JPS63290232A - Corrosion resistant zirconium alloy and its manufacture - Google Patents

Corrosion resistant zirconium alloy and its manufacture

Info

Publication number
JPS63290232A
JPS63290232A JP8544888A JP8544888A JPS63290232A JP S63290232 A JPS63290232 A JP S63290232A JP 8544888 A JP8544888 A JP 8544888A JP 8544888 A JP8544888 A JP 8544888A JP S63290232 A JPS63290232 A JP S63290232A
Authority
JP
Japan
Prior art keywords
alloy
weight
zirconium alloy
corrosion
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8544888A
Other languages
Japanese (ja)
Other versions
JPH0465142B2 (en
Inventor
Emiko Higashinakagaha
東中川 恵美子
Kanemitsu Sato
佐藤 金光
Yoshiaki Kuwae
桑江 良章
Kunimichi Watanabe
渡辺 邦道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8544888A priority Critical patent/JPS63290232A/en
Publication of JPS63290232A publication Critical patent/JPS63290232A/en
Publication of JPH0465142B2 publication Critical patent/JPH0465142B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To manufacture a Zr alloy having excellent nodular corrosion resistance by heating the Zr alloy having specific compsn., subjecting it to a quenching treatment and forming appropriately spheroidal crystal grains in the martensite structure. CONSTITUTION:The Zn alloy material consisting of, by weight, 1.2-1.7% Sn, 0.18-0.24% Fe, 0.07-0.13% Cr as well as 0.28-0.37% total amt. of Fe and Cr and the balance consisting substantially of Zr is applied to a heating treatment at 870-1,000 deg.C. The material is then subjected to the quenching treatment by water cooling, etc. Said treatment is suitably executed thereto in the manufacturing stage. By this method, the Zr alloy having the martensite structure provided with fine deposits in the grain boundary thereof and having the spheroidal crystal grains can be obtd. Said corrosion resistant Zr alloy is suitable as the core structural material such as a cut fuel covering tube, etc.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は核燃料被覆管など炉心構造材に適する耐食性ジ
ルコニウム合金およびその製造法に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a corrosion-resistant zirconium alloy suitable for reactor core structural materials such as nuclear fuel cladding tubes, and a method for producing the same.

(従来の技術) 例えばジルカロイ−2,ジルカロイ−4などジルコニウ
ム合金は熱中性子吸収断面積が小さいこと、原子炉内環
境に対する耐食性が良好なこと、構造材料として要求さ
れる機械的性質を十分に備えていることなどの点から原
子炉の炉内構造材料として使用されている。しかしなか
ら近年炉心構造物の耐用年数を延す要望に対して次のよ
うな問題が認められるに至った。即ちジルコニウム合金
構造物の表面に所謂るノジュラーコロージョンと呼ばれ
る白色腐食生成物が斑点状に点在するようになる。この
腐食生成物は時間の経過とともに生成し、集積して最終
的には剥離に至り機械的性質の低下を招くとともに、上
記剥離による蓄積によって熱伝達効率の低下を招き、も
って例えば燃料集合体の局部的加熱をもたらしたり、ま
た定期検査の際において放射能増大源となるなどの不都
合さかある。
(Prior art) For example, zirconium alloys such as Zircaloy-2 and Zircaloy-4 have a small thermal neutron absorption cross section, good corrosion resistance in the reactor environment, and have sufficient mechanical properties required as structural materials. It is used as a material for the internal structure of nuclear reactors because of its strong properties. However, in recent years, the following problems have been recognized in response to the desire to extend the service life of core structures. That is, the surface of the zirconium alloy structure becomes dotted with white corrosion products called nodular corrosion. These corrosion products are generated and accumulated over time, eventually leading to delamination and deterioration of mechanical properties, and the accumulation of delamination leads to a decrease in heat transfer efficiency, resulting in, for example, fuel assemblies. There are some inconveniences, such as causing local heating and becoming a source of increased radioactivity during periodic inspections.

上記不都合さの解決手段としてカリウム、イツトリウム
−カルシウム系をジルコニウム合金の組成分化すること
(米国特許第3281882号など)や金、銀、白金、
ニッケル、クロム、もしくはニオブなど化学的に不活性
な金属層をジルコニウム合金製構造物表面に被覆するこ
と(特開昭52−5692号)など提案されているが技
術的にまたは経済的に満足しうる手段とは言えない。
As a solution to the above-mentioned inconveniences, potassium, yttrium-calcium based zirconium alloy compositions can be differentiated (such as U.S. Pat. No. 3,281,882), gold, silver, platinum, etc.
Although it has been proposed to coat the surface of a zirconium alloy structure with a layer of chemically inert metal such as nickel, chromium, or niobium (Japanese Patent Application Laid-Open No. 52-5692), this method is not technically or economically satisfactory. I can't say it's a good way to do it.

(発明が解決しようとする問題点) 本発明は、高温、長時間、高放射能環境下に曝してもノ
ジュラーコロージョンに対してすぐれた耐食性を有する
ジルコニウム合金とその製造方法を提案しようとするも
のである。
(Problems to be Solved by the Invention) The present invention seeks to propose a zirconium alloy that has excellent corrosion resistance against nodular corrosion even when exposed to high temperatures, long periods of time, and in a highly radioactive environment, and a method for producing the same. It is something.

[発明の構成] (問題点を解決するための手段及び作用)以下本発明の
詳細な説明すると、本発明に係る耐食性ジルコニウム合
金は粒界に微細な析出物を備えたマルテンサイト組織で
ありながら且つ球形に近い結晶粒を形成していることを
特徴とするものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) To explain the present invention in detail below, the corrosion-resistant zirconium alloy according to the present invention has a martensitic structure with fine precipitates at the grain boundaries. It is also characterized by the formation of crystal grains that are close to spherical.

このような本発明に係る耐食ジルコニウム合金は次のよ
うな知見に基づくものである。即ち本発明者らは実験に
よるとジルコニウム合金のノジュラーコロージョンは、
α相(h、c、p)の結晶構造を採るジルコニウム有金
に発生する。ところでジルコニウムはβ領域ではす、c
、c結晶構造を採り、β領域からの急冷によって、α相
(h。
The corrosion-resistant zirconium alloy according to the present invention is based on the following findings. That is, according to the inventors' experiments, the nodular corrosion of zirconium alloy is
It occurs in zirconium alloys that have an α-phase (h, c, p) crystal structure. By the way, zirconium is in the β region, c
, c crystal structure, and by rapid cooling from the β region, the α phase (h.

c、p)でありながらマルテンサイト構造を彩るに至る
。しかもかくしてβ領域から急冷してなる球形に近い結
晶粒の粒界に微細な析出物を備えた組織で且つマルテン
サイト構造のジルコニウム合金は、原子炉内の高放射線
環境を模擬した加速腐食試験でもノジュラーコロージョ
ンに対してすぐれた耐食性を有することに着目してなさ
れたものである。
c, p), it colors the martensitic structure. Furthermore, zirconium alloys with a martensitic structure and a microstructure with fine precipitates at the grain boundaries of nearly spherical grains formed by rapid cooling from the β region can withstand accelerated corrosion tests simulating the high radiation environment inside a nuclear reactor. This was developed with the focus on having excellent corrosion resistance against nodular corrosion.

なお本発明の耐食ジルコニウム合金は組成的には、錫1
.2〜1.7重量%、鉄0.18〜0.24重量%、ク
ロム0807〜0.13重量%、ただし鉄、クロムの合
計量が0.28〜0.37重量%含有し、残部が実質的
にジルコニウムからなるジルコニウム合金(ジルカロイ
−4)を用いることができる。
In addition, the composition of the corrosion-resistant zirconium alloy of the present invention is 1 part tin.
.. 2-1.7% by weight, iron 0.18-0.24% by weight, chromium 0807-0.13% by weight, however, the total amount of iron and chromium is 0.28-0.37% by weight, and the balance is A zirconium alloy (Zircaloy-4) consisting essentially of zirconium can be used.

次に上記の如く組成比を限定した理由を述べる。Next, the reason for limiting the composition ratio as described above will be described.

錫はジルコニウム中に固溶できる添加物であり、ジルコ
ニウム中に固溶して機械的強度を高めるが、1.2重量
96未満ではその添加による効果が得られず、1.7重
量%を超えると加工性が悪くなる為この範囲とした。ま
た、鉄、クロムは主として耐食性を向上させるが、上記
範囲未満では充分な効果が得られず、又上記範囲を超え
ると析出物が粗大化し、かえって局部腐食が発生し易く
なる為この範囲とした。
Tin is an additive that can be solid-dissolved in zirconium, and it increases mechanical strength by solid-dissolving in zirconium, but if it is less than 1.2% by weight, the effect of its addition cannot be obtained, and if it exceeds 1.7% by weight. This range was chosen because the processability deteriorates. In addition, iron and chromium mainly improve corrosion resistance, but if it is less than the above range, a sufficient effect cannot be obtained, and if it exceeds the above range, the precipitates become coarser and local corrosion is more likely to occur, so this range was chosen. .

しかして前述のようなジルコニウム合金について、87
0〜1000℃の加熱処理を施し、次いで水冷などの急
冷処理を施すことによって容易に得られる。またこの加
熱−急冷の処理は実際上、製品化加工工程において、例
えば最終冷間圧延工程と精整圧延工程との間、または精
整圧工程と矯正ロール工程との間に適宜挿入することが
好ましい。
However, regarding the above-mentioned zirconium alloy, 87
It can be easily obtained by performing a heat treatment at 0 to 1000°C and then performing a rapid cooling treatment such as water cooling. In addition, in practice, this heating-quenching process can be inserted as appropriate in the product manufacturing process, for example, between the final cold rolling process and the finishing rolling process, or between the finishing rolling process and the straightening roll process. preferable.

(実施例) 次に本発明を具体例をもって説明する。(Example) Next, the present invention will be explained using specific examples.

先ずジルコニウム合金として錫1.5重量%、鉄0.2
重量%、クロム0.1重量%、残部ジルコニウムからな
るジルコニウム合金(ジルカロイ−4)のインゴットを
用意し、圧延、β焼入、α鍛造焼鈍などの工程を経た後
、中空ビットに機械加工してから更に熱間押出し、脱酸
処理、冷間圧延を行ない燃料被覆管素体を製造した。し
かる後、長さ50〜100 cm炉内温度例えば900
℃に制御された電気炉内を通過させ、炉から出たところ
でシャワーによる水冷に引続き水槽を通過させて急冷さ
せた。尚上記における加熱処理は、炉内での被覆管素体
の滞留時間を5〜20分程度に選べば充分であるる。
First, as a zirconium alloy, 1.5% by weight of tin and 0.2% of iron were used.
An ingot of a zirconium alloy (Zircaloy-4) consisting of 0.1% by weight of chromium and the balance of zirconium is prepared, and after going through processes such as rolling, β-quenching, and α-forging annealing, it is machined into a hollow bit. Then, hot extrusion, deoxidation treatment, and cold rolling were further performed to produce a fuel cladding tube body. After that, the length is 50 to 100 cm, and the furnace temperature is, for example, 900.
The material was passed through an electric furnace controlled at .degree. C., and when it came out of the furnace, it was cooled with water using a shower and then passed through a water tank for rapid cooling. In the above heat treatment, it is sufficient if the residence time of the cladding body in the furnace is selected to be about 5 to 20 minutes.

上記急冷処理した被覆管素体に精整圧延およびロール矯
正を順次施してから、表面研摩、脱酸。
The rapidly cooled cladding tube body is sequentially subjected to fine rolling and roll straightening, followed by surface polishing and deoxidation.

停尺切断を行ない本発明に係るジルコニウム合金製燃料
被覆管を得た。かくして得た燃料被覆管の一部を切り出
し合金組織を調べたことろ球形に近い結晶粒の粒界に、
微細に合金元素か析出点列した構造のままマルテンサイ
ト構造(組織)を有しており、良好な機械的性質を備え
ていた。
A zirconium alloy fuel cladding tube according to the present invention was obtained by cutting to length. A part of the fuel cladding obtained in this way was cut out and the alloy structure was examined.
It had a martensitic structure (structure) with a fine array of alloying element precipitation points, and had good mechanical properties.

尚上記加熱処理−急冷処理の工程を精整圧延とロール矯
正との間に挿入してもよく、またこの加熱処理−急冷処
理後は500℃以上の高温にならないよう注意すること
が望ましい。従って、通常の歪取り焼鈍を施す場合も5
00℃より低温に選ぶのがよい。500℃は熱歪を取る
のには充分な温度であるが結晶の組織をα相にしてしま
うほどに高温ではない。゛ 比較のため従来の製造法、即ち上記870〜1000℃
での加熱処理、引続いての急冷処理を行なわなかった場
合に得られた燃料被覆管について組織を調べたところ粒
形は球形に近いα相であり、析出物は結晶粒内に点在し
ておりしかもその析出物の大きさは本発明に係る場合(
粒界に析出した析出物)に較べ5〜10倍であった。
Note that the heat treatment-quenching treatment step may be inserted between fine rolling and roll straightening, and it is desirable that care should be taken not to reach a high temperature of 500° C. or higher after the heat treatment-quenching treatment. Therefore, even when applying normal strain relief annealing,
It is best to choose a temperature lower than 00°C. Although 500° C. is a sufficient temperature to remove thermal strain, it is not so high as to change the crystal structure to α phase.゛For comparison, the conventional manufacturing method, i.e. the above 870-1000℃
When the structure of the fuel cladding tube obtained without the heat treatment and the subsequent quenching treatment was examined, the grain shape was α phase, which was close to spherical, and the precipitates were scattered within the crystal grains. Moreover, the size of the precipitate is smaller than that in the case of the present invention (
The amount was 5 to 10 times higher than that of precipitates (precipitates deposited at grain boundaries).

上記によって得た燃料被覆管片を温度500″C2圧力
107kg/Cdに設定したフロータイブのオートクレ
ーブ中にそれぞれ収容して腐食試験を行なった。比較例
の被覆管が試験時間約5時間でノジュラーコロージョン
を発生し、且つ腐食による重量増加は、添附図にて曲線
(A)で示す如くであった。しかるに本発明に係る被覆
管の場合にはいずれもノジュラーコロージョンの発生は
認められず、また腐食による重量増加も添附図にて曲線
(B)、(C)で示す如くでありすぐれた腐食性を有し
ていた。尚曲線(B)は腐食試験に先立って加工歪取り
焼鈍(577℃×2.5時間)を行なった場合であり、
曲線(C)は腐食試験に先立って熱歪み取り焼鈍(40
0℃)を行なった場合である。
The fuel cladding tube pieces obtained above were placed in a flow type autoclave set at a temperature of 500'' and a C2 pressure of 107kg/Cd, and a corrosion test was conducted. In addition, the weight increase due to corrosion was as shown by curve (A) in the attached diagram.However, no nodular corrosion was observed in any of the cladding tubes according to the present invention, and The weight increase due to corrosion was also shown by curves (B) and (C) in the attached figure, indicating that it had excellent corrosive properties.Curve (B) shows that prior to the corrosion test, stress relief annealing (577°C) was performed. ×2.5 hours)
Curve (C) shows thermal strain relief annealing (40
0°C).

この具体例から明らかのように、粒界に微細な析出物を
備えた等軸組織(球形に近い結晶粒からなる)で且つマ
ルテンサイト組織を有する本発明に係るジルコニウム合
金、換言すればβ相から急冷することによりマルテンサ
イト組織としたジルコニウム合金は、高温、高圧水蒸気
、高放射能環境にある原子炉の炉心材などに適用しても
、ノジュラーコロージョン発生に伴なう機械的強度の低
下や腐食による水素脆化もないめた長時間に亘って所要
の機能を果しうる。
As is clear from this example, the zirconium alloy according to the present invention has an equiaxed structure (consisting of nearly spherical crystal grains) with fine precipitates at grain boundaries and a martensitic structure, in other words, the zirconium alloy has a β phase. Zirconium alloys that form a martensitic structure by rapid cooling from 100 to 100 ml can be applied to core materials of nuclear reactors in high-temperature, high-pressure steam, and high-radiation environments, but mechanical strength decreases due to nodular corrosion. It can perform the required functions for a long time without hydrogen embrittlement due to corrosion or corrosion.

尚本発明に係る製造法においてβ−急冷によるマルテン
サイト組織化のための熱処理温度を870〜1000℃
としたのは870℃未満ではジルコニウム合金がβ相に
ならない為であり、1000℃を超えると機械的性質の
劣化が現われる場合がある為である。しかして急冷処理
は水冷など特に冷却速度の速い方が良い。
In addition, in the manufacturing method according to the present invention, the heat treatment temperature for martensite structure by β-quenching is 870 to 1000°C.
This is because the zirconium alloy does not turn into the β phase at temperatures below 870°C, and because when the temperature exceeds 1000°C, deterioration of mechanical properties may occur. However, for the rapid cooling treatment, it is better to use water cooling or the like, especially if the cooling rate is fast.

[発明の効果] 以上説明したように本発明によれば、耐食性、特に耐食
性ノジュラーコロージョン特性に優れた耐食性ジルコニ
ウム合金を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to obtain a corrosion-resistant zirconium alloy having excellent corrosion resistance, particularly excellent corrosion-resistant nodular corrosion properties.

【図面の簡単な説明】[Brief explanation of the drawing]

添附図は本発明に係る耐食ジルコニウム合金と、本発明
外のジルコニウム合金とについての耐食性を比較して示
す曲線例である。
The attached diagram is an example of a curve showing a comparison of the corrosion resistance of the corrosion-resistant zirconium alloy according to the present invention and a zirconium alloy other than the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)錫1.2〜1.7重量、鉄0.18〜0.24重
量%、クロム0.07〜0.13重量%、ただし鉄、ク
ロムの合計量が0.28〜0.37重量%含有し、残部
が実質的にジルコニウムの組成からなり、かつ粒界に微
細な析出物を備えたマルテンサイト組織でありながら結
晶粒の粒形が球状であることを特徴とする耐食ジルコニ
ウム合金。
(1) 1.2-1.7% by weight of tin, 0.18-0.24% by weight of iron, 0.07-0.13% by weight of chromium, provided that the total amount of iron and chromium is 0.28-0.37% A corrosion-resistant zirconium alloy characterized by having a martensitic structure with fine precipitates at the grain boundaries and having a spherical crystal grain shape. .
(2)錫1.2〜1.7重量%、鉄0.18〜0.24
重量%、クロム0.07〜0.13重量%、ただし鉄、
クロムの合計量が0.28〜0.37重量%含有し、残
部が実質的にジルコニウムの組成からなるジルコニウム
合金について、870〜1000℃の加熱を施してから
急冷処理を施し、粒界に微細な析出物を備えたマルテン
サイト組織でありながら結晶粒の粒形を球状とすること
を特徴とした耐食ジルコニウム合金の製造方法。
(2) Tin 1.2-1.7% by weight, iron 0.18-0.24%
% by weight, 0.07-0.13% by weight of chromium, but iron,
A zirconium alloy containing a total amount of 0.28 to 0.37% by weight of chromium, with the remainder being essentially zirconium, is heated to 870 to 1000°C and then rapidly cooled to form fine particles at the grain boundaries. A method for producing a corrosion-resistant zirconium alloy characterized by having a martensitic structure with precipitates and having spherical crystal grains.
JP8544888A 1988-04-08 1988-04-08 Corrosion resistant zirconium alloy and its manufacture Granted JPS63290232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8544888A JPS63290232A (en) 1988-04-08 1988-04-08 Corrosion resistant zirconium alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8544888A JPS63290232A (en) 1988-04-08 1988-04-08 Corrosion resistant zirconium alloy and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12717880A Division JPS5754241A (en) 1980-09-16 1980-09-16 Corrosion resisting zr alloy and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS63290232A true JPS63290232A (en) 1988-11-28
JPH0465142B2 JPH0465142B2 (en) 1992-10-19

Family

ID=13859161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8544888A Granted JPS63290232A (en) 1988-04-08 1988-04-08 Corrosion resistant zirconium alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS63290232A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110412A (en) * 1975-02-25 1976-09-30 Gen Electric
JPS5270917A (en) * 1975-11-17 1977-06-13 Gen Electric Heat treatment of zirconium base alloy and product obtained thereby
JPS5533034A (en) * 1978-08-28 1980-03-08 Nec Corp Liquid-phase epitaxial growing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51110412A (en) * 1975-02-25 1976-09-30 Gen Electric
JPS5270917A (en) * 1975-11-17 1977-06-13 Gen Electric Heat treatment of zirconium base alloy and product obtained thereby
JPS5533034A (en) * 1978-08-28 1980-03-08 Nec Corp Liquid-phase epitaxial growing

Also Published As

Publication number Publication date
JPH0465142B2 (en) 1992-10-19

Similar Documents

Publication Publication Date Title
US4938921A (en) Method of manufacturing a zirconium-based alloy tube for a nuclear fuel element sheath and tube thereof
JP4018169B2 (en) Method of manufacturing tube for nuclear fuel assembly and tube obtained thereby
JPH0344275B2 (en)
KR20060123781A (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance
US4908071A (en) Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
KR100411943B1 (en) Zirconium-based alloy tube for a nuclear reactor fuel assembly and a process for producing such a tube
US4360389A (en) Zirconium alloy heat treatment process
EP0899747B1 (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
KR100423109B1 (en) Zirconium alloy tube for a nuclear reactor fuel assembley, and method for making same
JPH11133174A (en) Corrosion-resistant reactor constituting member, nuclear fuel rod cover pipe, zirconium alloy used for aqueous environment, and structural member for reactor fuel assembly body
US5876524A (en) Method for the manufacture of tubes of a zirconium based alloy for nuclear reactors and their usage
KR100349456B1 (en) Nuclear Fuel Rod Sheath Tube
CA1080513A (en) Zirconium alloy heat treatment process and product
TW201303034A (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
JP5367208B2 (en) Non-heat treated zirconium alloy fuel coating and method for producing the same
JPS63290232A (en) Corrosion resistant zirconium alloy and its manufacture
JPH0348193A (en) Cladding tube for nuclear fuel
JPH0421746B2 (en)
JPS59226158A (en) Manufacture of fuel structural member with high corrosion resistance
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JP2001262259A (en) Highly corrosion resistant zirconium alloy, structural material for nuclear reactor core and its producing method
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
JPS6050155A (en) Production of nuclear fuel cladding pipe
JPH08100231A (en) Highly corrosion resistant zirconium alloy and its production
JPH02270948A (en) Production of zirconium alloy tube