JPH0344275B2 - - Google Patents

Info

Publication number
JPH0344275B2
JPH0344275B2 JP59019980A JP1998084A JPH0344275B2 JP H0344275 B2 JPH0344275 B2 JP H0344275B2 JP 59019980 A JP59019980 A JP 59019980A JP 1998084 A JP1998084 A JP 1998084A JP H0344275 B2 JPH0344275 B2 JP H0344275B2
Authority
JP
Japan
Prior art keywords
tube
temperature
annealing
cladding tube
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59019980A
Other languages
Japanese (ja)
Other versions
JPS60165580A (en
Inventor
Iwao Takase
Sumi Yoshida
Shinzo Ikeda
Isao Masaoka
Junjiro Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59019980A priority Critical patent/JPS60165580A/en
Priority to CA000472980A priority patent/CA1230805A/en
Priority to DE19853504031 priority patent/DE3504031A1/en
Publication of JPS60165580A publication Critical patent/JPS60165580A/en
Priority to US06/915,555 priority patent/US4718949A/en
Publication of JPH0344275B2 publication Critical patent/JPH0344275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S376/00Induced nuclear reactions: processes, systems, and elements
    • Y10S376/90Particular material or material shapes for fission reactors

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は新規な原子炉燃料用被覆管製造法に係
り、特にジルコニウム合金製原子炉燃料被覆管の
製造法に関する。 〔発明の背景〕 ジルコニウム基合金は、その優れた耐食性と非
常に小さい中性子吸収断面積により原子力プラン
トの燃料被覆管及び燃料チヤンネルボツクス等に
用いられている。 これらの構造物は原子炉内で長期間中性子の照
射を受け、同時に高温高圧の水又は水蒸気にさら
されるため、腐食が進むと表面にジルコニウムの
酸化皮膜を形成する。更に、ノジユラ腐食とよば
れる斑点状の白色酸化物がその表面に生成するこ
ともある。この斑点状の白色酸化物は、腐食反応
の進行につれて粗大化し、ときには剥離すること
もある。 このような異常腐食による部材の減肉が起こる
と、その部材の強度低下をきたし炉内構造部材の
安全性及び信頼性の点が懸念される。 このノジユラ腐食による異常腐食を防止する方
法が検討されている。 ジルコニウム基合金の中でもジルカロイ−2
(Zrに約1.5%Sn、0.1%Fe、0.1%Cr及び0.05%Ni
を添加した合金)及びジルカロイ−4(Zrに約1.5
%Sn、0.2%Fe、0.1%Crを添加した合金)をα+
β相又はβ相の温度領域へ急速加熱し、その後急
速冷却する処理(以後β焼入とよぶ)を行うと耐
食性が著しく向上することが知られている(特開
昭58−22364、25466、25467号公報)。 原子炉用燃料被覆管の主な役割は二つある。先
ず第一は核燃料と冷却材、又は核燃料と減速材と
の直接接触による化学反応を防止することであ
る。 第二は核燃料から発生する放射性核分裂生成物
が冷却材又は減速材の中に漏れ出ることを防止す
ることである。 しかしながら、被覆管は核燃料及び核分裂生成
物との相互作用により、更に中性子照射により一
層脆化が起り、割れ感受性が高くなる。この傾向
は、燃料と被覆管との熱膨張差に依る局部的な機
械的応力によつて助長される。 原子炉の運転中に発生する核分裂生成物、特に
ヨウ素及びカドミウム等が存在し、同時に上記の
ような局部的な応力が作用すると被覆管に応力腐
食割れが生じる恐れがある。 このような応力腐食割れを防止する方策とし
て、燃料と被覆管との間に純金属層を設けること
が知られている。特に、純ジルコニウムを被覆管
の内側に内張りした複合型被覆管として、特開昭
51−69795、54−59600号公報が知られている。純
ジルコニウム層の厚さは被覆管肉厚の約5〜30%
である。純ジルコニウムはジルコニウム合金と比
較して使用中軟かさを維持するため、被覆管に作
用する局部応力を軽減し、上記した応力腐食割れ
を防止する。 以上のように、燃料被覆管の外側は高温水や水
蒸気による腐食問題、つまりノジユラ腐食に起因
する管厚の減少があり、内側は燃料ペレツトの燃
焼による放出ガス(例えばヨウ素)と燃料ペレツ
トの焼結に伴う膨出負荷による応力腐食割れの問
題が考えられる。この問題において、上述の如
く、前者に対しては熱処理法、後者に対しては複
合型構造という対策が考えられている。 しかしながら、従来知られているβ焼入熱処理
法を適用すると炉水に接する管外表面の耐ノジユ
ラ腐食性は向上するが、管内面の応力腐食割れに
対し感受性が高くなる傾向にある。この理由はβ
焼入によつて形成される針状組織が硬く、かつ延
性が低いためと考えられる。また、焼入材は冷間
加工して焼鈍した後においても、通常の焼鈍材よ
り応力腐食割れ感受性が示された。 また耐応力腐食割れ向上の目的で被覆管の内面
に純ジルコニウムをライニングした複合型の被覆
管をβ焼入処理すると、高温加熱時にジルカロイ
の溶質元素、例えばSn、Fe、Cr及びO等が純ジ
ルコニウム内へ拡散し、耐SCC性を低下させるこ
とが考えられる。 〔発明の目的〕 本発明の目的は、高温水又は水蒸気中での耐ノ
ジユラ腐食性が優れ、同時にヨウ素等による応力
腐食割れ感受性の低いジルコニウム基合金の燃料
被覆管の製造方法を提供することにある。 〔発明の概要〕 本発明は、ジルコニウム基合金を最終熱間塑性
加工後、前記ジルコニウム基合金のβ相又はα+
β相温度領域に加熱し急冷する焼入れ処理を施
し、次いで冷間塑性加工及び焼鈍を少なくとも1
回施す被覆管の製造法において、少なくとも前記
焼入れ処理後における前記冷間塑性加工後の焼鈍
を前記被覆管の外表面を冷却しながら前記被覆管
の内表面を前記ジルコニウム基合金の再結晶温度
以上に加熱することにより行うことを特徴とす
る。 更に本発明は、ジルコニウム基合金を最終熱間
塑性加工後、前記ジルコニウム基合金のβ相又は
α+β相温度領域に加熱し急冷する焼入れ処理を
施し、次いで冷間塑性加工及び焼鈍を少なくとも
1回施す被覆管の製造法において、前記焼入れ処
理は前記被覆管全体を前記β相又はα+β相温度
領域に加熱し急冷するか、又は前記被覆管の内表
面を冷却しながら前記被覆管の外表面を前記β相
又はα+β相温度領域に加熱し急冷することによ
つて行い、かつ少なくとも前記焼入れ処理後にお
ける前記冷間塑性加工後の焼鈍を前記被覆管の外
表面を冷却しながら前記被覆管の内表面を前記ジ
ルコニウム基合金の再結晶温度以上に加熱するこ
とにより行うことを特徴とする原子炉燃料用被覆
管の製造法にある。 ジルコニウム基合金は、重量でSn1〜2%、
Fe0.05〜0.2%、Cr0.05〜0.2%、Mi0又は0.03〜
0.1%、残部実質的にジルコニウムからなるもの
が好ましい。本発明の製造法によつて得られる原
子炉燃料用被覆管は、外表面部に析出物がほとん
ど生じないので、高温高圧水に対する耐食性が優
れており、内表面は軟いので耐応力腐食割れ性が
優れている。上述の合金元素のうちFe、Ni及び
Crの合計の固溶量を0.28%以上になるように析出
物の析出量を少なくするコントロールをすること
が好ましい。 ジルコニウム基合金中に析出する析出物は
ZrC、ZrCr2、Zr(Fe、Cr)2、Zr(Fe、Ni)2、Zr2
(Fe、Ni)等である。更に、ジルコニウム基合金
としてNbを含む合金が適用される。 ジルコニウム基合金は一度焼入れされた部分は
その後冷間塑性加工、焼鈍を行つても耐応力腐食
割れ感受性が焼入しないものに比べて高い傾向に
あるため、被覆管内側部は焼入処理の温度履歴を
受けないことが肝要である。また内側が焼入組織
となる場合は焼鈍を十分に行つて再結晶組織に戻
すのが好ましい。 熱間押出後にβ相を含む温度領域から焼入する
場合、製造途中の素管の内側を水、温水、水蒸
気、ガス、ソルトバス又は、冷却用金型等を用い
て冷却し、管内側部を合金のα相領域の低い温度
にとどめる。好ましくは、内側の温度を600℃を
越えないようにする。すなわち、素管の外側を、
内側の温度をできるだけ上昇させないように両者
の間で温度勾配を設けながら焼入を行う。このと
きの外側の温度はβ相を含む温度まで加熱する。
ジルカロイ−2又はジルカロイ−4ではβ相が現
われる加熱温度は約900℃である。(α+β)二相
領域に加熱する場合は900〜1000℃、β相領域な
らば1000℃以上に加熱する。加熱は高周波、通電
加熱、電子ビーム及びレーザビーム加熱法によつ
て達成できるが、高周波加熱法がより安定した焼
入組織が得られる。 焼入に際し、内側から1/3の領域は600℃以下に
なるようにするのが好ましい。これはその後の冷
間塑性加工、機械加工等による肉厚の減少を考慮
したためである。 この処理によつて管外層部は焼入組織、内層部
は熱間押出しのままの組織またはそれが焼鈍した
組織から成るβ焼入管が得られる。 温度勾配をつけた焼入処理は管内側に純ジルコ
ニウム等の金属障壁を設けたビレツトにおいても
有効である。 焼入れ後、素管は冷間塑性加工と焼鈍とを少な
くとも1回実施する。この繰返しは3回行うのが
好ましい。この冷間塑性加工後の焼鈍は少なくと
も前述の焼入れ処理後は外表面を冷却しながら内
表面だけを行うものである。この焼鈍温度は640
℃以下が好ましく、特に600℃以下が好ましい。
下限温度は500℃が好ましい。最終焼鈍は中間焼
鈍より低い温度が好ましく、400〜610℃が好まし
い。焼鈍時間は1時間以下が好ましい。焼鈍加熱
の方法は管内側に加熱体を置き、管外側を水、水
蒸気、ガス、ソルトバス及び冷却用金型等を用い
て冷却するものである。内側は合金の再結晶温度
以上、外側は再結晶温度以下とし、管の内外で温
度勾配を設けながら焼鈍を行うのが好ましい。こ
のような温度差を設けて焼鈍することにより外表
面部での析出物が内表面部より少なく微細なもの
が得られ、高温高圧水に対する耐食性の優れた外
表面部と軟かく耐応力腐食割れ性が優れている。
焼鈍温度は900℃以下の高温で焼鈍することがで
きるので、実質的に内表面を完全な再結晶組織と
することができる。更に、外表面の加熱を防ぐこ
とができるので、析出物の析出量を少なくするこ
とができる。焼鈍温度が900℃を越えるとβ相が
出て来て、冷却の際に焼入が生じ、硬化するので
好ましくない。外側から1/3までの肉厚部分を600
℃以下にするのが好ましい。 この方法によつて得られる被覆管は外表面部が
焼入組織を有する加工組織及び内表面部が実質的
に完全な再結晶組織を有し、より優れた耐ノジユ
ラ腐食性及び耐応力腐食割れ性を有する。 第1図は本発明の焼入れ及び焼鈍を施す位置を
示すブロツク図である。 本発明のβを含む温度領域からの焼入れは、図
中2及び3の熱間塑性加工後、次いで焼鈍と冷間
塑性加工の繰返しを行う方法において熱間塑性加
工後焼鈍前及び冷間塑性加工後焼鈍前に少なくと
も1回行うものである。特に、熱間塑性加工後焼
鈍前に行うのが好ましい。本発明の焼鈍は従来法
(1)の焼鈍に代えて行うものであり、少なくとも1
回行い、従来の管全体の焼鈍と組合せて行うこと
もできる。図中の3は従来の管全体焼入れした場
合と本発明の焼鈍とを組合せた製造法である。以
上の如く、いずれの処理も少なくとも1回行うも
のであるが、焼入は最終熱間加工直後の1回、冷
間加工及び焼鈍の繰返しは3回行うのが好まし
い。 本発明の原子炉燃料被覆管は、ジルコニウム基
合金からなり、その内表面に金属障壁を設けられ
たものにも適用される。金属障壁には、純ジルコ
ニウム、錫を含有しない少量の鉄及びクロムを含
むジルコニウム合金、銅、ニオブ、ステンレス
鋼、ニツケル、アルミニウムが用いられる。被覆
管の厚さの5〜15%の厚さとし、特に純ジルコニ
ウムを用いるのが好ましい。 本発明は、核燃料物質体の中央コアと、該中央
コアを保持するジルコニウム基合金よりなる被覆
管とを有し、コアと被覆管との間に間隙を有する
核燃料要素に適用される。第2図は本発明に係る
核燃料要素の一例を示す部分断面図である。中央
コア26は被覆管17に入れられ、インクルード
スタツド19、エンドプラグ18とスプリング2
8によつて押し付けられている。中央コアにはウ
ラン化合物、プルトニウム化合物、またはこれら
の混合物が用いられる。 第3図は本発明に係る核燃料集合体の一例を示
す部分断面構成図である。各核燃料要素20はチ
ヤンネル21に取り付けられ、原子炉炉中に挿入
される。 本発明の原子炉燃料被覆管は外表面部が加工組
織又は部分的に再結晶した加工組織を有し、内表
面部は完全な再結晶組織を有するものが好まし
い。 本発明の被覆管は軽水炉(沸騰水型、加圧水
型)、重水炉に適用される。 〔発明の実施例〕 実施例 1 使用したジルカロイ−2のインゴツトの化学成
分は重量で1.43%Sn、0.16%Fe、0.11%Cr、0.06
%Ni、残部Zrである。この素材を熱間押出して、
外径63mm、肉厚10mm、長さ2500mmの素管を製造し
た。その後この素管の両端をシールし、その内側
を循環水で冷却しながら高周波焼入を施こした。
なお焼入は高周波発振コイルを固定し、素管を下
降させ移動させる方法によつて行つた。第4図は
本発明の焼入装置の一例を示す構成図である。 ビレツトあるいは製造途中の素管1の両端をフ
ランヂ7,8により導水管10,11に接続し、
素管1の内側が常に冷却される。一方、加熱は管
外側を高周波発振コイル4によつて焼入温度に到
達させる。 上下固定板5,6の上下移動によつて素管1の
全長を焼入することができる。この場合の冷却媒
体には水を用いたが、アルゴンガスを導入して
も、所定の温度勾配が得られる。 焼入昇温時の温度分布の一例を第5図に示す。
この温度分布は冷却媒体として水を用いた場合で
ある。この場合管内側の温度は100℃以下となる
が、前述したようにα相領域の上限温度まで加熱
してもよい。但し、600℃を越えると析出物が粗
大化するし耐ノジユラ腐食性を減じるので、管内
側の温度は600℃以下にするのが望ましい。 このときの素管の外側の熱履歴は960℃、20〜
30秒保持し、その後1分以内で100℃以下に冷却
した。内側の温度は最大で100℃に上昇したのみ
で、その時間もごくわずかであつた。 その後、室温で70%の断面減少率の冷間塑性加
工を1回行つた。この冷間加工後の焼鈍は第6図
に示したように素管内に高周波発振コイル4を差
込み、管長手方向の焼鈍に対しては徐々に移動す
る方法をとつた。また同時に管外側の冷却は冷却
ノズル14からアルゴンガスの噴射によつて常に
低温度に抑えた。このときの管内側の熱履歴は約
700℃、5分保持し、その後10分以内で100℃以下
に冷却した。一方管外側では約500℃であり、内
側に比べて低い。なお、このときの温度勾配を第
7図に示す。更に、前述と同様の冷間塑性加工を
行い、600℃、2時間の焼鈍後、同様に冷間塑性
加工し、577℃、3時間の再終焼鈍を行つた。焼
鈍にあたつては管端部分にダミ管12,12′を
溶接接合し、更に管内面にアルゴンガス15を流
しながら行い、酸化を防止した。本発明の被覆管
は第8図に示す如く、外側が加工組織又は部分的
に再結晶した加工組織を有し、内側が十分軟化し
た再結晶組織を有するものであつた。 図中、aは焼入れされた部分、bは焼入れ部と
焼鈍部との境界及びcは焼鈍部である。b部は肉
厚の半分付近である。 その後、これらの被覆管を用いて腐食試験及び
ヨウ素雰囲気中でSCC試験を実施した。 腐食試験は500℃、24h、水蒸気中で行い、試
験後試験片の外観観察及び酸化皮膜の厚さを測定
した。第9図は従来管と本発明管の耐食性の比較
を示す。従来管はノジユラ腐食が観察され、酸化
皮膜厚さのバラツキが大きい。それに対して、本
発明管にはノジユラ腐食は全然見られず、均一な
黒色酸化皮膜を呈していた。本発明管の皮膜厚さ
はバラツキが小さく、従来管のバラツキの範囲の
下限に位置している。従来管は焼入れせずに、本
発明と同様に3回冷間塑性加工を行い、中間焼鈍
を650℃、2時間及び最終焼鈍を本発明と同様に
行つたものである。 第10図はヨウ素中のSCC試験の結果を示す。
試験温度350℃、ヨウ素濃度約1mg/cm2(被覆管
の内面積に対して)の条件で行つたときのSCCき
裂発生後の円周上の伸びを測定した。図から明ら
かなように、本発明管の周方向伸びは従来管と比
較して高い値を示しており、本発明管の耐SCC性
が優れていることが知られた。 第11図は焼鈍温度と腐食増量との関係を示す
線図である。試料は、940℃、20秒加熱後水噴霧
により焼入れした後、室温で断面減少率70%の冷
間塑性加工し、次いで各種温度で2時間焼鈍した
ものである。試料の化学組成は前述と同じもので
ある。腐食試験は500℃、24h、水蒸気中で行つ
た。焼鈍温度が600℃以上であると腐食増量が増
加することがわかる。なお再結晶温度は加工度に
よるが、約500℃以上で起こり始める。より優れ
た耐食性を得るには原子炉中の高温高圧炉水に接
する外側の焼鈍温度は600℃を越えないようにす
るのが好ましいことが分る。 実施例 2 用いた材料は実施例1と同じ熱間押出し管であ
る。この押出し管1のβ焼入を第12図に示すよ
うに、管外側を高周波コイル6で加熱し、管内側
は冷却用金型7と接触させて放熱させる方法をと
つた。この冷却法の利点は焼入材との接触の度合
と金型7を冷やす水11の流量を調整することに
よつて管内側の温度を制御できることである。焼
入時の温度は管外側で1000℃、管内側で550℃で
行つた。なおその後の冷間塑性加工並びに焼鈍を
3回繰返し、原子炉用被覆管を製造した。本実施
例は第1図2の製造工程によるもので、焼入は1
回だけである。2回目及び3回目の加工及び焼鈍
は実施例1の本発明の製造と同じである。 これによる被覆管の耐ノジユラ腐食性は従来の
焼入しないものに比べすぐれていることがわかつ
た。また同時に耐ヨウ素SCC性も良好な特性を示
した。 実施例 3 用いた材料は実施例1と同じ熱間押出素管であ
る。β焼入は一体焼入を行つた。その熱履歴は
1000℃、20秒加熱保持し、次いで1分以内で室温
まで冷却した。 その後室温で、第1冷間圧延加工を行い、それ
に引続いて本発明法による焼鈍を行つた。第6図
は本発明法による素管の焼鈍装置の構成図であ
る。圧延管1の内側に高周波発振コイル4を挿入
して加熱し、外側を冷却ノズル14より水スプレ
ーで冷却しながら管長手方向に移動する方法で管
全域を焼鈍した。このときの熱履歴は内側で800
℃、5mm、外側では150℃を下まるものであつた。
その後冷間圧延及び600℃、2hの焼鈍を2回繰返
して被覆管とした。その焼鈍は管全体について行
つた。2回目及び3回目の加工及び焼鈍は実施例
1の本発明の製造と同じである。 これら被覆管から試験片を切出しノジユラ腐食
及びヨウ素SCC評価試験を行つた。第1表にその
試験結果を示す。なお従来管として焼入しないも
のと、素管の全体焼入管とを比較材とした。試験
結果から明らかなように本発明管は耐ノジユラ腐
食性並びに耐ヨウ素SCC性ともにすぐれている。
なお、従来管は前述実施例1の従来管の製造法と
同じである。
[Field of Application of the Invention] The present invention relates to a novel method for manufacturing a nuclear reactor fuel cladding tube, and particularly to a method for manufacturing a zirconium alloy nuclear reactor fuel cladding tube. [Background of the Invention] Zirconium-based alloys are used for fuel cladding tubes, fuel channel boxes, etc. of nuclear power plants because of their excellent corrosion resistance and extremely small neutron absorption cross section. These structures are exposed to neutron irradiation for a long period of time in a nuclear reactor and are also exposed to high-temperature, high-pressure water or steam, so as corrosion progresses, a zirconium oxide film is formed on the surface. Furthermore, spotty white oxides called nodular corrosion may be formed on the surface. These speckled white oxides become coarser as the corrosion reaction progresses, and sometimes peel off. When thinning of a member occurs due to such abnormal corrosion, the strength of the member decreases, raising concerns about the safety and reliability of the reactor internal structural member. Methods to prevent abnormal corrosion caused by this nodular corrosion are being studied. Among zirconium-based alloys, Zircaloy-2
(About 1.5% Sn, 0.1% Fe, 0.1% Cr and 0.05% Ni in Zr)
Zircaloy-4 (approximately 1.5
%Sn, 0.2%Fe, 0.1%Cr) is α+
It is known that corrosion resistance is significantly improved by rapid heating to the β phase or β phase temperature range, followed by rapid cooling (hereinafter referred to as β quenching) (Japanese Patent Laid-Open No. 58-22364, 25466, Publication No. 25467). Fuel cladding for nuclear reactors has two main roles. The first is to prevent chemical reactions due to direct contact between nuclear fuel and coolant, or between nuclear fuel and moderator. The second is to prevent radioactive fission products generated from the nuclear fuel from escaping into the coolant or moderator. However, the cladding becomes more brittle due to interaction with nuclear fuel and fission products, and further due to neutron irradiation, making it more susceptible to cracking. This tendency is exacerbated by local mechanical stresses due to differential thermal expansion between the fuel and the cladding. When nuclear fission products, especially iodine and cadmium, are generated during the operation of a nuclear reactor, and at the same time local stress as described above is applied, stress corrosion cracking may occur in the cladding tube. As a measure to prevent such stress corrosion cracking, it is known to provide a pure metal layer between the fuel and the cladding tube. In particular, as a composite type cladding tube in which pure zirconium is lined inside the cladding tube,
51-69795 and 54-59600 are known. The thickness of the pure zirconium layer is approximately 5 to 30% of the cladding wall thickness.
It is. Pure zirconium maintains its softness during use compared to zirconium alloys, so it reduces local stress acting on the cladding and prevents the stress corrosion cracking described above. As mentioned above, the outside of the fuel cladding tube has corrosion problems due to high temperature water and water vapor, that is, the tube thickness is reduced due to nodular corrosion, and the inside is affected by the gases released from the combustion of fuel pellets (for example, iodine) and the burning of the fuel pellets. The problem is thought to be stress corrosion cracking due to the bulging load associated with this process. Regarding this problem, as mentioned above, countermeasures have been considered for the former, such as heat treatment, and for the latter, a composite structure. However, when the conventional β-quenching heat treatment method is applied, the nodular corrosion resistance of the outer surface of the tube in contact with reactor water is improved, but the inner surface of the tube tends to be more susceptible to stress corrosion cracking. The reason for this is β
This is thought to be because the acicular structure formed by quenching is hard and has low ductility. Furthermore, even after cold working and annealing, the quenched material showed more susceptibility to stress corrosion cracking than the normally annealed material. In addition, when beta-quenching is applied to a composite cladding tube whose inner surface is lined with pure zirconium for the purpose of improving stress corrosion cracking resistance, the solute elements of the zircaloy, such as Sn, Fe, Cr, and O, become pure during high-temperature heating. It is thought that it diffuses into zirconium and reduces SCC resistance. [Object of the Invention] An object of the present invention is to provide a method for producing a fuel cladding made of a zirconium-based alloy that has excellent nodule corrosion resistance in high-temperature water or steam, and at the same time has low susceptibility to stress corrosion cracking due to iodine, etc. be. [Summary of the Invention] The present invention provides a method for forming a β-phase or α+ phase of a zirconium-based alloy after final hot plastic working.
A quenching process is carried out by heating to the β-phase temperature region and then rapidly cooling, followed by cold plastic working and annealing for at least one time.
In the method for manufacturing a cladding tube, at least the annealing after the cold plastic working after the quenching treatment is performed while the outer surface of the cladding tube is cooled and the inner surface of the cladding tube is heated to a temperature higher than the recrystallization temperature of the zirconium-based alloy. It is characterized in that it is carried out by heating to. Further, in the present invention, after the final hot plastic working of the zirconium-based alloy, a quenching treatment is performed to heat the zirconium-based alloy to the β phase or α+β phase temperature range and rapidly cool it, and then cold plastic working and annealing are performed at least once. In the method for manufacturing a cladding tube, the quenching treatment involves heating the entire cladding tube to the β phase or α+β phase temperature range and rapidly cooling it, or heating the outer surface of the cladding tube to the temperature range while cooling the inner surface of the cladding tube. The inner surface of the cladding tube is annealed by heating to a β phase or α+β phase temperature region and then rapidly cooled, and at least the annealing after the cold plastic working after the quenching treatment is performed on the inner surface of the cladding tube while cooling the outer surface of the cladding tube. A method for producing a cladding tube for a nuclear reactor fuel, characterized in that heating the above-mentioned zirconium-based alloy to a temperature higher than the recrystallization temperature. Zirconium-based alloy contains 1 to 2% Sn by weight,
Fe0.05~0.2%, Cr0.05~0.2%, Mi0 or 0.03~
0.1%, with the remainder preferably consisting essentially of zirconium. The reactor fuel cladding tube obtained by the manufacturing method of the present invention has almost no precipitates on the outer surface, so it has excellent corrosion resistance against high-temperature, high-pressure water, and the inner surface is soft, so it is resistant to stress corrosion cracking. Excellent quality. Among the alloying elements mentioned above, Fe, Ni and
It is preferable to control the amount of precipitates so that the total solid solution amount of Cr is 0.28% or more. Precipitates that form in zirconium-based alloys are
ZrC, ZrCr 2 , Zr (Fe, Cr) 2 , Zr (Fe, Ni) 2 , Zr 2
(Fe, Ni), etc. Furthermore, an alloy containing Nb is applied as the zirconium-based alloy. Once quenched, the stress corrosion cracking resistance of zirconium-based alloys tends to be higher than that of unquenched parts, even after cold plastic working and annealing. It is important not to take history. Further, if the inner side has a hardened structure, it is preferable to perform sufficient annealing to restore the recrystallized structure. When quenching is performed from a temperature range that includes the β phase after hot extrusion, the inside of the raw tube that is being manufactured is cooled using water, hot water, steam, gas, a salt bath, or a cooling mold, and the inside of the tube is heated. remains at a low temperature in the alpha phase region of the alloy. Preferably, the inside temperature does not exceed 600°C. In other words, the outside of the raw pipe,
Hardening is performed while creating a temperature gradient between the two to prevent the inside temperature from rising as much as possible. At this time, the outside temperature is heated to a temperature that includes the β phase.
In Zircaloy-2 or Zircaloy-4, the heating temperature at which the β phase appears is about 900°C. When heating to the (α+β) two-phase region, heat to 900 to 1000°C, and if heating to the β-phase region, heat to 1000°C or more. Heating can be achieved by high frequency, electrical heating, electron beam, and laser beam heating methods, but the high frequency heating method provides a more stable hardened structure. During quenching, it is preferable that the temperature in the inner 1/3 region is 600°C or lower. This is in consideration of the reduction in wall thickness due to subsequent cold plastic working, machining, etc. By this treatment, a β-quenched tube is obtained in which the outer layer of the tube has a quenched structure and the inner layer has a structure as hot extruded or an annealed structure. Hardening treatment with a temperature gradient is also effective for billets with a metal barrier such as pure zirconium on the inside of the tube. After quenching, the raw tube is subjected to cold plastic working and annealing at least once. This repetition is preferably performed three times. This annealing after cold plastic working is carried out only on the inner surface while cooling the outer surface, at least after the above-mentioned quenching treatment. This annealing temperature is 640
The temperature is preferably below 600°C, particularly preferably below 600°C.
The lower limit temperature is preferably 500°C. The temperature of the final annealing is preferably lower than that of the intermediate annealing, and preferably 400 to 610°C. The annealing time is preferably 1 hour or less. The annealing heating method involves placing a heating element inside the tube and cooling the outside of the tube using water, steam, gas, a salt bath, a cooling mold, or the like. It is preferable to perform annealing while creating a temperature gradient inside and outside the tube, with the inside being at a temperature higher than the recrystallization temperature of the alloy and the outside being lower than the recrystallization temperature. By annealing with such a temperature difference, the outer surface has fewer and finer precipitates than the inner surface, and the outer surface has excellent corrosion resistance against high-temperature, high-pressure water and is soft and resistant to stress corrosion cracking. Excellent quality.
Since annealing can be performed at a high temperature of 900° C. or lower, the inner surface can have a substantially perfect recrystallized structure. Furthermore, since heating of the outer surface can be prevented, the amount of precipitates can be reduced. If the annealing temperature exceeds 900°C, β phase will appear, quenching will occur during cooling, and hardening will occur, which is not preferable. 600 for the thick part from the outside to 1/3
It is preferable to keep the temperature below ℃. The cladding tube obtained by this method has a processed structure with a hardened structure on the outer surface and a substantially perfect recrystallized structure on the inner surface, and has superior nodule corrosion resistance and stress corrosion cracking resistance. have sex. FIG. 1 is a block diagram showing the locations where hardening and annealing of the present invention are performed. The quenching from the temperature range including β of the present invention is performed after hot plastic working, before annealing, and after cold plastic working in the method of 2 and 3 in the figure, in which annealing and cold plastic working are repeated. This is carried out at least once before post-annealing. In particular, it is preferable to carry out after hot plastic working and before annealing. The annealing of the present invention is a conventional method.
This is done in place of the annealing in (1), and at least 1
It can also be carried out in combination with conventional whole tube annealing. 3 in the figure is a manufacturing method that combines the conventional case where the whole tube is quenched and the annealing according to the present invention. As described above, each treatment is performed at least once, but it is preferable that quenching is performed once immediately after the final hot working, and cold working and annealing are repeated three times. The nuclear reactor fuel cladding tube of the present invention is made of a zirconium-based alloy and can also be applied to one in which a metal barrier is provided on the inner surface. Metal barriers include pure zirconium, zirconium alloys containing no tin and small amounts of iron and chromium, copper, niobium, stainless steel, nickel, and aluminum. The thickness is 5 to 15% of the thickness of the cladding tube, and it is particularly preferable to use pure zirconium. The present invention is applied to a nuclear fuel element that has a central core of a nuclear fuel material body and a cladding made of a zirconium-based alloy that holds the central core, and has a gap between the core and the cladding. FIG. 2 is a partial sectional view showing an example of a nuclear fuel element according to the present invention. The central core 26 is placed in the cladding tube 17 and includes the stud 19, the end plug 18 and the spring 2.
8. The central core may be a uranium compound, a plutonium compound, or a mixture thereof. FIG. 3 is a partial cross-sectional configuration diagram showing an example of a nuclear fuel assembly according to the present invention. Each nuclear fuel element 20 is attached to a channel 21 and inserted into a nuclear reactor. Preferably, the reactor fuel cladding tube of the present invention has an outer surface having a textured texture or a partially recrystallized texture, and an inner surface having a completely recrystallized texture. The cladding tube of the present invention is applied to light water reactors (boiling water type, pressurized water type) and heavy water reactors. [Embodiments of the invention] Example 1 The chemical components of the Zircaloy-2 ingot used were 1.43% Sn, 0.16% Fe, 0.11% Cr, and 0.06% by weight.
%Ni, balance Zr. This material is hot extruded,
A raw tube with an outer diameter of 63 mm, wall thickness of 10 mm, and length of 2500 mm was manufactured. After that, both ends of this raw tube were sealed, and induction hardening was performed while cooling the inside with circulating water.
The quenching was carried out by fixing the high frequency oscillation coil and lowering and moving the raw tube. FIG. 4 is a configuration diagram showing an example of the hardening apparatus of the present invention. Both ends of the billet or unmanufactured pipe 1 are connected to water conduit pipes 10 and 11 by flanges 7 and 8,
The inside of the raw tube 1 is constantly cooled. On the other hand, the outside of the tube is heated to reach the quenching temperature by the high frequency oscillation coil 4. By moving the upper and lower fixing plates 5 and 6 up and down, the entire length of the raw tube 1 can be hardened. Although water was used as the cooling medium in this case, a predetermined temperature gradient can also be obtained by introducing argon gas. An example of the temperature distribution during quenching temperature rise is shown in FIG.
This temperature distribution is obtained when water is used as the cooling medium. In this case, the temperature inside the tube will be 100° C. or less, but as described above, it may be heated to the upper limit temperature of the α phase region. However, if the temperature exceeds 600°C, the precipitates will become coarse and the nodule corrosion resistance will be reduced, so it is desirable to keep the temperature inside the tube below 600°C. The thermal history on the outside of the tube at this time is 960℃, 20~
It was held for 30 seconds and then cooled to below 100°C within 1 minute. The temperature inside only rose to a maximum of 100 degrees Celsius, and it only rose for a very short time. Thereafter, cold plastic working with a cross-section reduction rate of 70% was performed once at room temperature. For annealing after cold working, a high frequency oscillation coil 4 was inserted into the tube as shown in FIG. 6, and the coil was gradually moved for annealing in the longitudinal direction of the tube. At the same time, the temperature on the outside of the tube was always kept low by injecting argon gas from the cooling nozzle 14. The thermal history inside the tube at this time is approximately
The temperature was maintained at 700°C for 5 minutes, and then the temperature was cooled to below 100°C within 10 minutes. On the other hand, the temperature on the outside of the tube is approximately 500°C, which is lower than that on the inside. Note that the temperature gradient at this time is shown in FIG. Furthermore, cold plastic working was performed in the same manner as described above, and after annealing at 600°C for 2 hours, cold plastic working was performed in the same manner, and final annealing was performed at 577°C for 3 hours. During annealing, dummy tubes 12 and 12' were welded to the tube ends, and argon gas 15 was flowed inside the tube to prevent oxidation. As shown in FIG. 8, the cladding tube of the present invention had a processed structure or a partially recrystallized processed structure on the outside, and a sufficiently softened recrystallized structure on the inside. In the figure, a is the hardened part, b is the boundary between the hardened part and the annealed part, and c is the annealed part. Part b is approximately half the thickness. Thereafter, a corrosion test and an SCC test were conducted in an iodine atmosphere using these cladding tubes. The corrosion test was conducted in steam at 500°C for 24 hours, and after the test, the appearance of the test piece was observed and the thickness of the oxide film was measured. FIG. 9 shows a comparison of the corrosion resistance of the conventional pipe and the pipe of the present invention. Nodular corrosion has been observed in conventional pipes, and the oxide film thickness varies widely. In contrast, no nodular corrosion was observed in the tube of the present invention, and a uniform black oxide film was exhibited. The coating thickness of the tube of the present invention has small variations and is located at the lower limit of the variation range of conventional tubes. The conventional tube was not hardened, but was subjected to cold plastic working three times in the same manner as in the present invention, intermediate annealing at 650° C. for 2 hours, and final annealing in the same manner as in the present invention. Figure 10 shows the results of the SCC test in iodine.
The circumferential elongation after SCC crack initiation was measured under conditions of a test temperature of 350°C and an iodine concentration of about 1 mg/cm 2 (relative to the inner area of the cladding tube). As is clear from the figure, the circumferential elongation of the tube of the present invention is higher than that of the conventional tube, indicating that the tube of the present invention has excellent SCC resistance. FIG. 11 is a diagram showing the relationship between annealing temperature and corrosion increase. The samples were heated at 940°C for 20 seconds, quenched by water spray, cold plastic worked at room temperature with a reduction in area of 70%, and then annealed at various temperatures for 2 hours. The chemical composition of the sample is the same as described above. Corrosion tests were conducted at 500°C for 24 hours in water vapor. It can be seen that when the annealing temperature is 600°C or higher, the corrosion weight increases. The recrystallization temperature depends on the degree of processing, but begins to occur at approximately 500°C or higher. It has been found that in order to obtain better corrosion resistance, it is preferable that the annealing temperature of the outer side in contact with high-temperature, high-pressure reactor water in the nuclear reactor does not exceed 600°C. Example 2 The material used was the same hot extruded tube as in Example 1. As shown in FIG. 12, β-quenching of the extruded tube 1 was carried out by heating the outside of the tube with a high-frequency coil 6 and bringing the inside of the tube into contact with a cooling mold 7 to radiate heat. The advantage of this cooling method is that the temperature inside the tube can be controlled by adjusting the degree of contact with the hardening material and the flow rate of water 11 that cools the mold 7. The temperature during quenching was 1000°C on the outside of the tube and 550°C on the inside of the tube. The subsequent cold plastic working and annealing were repeated three times to produce a nuclear reactor cladding tube. This example is based on the manufacturing process shown in Fig. 1 and 2, and the quenching is 1
Only once. The second and third processing and annealing are the same as the inventive production of Example 1. It was found that the nodular corrosion resistance of the cladding tube obtained by this method was superior to that of conventional cladding tubes that were not hardened. At the same time, it also showed good iodine SCC resistance. Example 3 The material used was the same hot extruded tube as in Example 1. For β quenching, integral quenching was performed. Its thermal history is
The mixture was heated and held at 1000°C for 20 seconds, and then cooled to room temperature within 1 minute. Thereafter, a first cold rolling process was performed at room temperature, followed by annealing according to the method of the present invention. FIG. 6 is a block diagram of an apparatus for annealing raw pipes according to the method of the present invention. A high-frequency oscillation coil 4 was inserted into the inside of the rolled tube 1 to heat it, and the entire tube was annealed by moving the tube in the longitudinal direction while cooling the outside with water spray from a cooling nozzle 14. The heat history at this time is 800 on the inside.
℃, 5mm, and on the outside it was below 150℃.
Thereafter, cold rolling and annealing at 600°C for 2 hours were repeated twice to obtain a cladding tube. The annealing was performed on the entire tube. The second and third processing and annealing are the same as in the inventive production of Example 1. Test pieces were cut from these cladding tubes and subjected to nodular corrosion and iodine SCC evaluation tests. Table 1 shows the test results. The comparison materials were a conventional tube that was not quenched and a tube that was entirely quenched. As is clear from the test results, the tube of the present invention has excellent nodular corrosion resistance and iodine SCC resistance.
Note that the conventional tube is manufactured using the same method as the conventional tube of Example 1 described above.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐ノジユラ腐食性及び耐応力
腐食割れ性に優れた原子炉燃料被覆管が得られ
る。
According to the present invention, a reactor fuel cladding tube having excellent nodule corrosion resistance and stress corrosion cracking resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子炉燃料用被覆管の製造工程を示す
ブロツク図、第2図は本発明の原子炉燃料用被覆
管を用いた核燃料要素の一例を示す部分断面構成
図、第3図は本発明の原子炉燃料被覆管を用いた
原子炉燃料集合体の一例を示す部分断面構成図、
第4図は本発明の焼入れ方法を実施する装置の一
例を示す構成図、第5図は本発明の焼入れにおけ
る管の加熱温度分布を示す線図、第6図は本発明
の焼鈍方法を実施する装置の一例を示す構成図、
第7図は本発明の焼鈍における管の加熱温度分布
を示す線図、第8図は本発明の原子炉燃料用被覆
管の断面の金属組織を示す顕微鏡写真、第9図は
高温高圧水試験後の酸化皮膜厚さを示す棒グラ
フ、第10図は被覆管の伸び率を示す棒グラフ、
第11図は焼鈍温度と腐食増量との関係を示す線
図、第12図は本発明の焼鈍方法を実施する装置
の一例を示す構成図である。 1……素管、7……冷却金型、4,6……高周
波発振コイル、14……冷却ノズル、12,1
2′……ダミー、17……原子炉燃料用被覆管、
18……エンドプラグ、19……インクルードス
タツド、21……チヤンネル、22……リフテン
グベイル、23……上部アウトレツト、20……
核燃料要素、24……核燃料材保持手段、25…
…上部エンドプレート、26……核燃料中央コ
ア。
FIG. 1 is a block diagram showing the manufacturing process of a reactor fuel cladding tube, FIG. 2 is a partial cross-sectional configuration diagram showing an example of a nuclear fuel element using the reactor fuel cladding tube of the present invention, and FIG. A partial cross-sectional configuration diagram showing an example of a reactor fuel assembly using the reactor fuel cladding tube of the invention,
Fig. 4 is a block diagram showing an example of an apparatus for carrying out the quenching method of the present invention, Fig. 5 is a diagram showing the heating temperature distribution of the tube during quenching of the present invention, and Fig. 6 is a diagram showing the annealing method of the present invention. A configuration diagram showing an example of a device for
Fig. 7 is a diagram showing the heating temperature distribution of the tube during annealing of the present invention, Fig. 8 is a micrograph showing the metal structure of the cross section of the reactor fuel cladding tube of the present invention, and Fig. 9 is a high temperature and high pressure water test. A bar graph showing the subsequent oxide film thickness, Figure 10 is a bar graph showing the elongation rate of the cladding tube,
FIG. 11 is a diagram showing the relationship between annealing temperature and corrosion increase, and FIG. 12 is a configuration diagram showing an example of an apparatus for carrying out the annealing method of the present invention. 1...Made pipe, 7...Cooling mold, 4,6...High frequency oscillation coil, 14...Cooling nozzle, 12,1
2'...Dummy, 17...Reactor fuel cladding tube,
18... End plug, 19... Include stud, 21... Channel, 22... Lifting bail, 23... Upper outlet, 20 ...
Nuclear fuel element, 24...Nuclear fuel material holding means, 25...
...Top end plate, 26...Nuclear fuel central core.

Claims (1)

【特許請求の範囲】 1 ジルコニウム基合金を最終熱間塑性加工後、
前記ジルコニウム基合金のβ相又はα+β相温度
領域に加熱し急冷する焼入れ処理を施し、次いで
冷間塑性加工及び焼鈍を少なくとも1回施す被覆
管の製造法において、少なくとも前記焼入れ処理
後における前記冷間塑性加工後の焼鈍を前記被覆
管の外表面を冷却しながら前記被覆管の内表面を
前記ジルコニウム基合金の再結晶温度以上に加熱
することにより行うことを特徴とする原子炉燃料
用被覆管の製造法。 2 ジルコニウム基合金を最終熱間塑性加工後、
前記ジルコニウム基合金のβ相又はα+β相温度
領域に加熱し急冷する焼入れ処理を施し、次いで
冷間塑性加工及び焼鈍を少なくとも1回施す被覆
管の製造法において、前記焼入れ処理は前記被覆
管全体を前記β相又はα+β相温度領域に加熱し
急冷するか、又は前記被覆管の内表面を冷却しな
がら前記被覆管の外表面を前記β相又はα+β相
温度領域に加熱し急冷することによつて行い、か
つ少なくとも前記焼入れ処理後における前記冷間
塑性加工後の焼鈍を前記被覆管の外表面を冷却し
ながら前記被覆管の内表面を前記ジルコニウム基
合金の再結晶温度以上に加熱することにより行う
ことを特徴とする原子炉燃料用被覆管の製造法。
[Claims] 1. After final hot plastic working of the zirconium-based alloy,
In the method for manufacturing a cladding tube, the cladding tube is subjected to a quenching treatment in which the zirconium-based alloy is heated to a β phase or α+β phase temperature range and then rapidly cooled, and then subjected to cold plastic working and annealing at least once, wherein at least the cold treatment after the quenching treatment is performed. A cladding tube for nuclear fuel, characterized in that annealing after plastic working is performed by heating an inner surface of the cladding tube to a temperature equal to or higher than the recrystallization temperature of the zirconium-based alloy while cooling the outer surface of the cladding tube. Manufacturing method. 2 After final hot plastic working of the zirconium-based alloy,
In the method for manufacturing a cladding tube, the quenching process is performed by heating and rapidly cooling the zirconium-based alloy to the β phase or α+β phase temperature range, and then cold plastic working and annealing at least once, in which the quenching process is performed on the entire cladding tube. By heating to the β phase or α+β phase temperature range and rapidly cooling, or by heating the outer surface of the cladding tube to the β phase or α+β phase temperature range and rapidly cooling while cooling the inner surface of the cladding tube. and at least the annealing after the cold plastic working after the quenching treatment is performed by heating the inner surface of the cladding tube to a temperature equal to or higher than the recrystallization temperature of the zirconium-based alloy while cooling the outer surface of the cladding tube. A method for manufacturing a cladding tube for nuclear reactor fuel, characterized by:
JP59019980A 1984-02-08 1984-02-08 Coated tube for reactor fuel and manufacture thereof Granted JPS60165580A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59019980A JPS60165580A (en) 1984-02-08 1984-02-08 Coated tube for reactor fuel and manufacture thereof
CA000472980A CA1230805A (en) 1984-02-08 1985-01-28 Method of producing a cladding tube for reactor fuel
DE19853504031 DE3504031A1 (en) 1984-02-08 1985-02-06 Coated sleeve for nuclear fuel and manufacturing process therefor
US06/915,555 US4718949A (en) 1984-02-08 1986-10-06 Method of producing a cladding tube for reactor fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59019980A JPS60165580A (en) 1984-02-08 1984-02-08 Coated tube for reactor fuel and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS60165580A JPS60165580A (en) 1985-08-28
JPH0344275B2 true JPH0344275B2 (en) 1991-07-05

Family

ID=12014326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59019980A Granted JPS60165580A (en) 1984-02-08 1984-02-08 Coated tube for reactor fuel and manufacture thereof

Country Status (4)

Country Link
US (1) US4718949A (en)
JP (1) JPS60165580A (en)
CA (1) CA1230805A (en)
DE (1) DE3504031A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3571096D1 (en) * 1984-03-09 1989-07-20 Nippon Nuclear Fuel Dev Co Cladding tube for nuclear fuel and nuclear fuel element having this cladding tube
US5278881A (en) * 1989-07-20 1994-01-11 Hitachi, Ltd. Fe-Cr-Mn Alloy
US4980121A (en) * 1989-07-28 1990-12-25 Westinghouse Electric Corp. Protective device for lower end portion of a nuclear fuel rod cladding
US5230758A (en) * 1989-08-28 1993-07-27 Westinghouse Electric Corp. Method of producing zirlo material for light water reactor applications
US5076488A (en) * 1989-09-19 1991-12-31 Teledyne Industries, Inc. Silicon grain refinement of zirconium
JP2638351B2 (en) * 1991-09-20 1997-08-06 株式会社日立製作所 Fuel assembly
SE506174C2 (en) * 1992-12-18 1997-11-17 Asea Atom Ab Method of producing nuclear fuel elements
US5618356A (en) * 1993-04-23 1997-04-08 General Electric Company Method of fabricating zircaloy tubing having high resistance to crack propagation
US5437747A (en) * 1993-04-23 1995-08-01 General Electric Company Method of fabricating zircalloy tubing having high resistance to crack propagation
US5519748A (en) * 1993-04-23 1996-05-21 General Electric Company Zircaloy tubing having high resistance to crack propagation
US5469481A (en) * 1993-07-14 1995-11-21 General Electric Company Method of preparing fuel cladding having an alloyed zirconium barrier layer
US5383228A (en) * 1993-07-14 1995-01-17 General Electric Company Method for making fuel cladding having zirconium barrier layers and inner liners
US5524032A (en) * 1993-07-14 1996-06-04 General Electric Company Nuclear fuel cladding having an alloyed zirconium barrier layer
US5517540A (en) * 1993-07-14 1996-05-14 General Electric Company Two-step process for bonding the elements of a three-layer cladding tube
US5417780A (en) * 1993-10-28 1995-05-23 General Electric Company Process for improving corrosion resistance of zirconium or zirconium alloy barrier cladding
US5699396A (en) * 1994-11-21 1997-12-16 General Electric Company Corrosion resistant zirconium alloy for extended-life fuel cladding
DE69602123T3 (en) * 1995-03-28 2007-03-29 General Electric Co. Alloy for improving the corrosion resistance of nuclear reactor components
US5793830A (en) * 1995-07-03 1998-08-11 General Electric Company Metal alloy coating for mitigation of stress corrosion cracking of metal components in high-temperature water
DE19709929C1 (en) 1997-03-11 1998-08-13 Siemens Ag Cladding tube of a fuel rod for a boiling water reactor fuel element and method for its production
US6338373B1 (en) 2000-06-30 2002-01-15 Ford Motor Company Compact, low-clearance, traction assist device
KR100461017B1 (en) * 2001-11-02 2004-12-09 한국수력원자력 주식회사 Method for preparing niobium-containing zirconium alloys for nuclear fuel cladding tubes having the excellent corrosion resistance
SE525455C2 (en) * 2002-06-07 2005-02-22 Westinghouse Atom Ab Process, use and device for nuclear fuel enclosure pipes as well as fuel cartridge for a nuclear boiler water reactor
SE525808C2 (en) * 2002-10-30 2005-05-03 Westinghouse Atom Ab Process, use and device for nuclear fuel casing and a fuel cartridge for a nuclear pressurized water reactor
DE102004031192A1 (en) 2004-06-28 2006-01-12 Framatome Anp Gmbh Method and apparatus for heat treating a zirconium alloy fuel box
US8043448B2 (en) * 2004-09-08 2011-10-25 Global Nuclear Fuel-Americas, Llc Non-heat treated zirconium alloy fuel cladding and a method of manufacturing the same
JP5090687B2 (en) * 2006-08-15 2012-12-05 白川 利久 PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly
FR2958659B1 (en) * 2010-04-08 2013-01-11 Electricite De France TREATMENT OF A HEATING ROD FOR A PRESSURIZER OF THE PRIMARY CIRCUIT OF A NUCLEAR REACTOR.
US9188514B1 (en) * 2013-05-23 2015-11-17 The United States Of America As Represented By The Secretary Of The Navy System and method for producing a sample having a monotonic doping gradient of a diffusive constituent or interstitial atom or molecule
FR3025929B1 (en) * 2014-09-17 2016-10-21 Commissariat Energie Atomique NUCLEAR FUEL TANKS, METHODS OF MANUFACTURE AND USE AGAINST OXIDATION.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207349A (en) * 1982-04-15 1983-12-02 ゼネラル・エレクトリツク・カンパニイ Heat treating pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1525717A (en) * 1974-11-11 1978-09-20 Gen Electric Nuclear fuel elements
NL7602275A (en) * 1975-03-14 1976-09-16 Asea Atom Ab PROCEDURE FOR AN ANTI-CORROSION TREATMENT OF ZIRCOON ALLOYS.
CA1139023A (en) * 1979-06-04 1983-01-04 John H. Davies Thermal-mechanical treatment of composite nuclear fuel element cladding
SE426890B (en) * 1981-07-07 1983-02-14 Asea Atom Ab SET TO MANUFACTURE Capsules of Zirconium-Based Alloy for Fuel Rods for Nuclear Reactors
US4576654A (en) * 1982-04-15 1986-03-18 General Electric Company Heat treated tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207349A (en) * 1982-04-15 1983-12-02 ゼネラル・エレクトリツク・カンパニイ Heat treating pipe

Also Published As

Publication number Publication date
US4718949A (en) 1988-01-12
DE3504031C2 (en) 1988-07-28
JPS60165580A (en) 1985-08-28
DE3504031A1 (en) 1985-09-19
CA1230805A (en) 1987-12-29

Similar Documents

Publication Publication Date Title
JPH0344275B2 (en)
EP1111623B1 (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JP2638351B2 (en) Fuel assembly
JPS5822364A (en) Preparation of zirconium base alloy
RU2239892C2 (en) Method for producing thin components from zirconium base alloy and plates produced by this method
US5844959A (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US4360389A (en) Zirconium alloy heat treatment process
US5835550A (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
US5188676A (en) Method for annealing zircaloy to improve nodular corrosion resistance
KR100353125B1 (en) Method for the manufacture of tubes of a zirconium based alloy for nuclear reactors and their usage
CA1080513A (en) Zirconium alloy heat treatment process and product
JPS5822365A (en) Preparation of zirconium base alloy
JP2814981B2 (en) Fuel assembly
JPS61170535A (en) Fuel cladding pipe for nuclear reactor and its manufacture
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JPH0421746B2 (en)
JPH0260153B2 (en)
JP2500165B2 (en) Method for manufacturing fuel cladding tube
JPS6137924A (en) Uniform cooling method of tubular body
JPH07173587A (en) Production of zirconium alloy welded member
JPH07310158A (en) Corrosion-resistant fuel channel having dimensional stability and its production
Fleck et al. Final report on development evaluation of Task Group 3 pressure tubes
JPS63290232A (en) Corrosion resistant zirconium alloy and its manufacture
JPS5993861A (en) Manufacture of sheath pipe for fuel for nuclear reactor