accuracy, particularly in the inner diameter, was achieved by oxidation using a mixed solution of and HF. A zirconium tube separately produced by cold rolling was inserted into the above-mentioned quenched tube. During insertion, the quenching treatment was heated to 500 C^ to improve insertability. The double tube manufactured by the above method was evacuated, both end faces of the double tube were electron beam welded in vacuum, and the quenched tube and zirconium tube were brought into close contact with each other by hydraulic tube expansion.

焼入処理を施した素管の金属組織は、焼入組織特有の針
状組織となっている様子が確認される。
It is confirmed that the metal structure of the raw tube that has undergone the quenching treatment has an acicular structure that is characteristic of a quenched structure.

第1図に本発明である原子炉燃料用被覆管の製造方法を
示す。上述した方法により製造した複合素管の外内径お
よび内厚を、3回の冷間圧延、3回の焼鈍により順次減
少させ製品管を製造した。
FIG. 1 shows a method of manufacturing a nuclear reactor fuel cladding tube according to the present invention. The outer and inner diameters and inner thickness of the composite pipe produced by the method described above were successively reduced by cold rolling three times and annealing three times to produce a product pipe.

図に示す如く、中間冷間圧延後の焼鈍温度は600t:
’ (590±10C)とした。その他の製造工程は、
従来燃料被覆管の工程と同一である。
As shown in the figure, the annealing temperature after intermediate cold rolling is 600t:
' (590±10C). Other manufacturing processes are
The process is the same as that for conventional fuel cladding tubes.

第2図に、本発明である原子炉燃料用被覆管のジルカロ
イ層およびジルコニウムライナ層を示す。
FIG. 2 shows the zircaloy layer and zirconium liner layer of the nuclear reactor fuel cladding tube according to the present invention.

両層ともに充分に再結晶しておシ、焼入組織特有の針状
組織は確認されなかった。また、ジルカロイ−zNは合
金元素である8 n+ F e + C’ +N&をマ
トリックス中に充分固溶しており、通常工程によシ製造
された被覆管に比べ、析出物は微細であり、かつ析出量
は少なかった。
Both layers were sufficiently recrystallized, and no acicular structure peculiar to the hardened structure was observed. In addition, Zircaloy-zN has the alloying element 8n+Fe+C'+N& sufficiently dissolved in the matrix, and the precipitates are finer and less dense than cladding tubes manufactured by normal processes. The amount of precipitation was small.

上述した如く、本発明品は金属間化合物の析出状況以外
は通常工程によシ製造されたものと同様の金属組織であ
シ、機械的特性は通常工程品と同等である。
As mentioned above, the product of the present invention has a metal structure similar to that produced by a conventional process except for the precipitation of intermetallic compounds, and its mechanical properties are equivalent to those produced by a conventional process.

第3図に、本発明である原子炉燃料用被覆管と通常被覆
管の高温高圧水蒸気中の腐食試験結果を示す。腐食試験
に用いた試験片は、長さ50mmの短尺被覆管である。
FIG. 3 shows the results of a corrosion test in high-temperature, high-pressure steam of the nuclear reactor fuel cladding tube of the present invention and a normal cladding tube. The test piece used in the corrosion test was a short cladding tube with a length of 50 mm.

ただし、耐食性の低いジルコニウムライナ層は旋盤によ
る機械加工で除去し、その後HN O3とHFの混合溶
液による酸洗で、機械力l工層ヲ除去した。腐食試験結
果から、通常被覆管の標準品の腐食増量は1000 m
g/dm2 、本発明被覆管の腐食増量は100mg/
dm”程度である。また、本発明品の表面は黒色の光沢
のある様相を示し、ノジュラー腐食が発生しておらず、
耐ノジユラー腐食性に優れていることがわかった。
However, the zirconium liner layer, which has low corrosion resistance, was removed by machining using a lathe, and then the mechanical layer was removed by pickling with a mixed solution of HNO3 and HF. According to the corrosion test results, the corrosion weight increase of standard cladding pipe is 1000 m.
g/dm2, the corrosion weight gain of the cladding tube of the present invention is 100 mg/dm2.
In addition, the surface of the product of the present invention has a black, glossy appearance, and no nodular corrosion has occurred.
It was found to have excellent nodular corrosion resistance.

一方通常被覆管の表面にはノジュラー腐食が多数発生し
ており、耐ノジユラー腐食性は低い。
On the other hand, a lot of nodular corrosion occurs on the surface of the cladding tube, and the nodular corrosion resistance is low.

このように本発明被覆管は耐食性の優れた性質會有する
。又、上記の優れた耐食性は、ジルカロイ−2部全域が
示す性質であることは1本発明品の製造方法から考えて
明らかである。
As described above, the cladding tube of the present invention has excellent corrosion resistance. Further, it is clear from the manufacturing method of the product of the present invention that the above-mentioned excellent corrosion resistance is a property exhibited by the entire Zircaloy-2 part.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ジルカロイ−2とジルコニウムから成
る2重管構造の原子炉燃料用被覆管のジルカロイ−2層
全域の耐食性を均一にかつ確実に向上させることができ
るので、内面のジルコニウムライナ層と合わせ信頼性の
高い高耐SCC性、高耐食性を有した被覆管を製造する
ことができる。
According to the present invention, it is possible to uniformly and reliably improve the corrosion resistance of the entire Zircaloy 2 layer of a reactor fuel cladding tube with a double tube structure made of Zircaloy 2 and zirconium, so that the zirconium liner layer on the inner surface can be improved uniformly and reliably. In combination with this, it is possible to manufacture a highly reliable cladding tube with high SCC resistance and high corrosion resistance.

また、上記効果により、被覆管の使用期間を長くするこ
とが出来るので、効率の向上、経済性の向上などの効果
がある。
Moreover, the above effect allows the usage period of the cladding tube to be extended, resulting in effects such as improved efficiency and economical efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉燃料用被覆管製造における通常方法と本
発明方法の熱間押出し以降の工程図、第2図は本発明の
原子炉燃料用被覆管の構造図、第3図は本発明の原子炉
燃料用被覆管と通常被覆管の腐食特性図を示す。 第1521 $Z口
Fig. 1 is a process diagram after hot extrusion of the conventional method and the method of the present invention in manufacturing cladding tubes for reactor fuel, Fig. 2 is a structural diagram of the cladding tube for reactor fuel of the present invention, and Fig. 3 is a diagram of the present invention. This figure shows the corrosion characteristics of the reactor fuel cladding tube and the normal cladding tube. No. 1521 $Z mouth

Claims (1)

【特許請求の範囲】 1、ジルコニウム基合金を熱間押出した後冷間圧延を施
すことによシ、ジルコニウム基合金よシなる原子炉燃料
用被覆管において、熱間押出後全体焼入を施し、その後
焼入管内面にジルコニウムライナ層を内張シし、冷間圧
延、焼鈍を繰シ返し施すことを特徴とする原子炉燃料用
被覆管。 2、焼入処理後の素管に低加工度の冷間圧延を施し、内
外径特に内径精度を出し、これに別途冷間圧延によシ製
造したジルコニウム管を焼ばめしたことを特徴とする特
許請求の範囲第1項に記載の原子炉燃料用被覆管。 3、全体焼入温度’に870t:’以上とし、焼鈍温度
を600C以下とすることを特徴とする特許請求の範囲
第1項および第2項に記載の原子炉燃料用被覆管。 4、全体焼入れを高周波加熱によシ行うことを特徴とす
る特許請求の範囲第1項および第2項に記載の原子炉燃
料用被覆管。
[Scope of Claims] 1. By hot-extruding a zirconium-based alloy and then cold-rolling it, the entire cladding tube for nuclear fuel made of a zirconium-based alloy is quenched after hot extrusion. A cladding tube for nuclear fuel, characterized in that the inner surface of the quenched tube is then lined with a zirconium liner layer, and cold rolling and annealing are repeatedly performed. 2. After quenching, the tube is cold-rolled with a low degree of processing to achieve accuracy in both the inner and outer diameters, especially the inner diameter, and a zirconium tube separately produced by cold rolling is shrink-fitted to this tube. A nuclear reactor fuel cladding tube according to claim 1. 3. The reactor fuel cladding tube according to claims 1 and 2, characterized in that the overall quenching temperature is 870 t:' or more, and the annealing temperature is 600 C or less. 4. The reactor fuel cladding tube according to claims 1 and 2, characterized in that the entire hardening is performed by high-frequency heating.
JP58132712A 1983-07-22 1983-07-22 Fuel cladding pipe for nuclear reactor Pending JPS6026650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132712A JPS6026650A (en) 1983-07-22 1983-07-22 Fuel cladding pipe for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132712A JPS6026650A (en) 1983-07-22 1983-07-22 Fuel cladding pipe for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6026650A true JPS6026650A (en) 1985-02-09

Family

ID=15087805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132712A Pending JPS6026650A (en) 1983-07-22 1983-07-22 Fuel cladding pipe for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6026650A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196190A (en) * 1985-02-27 1986-08-30 日本核燃料開発株式会社 Manufacture of nuclear fuel element coated tube
JPS62226090A (en) * 1986-03-28 1987-10-05 原子燃料工業株式会社 Manufacture of nuclear fuel coated tube with liner
JPH0682582A (en) * 1992-06-08 1994-03-22 General Electric Co <Ge> Improved manufacturing method for heat-treated compound nuclear fuel
US5324908A (en) * 1991-09-19 1994-06-28 Fanuc Ltd. Method of canceling a short circuit in a wire cut electric discharge machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196190A (en) * 1985-02-27 1986-08-30 日本核燃料開発株式会社 Manufacture of nuclear fuel element coated tube
JPS62226090A (en) * 1986-03-28 1987-10-05 原子燃料工業株式会社 Manufacture of nuclear fuel coated tube with liner
US5324908A (en) * 1991-09-19 1994-06-28 Fanuc Ltd. Method of canceling a short circuit in a wire cut electric discharge machine
JPH0682582A (en) * 1992-06-08 1994-03-22 General Electric Co <Ge> Improved manufacturing method for heat-treated compound nuclear fuel

Similar Documents

Publication Publication Date Title
JP2575644B2 (en) Method for producing article made of zirconium-niobium alloy containing tin and third alloy element
US4678521A (en) Process for producing zirconium-based alloy and the product thereof
US5838753A (en) Method of manufacturing zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JP2976992B2 (en) Method for producing strip-shaped Zircaloy 4
JPH0344275B2 (en)
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
JPS6145699B2 (en)
US5844959A (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US5835550A (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US5887045A (en) Zirconium alloy tube for a nuclear reactor fuel assembly, and method for making same
KR100353125B1 (en) Method for the manufacture of tubes of a zirconium based alloy for nuclear reactors and their usage
JPS6234095A (en) Nuclear fuel coated tube
JPS5825466A (en) Manufacture of zirconium base alloy-clad pipe
JPS5825467A (en) Manufacture of zirconium base alloy-clad pipe
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JPS5822365A (en) Preparation of zirconium base alloy
JPS5822366A (en) Preparation of zirconium base alloy
JPH0421746B2 (en)
JPS59226158A (en) Manufacture of fuel structural member with high corrosion resistance
JPH07173587A (en) Production of zirconium alloy welded member
JPS5993861A (en) Manufacture of sheath pipe for fuel for nuclear reactor
JPH0422982B2 (en)
JPH02270948A (en) Production of zirconium alloy tube
JPS61143571A (en) Manufactur of zirconium alloy