JP5090687B2 - PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly - Google Patents

PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly Download PDF

Info

Publication number
JP5090687B2
JP5090687B2 JP2006221381A JP2006221381A JP5090687B2 JP 5090687 B2 JP5090687 B2 JP 5090687B2 JP 2006221381 A JP2006221381 A JP 2006221381A JP 2006221381 A JP2006221381 A JP 2006221381A JP 5090687 B2 JP5090687 B2 JP 5090687B2
Authority
JP
Japan
Prior art keywords
nuclear fuel
rod
square
enrichment
bwr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006221381A
Other languages
Japanese (ja)
Other versions
JP2008045980A (en
Inventor
白川利久
Original Assignee
白川 利久
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 白川 利久 filed Critical 白川 利久
Priority to JP2006221381A priority Critical patent/JP5090687B2/en
Publication of JP2008045980A publication Critical patent/JP2008045980A/en
Application granted granted Critical
Publication of JP5090687B2 publication Critical patent/JP5090687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、沸騰水型原子炉に装荷せる正方形の核燃料集合体に関する。 The present invention relates to a square nuclear fuel assembly that can be loaded into a boiling water reactor.

図1は沸騰水型原子炉(BWR)に装荷せる核燃料物質を内包する従来の正方形の核燃料集合体(30)の概略斜視図である(特許文献1)。従来の正方形の核燃料集合体(30)は、多数本正方格子状に配列された核燃料物質を内封している円柱形状の核燃料棒(31)と、それ等の上端及び下端を夫々支持する上側結合板(32)及び下側結合板(33)と、前記核燃料棒(31)の高さ途中に位置して核燃料棒(31)間の間隔を規制する数個のスペーサ(34)と、これ等を4面で覆うチャンネルボックス(35)による構造材から構成される。スペーサ(34)は適当な剛性を持った厚さδのスペーサ外枠(36)で正方形を保っている。
図2は従来の沸騰水型原子炉の核燃料棒(31)の概観図である。ジルコニウムの合金であるジルカロイ2製の被覆管(41)と、この被覆管(41)の上下開口端を気密閉塞する上部端栓(42)及び下部端栓(43)と、スプリング(45)と、上部プレナム(48)とからなる構造材と、被覆管(41)内に核燃料である濃縮ウランの酸化物を円柱状に焼結してなる多数個の核燃料ペレット(44)から構成されている。
スペーサ(34)が位置していない高さでの従来の正方形の核燃料集合体(30)の断面図を図3に示した(非特許文献1)。制御棒側漏洩水通路(51)と制御棒と反対側漏洩水通路(52)を挟んで格子状に配列されている。核燃料棒(31)の間は冷却水通路(49)となっている。核分裂で発生した高速中性子は水により減速され、ウラン235(U235)を激しく核分裂させる。したがって、制御棒側漏洩水通路(51)または制御棒と反対側漏洩水通路(52)に近接せる核燃料棒(31)ほどU235濃縮度を減らすことができる。U235の節約ができる。U235濃縮度配置例は、
濃縮度1番の核燃料棒(1)のU235濃縮度は4.9wt%。
濃縮度2番の核燃料棒(2)のU235濃縮度は3.6wt%。
濃縮度3番の核燃料棒(3)のU235濃縮度は3.0wt%。
濃縮度4番の核燃料棒(4)のU235濃縮度は2.3wt%。
ガドリニア添加核燃料棒(5)のU235濃縮度は3.0wt%、ガドリニア添加割合は4.5wt%。
である。
発電コスト低減対策の一つに核燃料集合体を長期間燃焼させる。そのためにU235濃縮度を高くしたい。既設の制御棒だけでは初期余剰反応度を抑制しきれないため熱中性子吸収効果の大きい可燃性毒物としてガドリニウムをU235に添加する。中性子を吸収したガドリニウムは熱中性子吸収効果が小さくなる。
水棒(6)は従来の正方形の核燃料集合体(30)中心部での高速中性子減速作用を高めるための中空ジルカロイ管で中を低速の水が流れている。
制御棒(60)が挿入されている原子炉停止時におけるスペーサ(34)が位置していない高さでの従来の正方形の核燃料集合体(30)を配置せる炉心平面図を図4に示した。隣接する核燃料棒(31)の距離Pは1mm以上の核燃料棒間隔Δを考慮したP=D+Δとしている。点線で囲まれた単位格子幅Lは隣接する制御棒中心間距離LLの半分である。したがって、チャンネルボックス幅CLはL以下でなければならない。チャンネルボックス肉厚をΣとし、スペーサ外枠厚さをδとすると、チャンネルボックス1辺幅CLは核燃料棒(31)の配列をm×mとするとCL>P×(m-1)+D+δ×2 +Σ×2である。制御棒厚さの半分をSとし、制御棒表面とチャンネルボックスとの間隙をhとし、隣接せるチャンネルボックス間隙の半分をgとすると、チャンネルボックス幅CLはL-S-h-g>CL>P×(m-1)+D+δ×2+Σ×2とすることにより、正方形の単位格子幅Lで規定されている従来のBWRに装荷できる。
図5は酸化ウラン(UO2)を核燃料とするPWRとBWRの主要仕様を示したものである。「BWR正方形の核燃料集合体」の欄は、非特許文献2から引用した従来の正方形の核燃料集合体(30)主要仕様である。
:昭61-37591、「核燃料集合体」 :日本原子力研究所,2001年,JAERI-Research 2001-046「軽水炉次世代燃料の炉物理に関するベンチマーク問題の提案及び解析結果」 :日本原子力学会誌、2004年,Vol46~47「連載講座 核燃料工学の基礎」。
FIG. 1 is a schematic perspective view of a conventional square nuclear fuel assembly (30) containing nuclear fuel material to be loaded into a boiling water reactor (BWR) (Patent Document 1). A conventional square nuclear fuel assembly (30) includes a cylindrical nuclear fuel rod (31) enclosing a number of nuclear fuel materials arranged in a square lattice, and an upper side supporting the upper and lower ends thereof. A coupling plate (32) and a lower coupling plate (33), and several spacers (34) which are positioned in the middle of the height of the nuclear fuel rod (31) and regulate the distance between the nuclear fuel rods (31); It is composed of a structural material with a channel box (35) that covers four sides. The spacer (34) has a square shape with a spacer outer frame (36) having an appropriate rigidity and thickness δ.
Fig. 2 is an overview of a conventional boiling water reactor nuclear fuel rod (31). A cladding tube (41) made of Zircaloy 2 which is an alloy of zirconium, an upper end plug (42) and a lower end plug (43) for hermetically closing the upper and lower opening ends of the cladding tube (41), a spring (45), , Composed of a structural material composed of an upper plenum (48) and a large number of nuclear fuel pellets (44) formed by cylindrically sintering concentrated uranium oxide as a nuclear fuel in a cladding tube (41) .
A cross-sectional view of a conventional square nuclear fuel assembly (30) at a height where the spacer (34) is not located is shown in FIG. 3 (Non-Patent Document 1). The control rod side leakage water passage (51) and the control rod opposite leakage water passage (52) are arranged in a lattice shape. A cooling water passage (49) is provided between the nuclear fuel rods (31). Fast neutrons generated by fission are decelerated by water, causing fission of uranium 235 (U235) violently. Therefore, the concentration of U235 can be reduced as the nuclear fuel rod (31) comes closer to the control rod side leakage water passage (51) or the leakage water passage (52) opposite to the control rod. You can save U235. U235 enrichment example
The enrichment of nuclear fuel rod (1) with enrichment No. 1 is 4.9wt%.
Concentration No. 2 nuclear fuel rod (2) has a U235 enrichment of 3.6 wt%.
The enrichment of nuclear fuel rod No. 3 (3) has a U235 enrichment of 3.0 wt%.
The U235 enrichment of the nuclear fuel rod (4) with enrichment No. 4 is 2.3 wt%.
The gadolinia-added nuclear fuel rod (5) has a U235 enrichment of 3.0wt% and a gadolinia addition ratio of 4.5wt%.
It is.
One of the measures to reduce power generation costs is to burn nuclear fuel assemblies for a long time. Therefore, I want to increase the U235 enrichment. Gadolinium is added to U235 as a flammable poison with a large thermal neutron absorption effect because the initial excess reactivity cannot be suppressed with the existing control rod alone. Gadolinium that has absorbed neutrons has a smaller thermal neutron absorption effect.
The water rod (6) is a hollow Zircaloy tube for enhancing the fast neutron moderating action at the center of the conventional square nuclear fuel assembly (30), and low-speed water flows therethrough.
FIG. 4 shows a core plan view in which a conventional square nuclear fuel assembly (30) is disposed at a height where the spacer (34) is not located when the reactor is shut down where the control rod (60) is inserted. . The distance P between adjacent nuclear fuel rods (31) is set to P = D + Δ in consideration of the nuclear fuel rod interval Δ of 1 mm or more. The unit cell width L surrounded by the dotted line is half the distance LL between adjacent control rod centers. Therefore, the channel box width CL must be less than or equal to L. If the channel box thickness is Σ and the spacer outer frame thickness is δ, then the channel box side width CL is CL> P × (m-1) + D + if the arrangement of nuclear fuel rods (31) is m × m δ × 2 + Σ × 2. Assuming that half of the control rod thickness is S, the gap between the control rod surface and the channel box is h, and the half of the adjacent channel box gap is g, the channel box width CL is LShg>CL> P × (m-1 ) + D + δ × 2 + Σ × 2 makes it possible to load a conventional BWR defined by a square unit cell width L.
Fig. 5 shows the main specifications of PWR and BWR using uranium oxide (UO2) as nuclear fuel. The column “BWR square nuclear fuel assembly” is the main specification of the conventional square nuclear fuel assembly (30) cited from Non-Patent Document 2.
: Sho 61-37591, "Nuclear Fuel Assembly" : Japan Atomic Energy Research Institute, 2001, JAERI-Research 2001-046 “Proposal and analysis results of benchmark problems related to reactor physics of light water reactor next generation fuel” : Journal of the Atomic Energy Society of Japan, 2004, Vol46 ~ 47 “Series Lecture Basics of Nuclear Fuel Engineering”.

世界の原子力発電用原子炉の主流には加圧水型原子炉(PWR)と沸騰水型原子炉(BWR)とがある。
図5の「PWR核燃料棒」の欄はPWRの核燃料棒の主要仕様であるが、「BWR正方形の核燃料集合体」の欄と比べてみてその差異は小さい。U235濃縮度、被覆管内外直径、長さ、材質、ペレット直径のどれか1つでも同じであれば規模によるコストダウンが図れると考えられる。
特に、プルトニウム(Pu)とウラン(U)の混合酸化物(MOX)を核燃料として使用する場合にはPuの再処理コストが高いためMOX燃料集合体のコスト低減が求められている。
The mainstream nuclear power reactors in the world are pressurized water reactor (PWR) and boiling water reactor (BWR).
The “PWR nuclear fuel rod” column in FIG. 5 shows the main specifications of the PWR nuclear fuel rod, but the difference is small compared to the “BWR square nuclear fuel assembly” column. If any one of U235 enrichment, cladding inner / outer diameter, length, material, and pellet diameter is the same, the cost can be reduced by scale.
In particular, when a mixed oxide (MOX) of plutonium (Pu) and uranium (U) is used as a nuclear fuel, the reprocessing cost of Pu is high, so the cost reduction of the MOX fuel assembly is required.

BWR用正方形の核燃料集合体を、PWR用核燃料棒と同一の「U235濃縮度、ペレット形状、被覆管内外直径の核燃料棒」を正方形に配列しスペーサと上下結合金具とで固定しチャンネルボックスに内包する。被覆管長さはBWR炉心に合わせて調節する。チャンネルボックスは、従来の正方形の核燃料集合体(30)を装荷していたBWRに装荷できるように正方形の1辺幅CLも単位格子幅Lに合わせて調節する。
MOX炉心ではBWRではボイドがあるため中性子減速効果がPWR程ではないためガドリニウムの効果が小さい。そこで、熱中性子吸収効果が大きくかつ、熱中性子を吸収すると中性子減速効果の大きいものに変わる、謂わば可燃性毒物兼減速材とでも呼べるものを装荷する。例えば、天然のリチウム(Li)には重さが若干違うリチウム6(Li6)とリチウム7(Li7)とが含まれている。Li7は中性子吸収効果は小さく減速材としての作用がある。Li6は中性子吸収効果が大きく、中性子を吸収するとヘリウム(He)と気体のトリチウム(T)とになる。Tは中性子減速作用が大きい。近くに水素吸蔵金属であるジルコニウム(Zr)があればTはZrに吸蔵されてそこに固定される。但し、Zrは脆くなるため発熱する核燃料との共存は難しい。そこで、Li含有物をZrのカプセルに内封したものを被覆管(41)の中に充填する。
天然のホウ素(B)には重さが若干違うホウ素10(B10)とホウ素11(B11)とが含まれている。B11は中性子吸収効果は小さく減速材としての作用がある。B10は中性子吸収効果が大きく、中性子を吸収するとヘリウム(He)とLi7とになる。Li7の近辺に酸素があれば酸化リチウムとなって固定される。
将来は、BWRとPWR双方の炉心設計を互いに修正し共通部分を多くするようにすれば更なるコストダウンが見込まれる。
The square nuclear fuel assembly for BWR is the same as the nuclear fuel rod for PWR, “U235 enrichment, pellet shape, inner and outer diameter nuclear fuel rods” are arranged in a square shape, fixed with spacers and upper and lower fittings, and enclosed in a channel box. To do. The length of the cladding tube is adjusted according to the BWR core. In the channel box, the side width CL of the square is adjusted according to the unit cell width L so that it can be loaded on the BWR loaded with the conventional square nuclear fuel assembly (30).
In the MOX core, BWR has voids, so the effect of gadolinium is small because the neutron moderation effect is not as good as PWR. Therefore, what is called a so-called combustible poison and moderator, which has a large thermal neutron absorption effect and changes to a large neutron moderation effect when absorbing thermal neutrons, is loaded. For example, natural lithium (Li) includes lithium 6 (Li6) and lithium 7 (Li7) that are slightly different in weight. Li7 has a small neutron absorption effect and acts as a moderator. Li6 has a large neutron absorption effect, and when it absorbs neutrons, it becomes helium (He) and gaseous tritium (T). T has a large neutron moderating action. If there is zirconium (Zr) which is a hydrogen storage metal nearby, T is stored in Zr and fixed there. However, since Zr becomes brittle, it is difficult to coexist with the nuclear fuel that generates heat. Therefore, the Li-containing material enclosed in the Zr capsule is filled into the cladding tube (41).
Natural boron (B) includes boron 10 (B10) and boron 11 (B11) that are slightly different in weight. B11 has a small neutron absorption effect and acts as a moderator. B10 has a large neutron absorption effect, and when it absorbs neutrons, it becomes helium (He) and Li7. If there is oxygen in the vicinity of Li7, it is fixed as lithium oxide.
In the future, if the core design of both BWR and PWR is modified to increase the number of common parts, further cost reduction is expected.

BWR用正方形の核燃料集合体をPWR核燃料集合体を構成する同一の核燃料棒から製造できるため大量生産が可能となるばかりでなくPWR核燃料集合体の製造コストも安くなり強いてはBWRとPWR両方の発電コストを低減させることができる。   The BWR square nuclear fuel assembly can be manufactured from the same nuclear fuel rods that make up the PWR nuclear fuel assembly, which not only enables mass production, but also reduces the manufacturing cost of the PWR nuclear fuel assembly. Cost can be reduced.

発電コストが安く、安全性の高い正方形の核燃料集合体が提供できた。   We were able to provide a square nuclear fuel assembly with low power generation costs and high safety.

図6は本発明のPWR用核燃料棒要素利用型正方形の核燃料集合体(230)の概観図である。図5の「本発明BWR例1」の欄に主要仕様を示した。BWR用従来の正方形の核燃料集合体(30)の形状、寸法は変えずに、被覆管(41)の材質をPWRと同じのジルカロイ4とし、U235の濃縮度をPWRで使用される「4.8wt%又は4.1wt%又は3.4wt%」を用いた。核燃料棒に装荷される核燃料ペレット半径をrpとして、
濃縮度1番のペレット充填核燃料棒(231)のU235濃縮度は本来の4.9wt%からPWRで使用される4.8wt%とする。出力減少は約4.8/4.9程度であるため変化は小さい。
濃縮度2番の二重ペレット充填核燃料棒(232)のU235濃縮度は濃縮度1番のペレット充填核燃料棒(231)のU235濃縮度減少を相殺するために、本来の3.6wt%から3.7wt%と上昇すべく、PWRで使用されるU235濃縮度4.1wt%の酸化ウラン粉末を原料として外径rp、内径0.756×rpの焼結前の円筒グリーンペレットを作りその中にPWRで使用されるU235濃縮度3.4wt%の酸化ウラン粉末を装填し円柱のグリーンペレットとなし、焼結して3.7wt%の二重ペレットとなす。出力上昇は3.7/3.6程度であるため変化は小さい。
濃縮度3番の二重ペレット充填核燃料棒(233)のU235濃縮度は本来と同じ3.0wt%である。PWRで使用されるU235濃縮度3.4wt%の酸化ウラン粉末を原料として外径rp、内径0.385×rpの焼結前の円筒グリーンペレットを作りその中に天然U濃度0.7wt%の酸化ウラン粉末を装填し円柱のグリーンペレットとなし、焼結して3.0wt%の二重ペレットとなす。
濃縮度4番の二重ペレット充填核燃料棒(234)のU235濃縮度は本来と同じ2.3wt%である。PWRで使用されるU235濃縮度3.4wt%の酸化ウラン粉末を原料として外径rp、内径0.638×rpの焼結前の円筒グリーンペレットを作りその中に天然U濃度0.7wt%の酸化ウラン粉末を装填し円柱のグリーンペレットとなし、焼結して2.3wt%の二重ペレットとなす。
ガドリニア添加核燃料棒(235)のU235濃縮度は本来の3.0wt%からPWRで使用される3.4wt%とする。約3.4/3.0倍の出力増加は燃焼初期ではガドリニアにより出力は充分小さい。燃焼末期でもU235濃縮度3.7wt%の濃縮度2番の二重ペレット充填核燃料棒(232)よりも小さいため、ガドリニア添加による熱伝導低下が元でのペレット中心温度上昇は核燃料棒健全性を損なうものではない。ジルカロイ4水棒(236)はPWRと同じジルカロイ4製で従来の水棒(6)同様に中性子減速効果を高める。
本例では所要のU235濃縮度を得るために、PWRで使用されるU235濃縮度同士の混合または天然ウランを添加混合することにより達成することもできるが均一に混合するのは若干の困難が伴う。本例の様に除熱される被覆管側のU235濃縮度が高いことはペレット中心温度を低めることになる。燃料健全性にとって好ましい。
FIG. 6 is a schematic view of a square nuclear fuel assembly (230) using PWR nuclear fuel rod elements of the present invention. The main specifications are shown in the column of “Invention BWR Example 1” in FIG. The shape and dimensions of the conventional square nuclear fuel assembly (30) for BWR are not changed, the material of the cladding tube (41) is Zircaloy 4 which is the same as PWR, and the enrichment of U235 is used in PWR `` 4.8wt % Or 4.1 wt% or 3.4 wt% "was used. The nuclear fuel pellet radius loaded on the nuclear fuel rod is rp,
The U235 enrichment of the No. 1 pellet-filled nuclear fuel rod (231) will be 4.8 wt% used in PWR from the original 4.9 wt%. Since the output decrease is about 4.8 / 4.9, the change is small.
The U235 enrichment of enrichment number 2 double-pellet-filled nuclear fuel rod (232) compensates for the decrease in U235 enrichment of enrichment-number 1 pellet-filled nuclear fuel rod (231) to 3.7 wt% from the original 3.6 wt% In order to increase it, the U235 concentration 4.1 wt% uranium oxide powder used in PWR is used as a raw material to produce a cylindrical green pellet before sintering with an outer diameter of rp and an inner diameter of 0.756 x rp. U235 oxide powder with a concentration of U235 of 3.4 wt% is loaded into a cylindrical green pellet, which is sintered into a 3.7 wt% double pellet. Since the output rise is about 3.7 / 3.6, the change is small.
The U235 enrichment of the double pellet-filled nuclear fuel rod (233) with the enrichment number 3 is 3.0 wt%, the same as the original. Made from uranium oxide powder with U235 enrichment of 3.4 wt% used in PWR as raw material, cylindrical green pellets before sintering with outer diameter rp and inner diameter 0.385 × rp are made with natural U concentration 0.7 wt% uranium oxide powder Loaded into cylindrical green pellets and sintered into 3.0wt% double pellets.
The U235 enrichment of No. 4 double pellet-filled nuclear fuel rod (234) is 2.3 wt%, the same as the original. Made from uranium oxide powder with U235 enrichment of 3.4 wt% used in PWR as raw material, cylindrical green pellets with an outer diameter of rp and an inner diameter of 0.638 x rp are made and sintered with uranium oxide powder with a natural U concentration of 0.7 wt%. Loaded into cylindrical green pellets and sintered into 2.3 wt% double pellets.
The U235 enrichment of gadolinia-added nuclear fuel rods (235) will be changed from the original 3.0 wt% to 3.4 wt% used in PWR. The output increase of about 3.4 / 3.0 times is sufficiently small by gadolinia in the early stage of combustion. Even at the end of combustion, it is smaller than the double-pellet-filled nuclear fuel rod (232) with enrichment of U235 enrichment of 3.7 wt%, so the increase in pellet center temperature due to the decrease in heat conduction due to the addition of gadolinia impairs the integrity of the nuclear fuel rod It is not a thing. Zircaloy 4 water rod (236) is made of Zircaloy 4 same as PWR and enhances neutron moderation effect like conventional water rod (6).
In this example, in order to obtain the required U235 enrichment, it can be achieved by mixing the U235 enrichments used in the PWR or by adding and mixing natural uranium, but it is somewhat difficult to mix uniformly. . The high concentration of U235 on the side of the cladding tube to which heat is removed, as in this example, lowers the pellet center temperature. Good for fuel integrity.

図7は本発明のPWR用核燃料棒多要素利用型正方形の核燃料集合体(240)の概観図である。図5の「本発明BWR例2」の欄に主要仕様を示した。従来の正方形の核燃料集合体の形状、寸法は変えずに、U235の濃縮度をPWRで使用される「4.8wt%又は4.1wt%又は3.4wt%」を用い、被覆管の材質をPWRと同じジルカロイ4とし、被覆管の長さ、外直径、内直径をPWRで利用されるものと同じとしたことを特徴とする。核燃料棒配列を12×12にすることができ核燃料棒1本当たりの出力を低下させることができて一層の安全性向上が果たせる。
濃縮度1番のPWR同一被覆管核燃料棒(241)は、U235濃縮度がPWRと同じ4.8wt%である。濃縮度2番のPWR同一被覆管核燃料棒(242)は、U235濃縮度がPWRと同じ4.1wt%である。濃縮度3番のPWR同一被覆管核燃料棒(243)は、U235濃縮度がPWRと同じ3.4wt%である。ガドリニア添加のPWR同一被覆管核燃料棒(244)は、U235濃縮度がPWRと同じ3.4wt%にガドリニアを添加した核燃料棒である。ジルカロイ4製のジルカロイ4枠(246)の内側には、初期余剰反応度を更に下げるためにガドリニア添加ジルカロイ4内張り(247)が施されている。その内側は低速流水(248)となっている。
大方の要素はPWRの要素を使っているため大量生産によるコスト低下が望める。
チャンネルボックス(35)の幅を0.5cm程度増加させれば核燃料棒配列を13×13にすることができ核燃料棒1本当たりの出力を更に低下させることができて一層の安全性向上が果たせる。
FIG. 7 is a schematic view of a PWR nuclear fuel rod multi-element utilization type square nuclear fuel assembly (240) of the present invention. Main specifications are shown in the column of “Invention BWR Example 2” in FIG. The shape and dimensions of the conventional square nuclear fuel assembly are not changed, and the enrichment of U235 is 4.8wt%, 4.1wt% or 3.4wt% used in PWR, and the cladding tube material is the same as PWR. Zircaloy 4 is characterized in that the length, outer diameter, and inner diameter of the cladding tube are the same as those used in the PWR. The nuclear fuel rod arrangement can be made 12 × 12, the output per nuclear fuel rod can be reduced, and the safety can be further improved.
The enrichment No. 1 PWR same cladding tube nuclear fuel rod (241) has the same U235 enrichment as 4.8 wt% as PWR. The enrichment No. 2 PWR identical cladding nuclear fuel rod (242) has a U235 enrichment of 4.1 wt%, the same as PWR. The enrichment No. 3 PWR identical cladding tube nuclear fuel rod (243) has U235 enrichment of 3.4 wt%, which is the same as PWR. The PWR same cladding tube nuclear fuel rod (244) with gadolinia added is a nuclear fuel rod in which gadolinia is added to Uwt. Inside the zircaloy 4 frame (246) made of zircaloy 4, a gadolinia-added zircaloy 4 lining (247) is applied to further reduce the initial excess reactivity. The inside is slow running water (248).
Most of the elements use PWR elements, so the cost can be reduced by mass production.
If the width of the channel box (35) is increased by about 0.5 cm, the nuclear fuel rod arrangement can be made 13 × 13, and the output per nuclear fuel rod can be further reduced, thereby further improving the safety.

近年、余剰Puを燃焼消滅させるために、UとPuの混合酸化物であるMOXを核燃料とした核燃料集合体が設計されている。
図8は制御棒側漏洩水通路(51)が制御棒と反対側漏洩水通路(52)よりも広い原子炉構造をしたD格子BWRに装荷する従来のBWR用MOX正方形の核燃料集合体(300)の断面図である。図9はMOXを核燃料とするPWRとBWRの主要仕様を示したものである。BWR用従来のMOX利用の正方形の核燃料集合体の仕様例を「従来BWRMOX」の欄に示し、従来のPWR用MOX利用の核燃料棒の仕様例を「従来PWRMOX」の欄に示した(非特許文献3)。なお、ペレットと被覆管内側との間隙を近似的に無しとしているが、実際は、図5に記載せる値とほぼ同じである。
従来のBWR用MOX正方形の核燃料集合体(300)のチャンネルボックス(35)の内幅、外幅は酸化ウラン燃料に関わる図5の「従来BWR正方形の核燃料集合体」の欄に記載せる値と同じである。
Pu富化度5番の核燃料棒(301)は、Pu富化度が4wt%である。
Pu富化度4番の核燃料棒(302)は、Pu富化度が6wt%である。
Pu富化度3番の核燃料棒(303)は、Pu富化度が10wt%である。
Pu富化度2番の核燃料棒(304)は、Pu富化度が12wt%である。
Pu富化度1番の核燃料棒(305)は、Pu富化度が16wt%である。
ガドリニア添加核燃料棒(306)は、Pu富化度が4wt%である。
中心には、減速効果を高めるために大きな正方形水棒(307)が配置されている。
PuはUより強い放射線を放出するため、保管管理が難しい。したがって、製造コストが高くなる。できるだけ簡素化して製造コストを下げたい。そこで、PWR用MOX核燃料集合体の核燃料棒要素をできるだけ多く取り入れ規模の拡大により核燃料集合体製造コストを下げる。
図10は本発明のPWR用MOX核燃料棒要素利用型正方形の核燃料集合体(310)の断面図である。仕様は図9の「本発明BWRMOX1」の欄に示す通りに被覆管内径や直径は、MOXを核燃料とするPWR用核燃料棒と同じである。
P1核燃料棒(315)のPu富化度は19.1wt%のPWR用である。
P2核燃料棒(314)のPu富化度は14.4wt%のPWR用である。
P3核燃料棒(313)のPu富化度は7.5wt%のPWR用である。
ホウ化ジルコニウム添加MOX棒(316)は、P1核燃料棒(315)等と同仕様の被覆管に、内向凹下端閉円筒のホウ化ジルコニウム(2個のホウ素(B)と1個のジルコニウム(Zr)からなるZrB2。融点が3200℃)にPu富化度が7.5wt%のMOX粉末を振動充填した二重ペレットである。ディッシュとチャンファーを付ける。
Li2O棒(311)は、P1核燃料棒(315)等と同仕様の被覆管に2個のLiと一個の酸素からなる酸化リチウム(Li2O。融点1570℃)の焼結ペレットのみをZrのカプセルに封入して充填している。漏洩水通路の水の影響が強い4隅も核燃料含有とすると出力変動が大きく燃料健全性上好ましくないため可燃性毒物兼減速材であるLi2Oのみとした。熱中性子の少ない中心はLiによって減速作用を高めるために4本集中させた。高速中性子はLi7とLi6により減速され熱中性子となる。Li6の成分が多い燃焼初期では熱中性子を吸収して余剰反応度を抑制し、Li6の成分がなくなった燃焼末期ではLi7による熱中性子が周囲のPuの核分裂を活発にし反応度を高める。可燃性毒物兼減速材としてLi含有物の代わりにホウ化ジルコニウム(融点が3200℃のZrB2または融点が2300℃の12個のBと1個のZrからなるZrB12)としてもよい。本発明はC格子BWRに装荷できるようにしたが、D格子BWRにも対応できる。
図11はホウ化ジルコニウム型正方形の核燃料集合体(320)の断面図である。仕様は図9の「本発明BWRMOX2」の欄に示す通りに被覆管内径や直径は、MOXを核燃料とするPWR用核燃料棒と同じである。
P1核燃料棒(315)のPu富化度は19.1wt%のPWR用である。
P2核燃料棒(314)のPu富化度は14.4wt%のPWR用である。
P3核燃料棒(313)のPu富化度は7.5wt%のPWR用である。
ホウ化ジルコニウム棒(321)は、P1核燃料棒(315)等と同仕様の被覆管に可燃性毒物兼減速材であるホウ素(B)を含有するホウ化ジルコニウム(融点3200℃のZrB2又は融点2030℃のZrB12)のみのペレットが充填されている。
ホウ化ジルコニウム外張り(335)は、ホウ化ジルコニウムをジルカロイ4で被覆し制御棒と反対側のチャンネルボックス(35)に固着せしめる(または、カーテンの様にチャンネルボックス(35)に吊り下げる)。
熱中性子の少ない中心はホウ素によって減速作用を高めるために4本集中させた。高速中性子はB11とB10により減速され熱中性子となる。B10の成分が多い燃焼初期では熱中性子を吸収して余剰反応度を抑制し、B10の成分がなくなった燃焼末期ではB11による熱中性子が周囲のPuの核分裂を活発にし反応度を高める。初期余剰反応度を更に低減させるべくホウ化ジルコニウム外張り(335)を配置せしめる。
制御棒側の隅の核燃料棒は、核燃料を含有せしめると出力変動が大きく燃料健全性上好ましくないためホウ化ジルコニウムのみのホウ化ジルコニウム棒(321)とした。
融点が非常に高い可燃性毒物兼減速材であるホウ化ジルコニウムを内蔵しているため高温になる大事故が生じても中性子吸収作用が損なわれる可能性が少ない。融点が非常に高い可燃性毒物兼減速材として炭化ホウ素(B4C)でもよい。
B10が多い様であれば、B10の含有量が少ない産地の天然ホウ素を使うか、高性能制御棒用濃縮B10を製造した際に生じるB10濃度が低い劣化ホウ素を使用する。
図12は低減速型正方形の核燃料集合体(330)の断面図である。仕様は図9の「本発明BWR低減速炉」の欄に示す通りである。被覆管直径が0.952cmのMOXを核燃料とするPWR用被覆管にPu富化度が14.4wt%のPWR用MOX を充填したPWRMOX兼用核燃料棒(334)を12x12に配列した。チャンネルボックス内側幅は従来のBWRに装荷できるように従来の正方形の核燃料集合体(30)と同じ13.4cmである。特に、コストを安くするために除染係数が小さいPuを核燃料とすればネプツニウム(Np)、アメリシウム(Am)、キューリウム(Cm)といったマイナアクチニド(MA)が含まれ、MAは熱中性子を吸収し易い為余剰反応度を抑制する働きがある。したがって、初期余剰反応度を抑制するにはホウ化ジルコニウム外張り(335)だけで充分である。本来水があった箇所に、減速作用は水素程ではないホウ素とZrが敷設されたため、中性子減速作用が少ない。高速中性子に対し効率よく核分裂するPuの性質に着目した低減速炉(非特許文献4)向きの核燃料集合体である。
なお、PWR用被覆管材質としてジルロやステンレスが考えられているが、使用されるようになれば本発明にも取り入れていく。
:日本原子力研究所,2001年,JAERI-Research 2001-046「軽水炉次世代燃料の炉物理に関するベンチマーク問題の提案及び解析結果」 :日本原子力学会誌,2006年,Vol48,大久保努他「低減速炉の技術開発の進捗および課題」。
In recent years, a nuclear fuel assembly using MOX, which is a mixed oxide of U and Pu, as a nuclear fuel has been designed to burn off surplus Pu.
Figure 8 shows a conventional BWR MOX square nuclear fuel assembly (300) loaded on a D-lattice BWR with a nuclear reactor structure where the control rod side leakage water passage (51) is wider than the leakage water passage (52) opposite to the control rod. FIG. Fig. 9 shows the main specifications of PWR and BWR using MOX as nuclear fuel. An example of the specification of a conventional nuclear fuel assembly using MOX for BWR square is shown in the `` Conventional BWRMOX '' column, and an example of a specification of a conventional fuel rod using MOX for PWR is shown in the `` Conventional PWRMOX '' column (non-patent Reference 3). Note that the gap between the pellet and the inner side of the cladding tube is approximately absent, but in practice, it is almost the same as the value shown in FIG.
The inner width and outer width of the channel box (35) of the conventional MOX square nuclear fuel assembly (300) for BWR are the values described in the column of `` Conventional BWR square nuclear fuel assembly '' in FIG. The same.
The nuclear fuel rod (301) with the Pu enrichment number 5 has a Pu enrichment of 4 wt%.
The nuclear fuel rod (302) with Pu enrichment number 4 has a Pu enrichment of 6 wt%.
The Pu enrichment No. 3 nuclear fuel rod (303) has a Pu enrichment of 10 wt%.
The Pu enrichment No. 2 nuclear fuel rod (304) has a Pu enrichment of 12 wt%.
The Pu enrichment No. 1 nuclear fuel rod (305) has a Pu enrichment of 16wt%.
The gadolinia-added nuclear fuel rod (306) has a Pu enrichment of 4 wt%.
In the center, a large square water rod (307) is arranged to enhance the deceleration effect.
Since Pu emits stronger radiation than U, storage management is difficult. Therefore, the manufacturing cost is increased. We want to simplify production as much as possible and reduce manufacturing costs. Therefore, the nuclear fuel assembly manufacturing cost will be reduced by incorporating as many nuclear fuel rod elements as possible in the MOX nuclear fuel assembly for PWRs and expanding the scale.
FIG. 10 is a cross-sectional view of a square nuclear fuel assembly (310) utilizing MOX nuclear fuel rod elements for PWR of the present invention. As shown in the column “Invention BWRMOX1” in FIG. 9, the inner diameter and diameter of the cladding tube are the same as the nuclear fuel rod for PWR using MOX as the nuclear fuel.
The Pu enrichment of P1 nuclear fuel rod (315) is for 19.1 wt% PWR.
The Pu enrichment of P2 nuclear fuel rod (314) is for 14.4 wt% PWR.
Pu enrichment of P3 nuclear fuel rod (313) is for 7.5 wt% PWR.
Zirconium boride-added MOX rod (316) is coated with the same specifications as the P1 nuclear fuel rod (315), etc., and indented bottom-bottomed zirconium boride (two boron (B) and one zirconium (Zr ZrB2 consisting of), melting point of 3200 ° C.) and vibration-filled double pellets of MOX powder with Pu enrichment of 7.5 wt%. Add the dish and chamfer.
The Li2O rod (311) is a Zr capsule containing only sintered pellets of lithium oxide (Li2O, melting point 1570 ° C) consisting of two Li and one oxygen in a cladding tube of the same specifications as the P1 nuclear fuel rod (315) etc. Enclosed and filled. The four corners, which are strongly influenced by water in the leaked water passage, contain only nuclear fuel, and output fluctuations are large and undesirable in terms of fuel integrity. Therefore, only Li2O, which is a flammable poison and moderator, was used. Four centers with less thermal neutrons were concentrated by Li to enhance the moderation effect. Fast neutrons are decelerated by Li7 and Li6 to become thermal neutrons. Thermal neutrons are absorbed in the early stage of combustion with a large amount of Li6, and the excess reactivity is suppressed. At the end of combustion, when Li6 is exhausted, thermal neutrons from Li7 activate fission of surrounding Pu and increase the reactivity. Zirconium boride (ZrB2 having a melting point of 3200 ° C. or ZrB12 composed of 12 B and 1 Zr having a melting point of 2300 ° C.) may be used instead of the Li-containing material as a flammable poison and moderator. Although the present invention can be loaded on the C lattice BWR, it can also be applied to the D lattice BWR.
FIG. 11 is a cross-sectional view of a zirconium boride-type square nuclear fuel assembly (320). As shown in the column “Invention BWRMOX2” in FIG. 9, the inner diameter and diameter of the cladding tube are the same as the nuclear fuel rod for PWR using MOX as the nuclear fuel.
The Pu enrichment of P1 nuclear fuel rod (315) is for 19.1 wt% PWR.
The Pu enrichment of P2 nuclear fuel rod (314) is for 14.4 wt% PWR.
Pu enrichment of P3 nuclear fuel rod (313) is for 7.5 wt% PWR.
Zirconium boride rod (321) is a zirconium boride containing a combustible poison and moderator boron (B) in a cladding tube of the same specification as P1 nuclear fuel rod (315) (melting point 3200 ° C ZrB2 or melting point 2030 Only pellets of ZrB12) at ℃ are filled.
The zirconium boride outer layer (335) is coated with zircaloy 4 and fixed to the channel box (35) opposite to the control rod (or suspended on the channel box (35) like a curtain).
The center with few thermal neutrons was concentrated by boron to enhance the moderation effect by boron. Fast neutrons are decelerated by B11 and B10 and become thermal neutrons. Thermal neutrons are absorbed at the early stage of combustion with a large amount of B10 and the excess reactivity is suppressed, and thermal neutrons from B11 activate the fission of surrounding Pu and increase the reactivity at the end of combustion when the B10 component disappears. A zirconium boride liner (335) is placed to further reduce the initial excess reactivity.
The nuclear fuel rods at the corners on the control rod side were made of zirconium boride rods (321) containing only zirconium boride, because inclusion of nuclear fuel causes a large output fluctuation and is not preferable in terms of fuel integrity.
Built-in zirconium boride, which is a flammable poison and moderator with a very high melting point, reduces the possibility that the neutron absorption function will be impaired even if a major accident occurs at high temperatures. Boron carbide (B4C) may be used as a flammable poison and moderator with a very high melting point.
If there is a lot of B10, use natural boron from the production area with low B10 content, or use degraded boron with low B10 concentration produced when producing high-performance control rod concentrate B10.
FIG. 12 is a cross-sectional view of a reduced-speed square nuclear fuel assembly (330). The specifications are as shown in the column “Invention BWR Reduction Fast Reactor” in FIG. PWRMOX combined nuclear fuel rods (334) filled with MOX for PWR with Pu enrichment of 14.4wt% were arranged in 12x12 in the cladding tube for PWR with MOX having a cladding tube diameter of 0.952cm as nuclear fuel. The inner width of the channel box is 13.4cm, which is the same as the conventional square nuclear fuel assembly (30) so that it can be loaded into a conventional BWR. In particular, if Pu, which has a low decontamination factor, is used as a nuclear fuel in order to reduce costs, minor actinides (MA) such as neptunium (Np), americium (Am), and curium (Cm) are included, and MA absorbs thermal neutrons. Since it is easy to do, it has the function of suppressing excess reactivity. Therefore, only the zirconium boride lining (335) is sufficient to suppress the initial excess reactivity. In the place where water originally existed, boron and Zr, which are not as much as hydrogen, were laid, so there is little neutron moderating action. It is a nuclear fuel assembly for a reduced-speed reactor (Non-patent Document 4) that focuses on the properties of Pu that fissions efficiently against fast neutrons.
Note that Gilro and stainless steel are considered as PWR cladding tube materials, but they will be incorporated in the present invention when they are used.
: Japan Atomic Energy Research Institute, 2001, JAERI-Research 2001-046 “Proposal and analysis results of benchmark problems related to reactor physics of light water reactor next generation fuel” : Journal of the Atomic Energy Society of Japan, 2006, Vol48, Tsutomu Okubo et al.

近年、原子力発電コストの低減が喫緊の課題となっている。PWRの核燃料棒要素を多く取り入れて正方形の核燃料集合体を作ることにより規模のコスト低減が望める。将来的にはPWR設計とBWR設計両方を勘案して共通部分を大幅に持つように標準化することにより、軽水炉の世界的統一を果たし更なる発電コスト低減が図れる。
本発明ではLi利用が重要であるが、Li6は23世紀には本格導入が期待されている核融合発電の重要な燃料であるため供給に不安はない。廃棄されたリチウム電池からLiを抽出し更に核融合発電用にLi6を濃縮した残りのLi7が豊富な劣化リチウムを利用すればよい。
劣化ホウ素についても、劣化ホウ素は22世紀には本格導入が期待されている高速増殖炉の重要な制御材であるB10濃縮ホウ素の廃棄物であるため供給に不安はない。
低減速炉は、22世紀以降に期待されている高速増殖炉や核融合発電が本格化されるまでの重要なエネルギー源となる。
In recent years, reduction of nuclear power generation costs has become an urgent issue. It is possible to reduce the cost of scale by incorporating a large number of PWR nuclear fuel rod elements into a square nuclear fuel assembly. In the future, standardization will be made so that there is a great deal in common with both PWR design and BWR design taken into consideration, thereby achieving a global unification of light water reactors and further reducing power generation costs.
Although the use of Li is important in the present invention, Li6 is an important fuel for fusion power generation that is expected to be fully introduced in the 23rd century. Extracted Li from discarded lithium batteries and concentrated Li6 for fusion power generation can be used for the remaining Li7-rich degraded lithium.
As for the deteriorated boron, there is no anxiety in supply because the deteriorated boron is a waste of B10 enriched boron, which is an important control material for the fast breeder reactor, which is expected to be introduced in the 22nd century.
The low-speed slow reactor will be an important energy source until the full-fledged fast breeder reactor and fusion power generation expected after the 22nd century.

従来の正方形の核燃料集合体(30)の概略斜視図。The schematic perspective view of the conventional square nuclear fuel assembly (30). 従来の核燃料棒(31)の概観図。Overview of a conventional nuclear fuel rod (31). 従来の正方形の核燃料集合体(30)におけるスペーサ(34)が位置していない高さでの断面図。Sectional drawing in the height in which the spacer (34) in the conventional square nuclear fuel assembly (30) is not located. 原子炉停止時におけるペーサ(34)が位置していない高さでの従来の正方形の核燃料集合体(30)を配置せる炉心平面図。FIG. 3 is a core plan view in which a conventional square nuclear fuel assembly (30) is disposed at a height where the pacer (34) is not located when the reactor is shut down. 酸化ウラン(UO2)を核燃料とするBWRとPWRの主要仕様。Main specifications of BWR and PWR with uranium oxide (UO2) as nuclear fuel. 本発明のPWR用核燃料棒要素利用型正方形の核燃料集合体(230)の概観図である。FIG. 2 is an overview of a square nuclear fuel assembly (230) using a nuclear fuel rod element for PWR according to the present invention. 本発明のPWR用核燃料棒多要素利用型正方形の核燃料集合体(240)の概観図である。FIG. 2 is a schematic view of a PWR nuclear fuel rod multi-element utilization type square nuclear fuel assembly (240) of the present invention. 従来のBWR用MOX正方形の核燃料集合体(300)の断面図。Sectional view of a conventional MOX square nuclear fuel assembly (300) for BWR. MOXを核燃料とするBWRとPWRの主要仕様。Main specifications of BWR and PWR with MOX as nuclear fuel. PWR用MOX核燃料棒要素利用型正方形の核燃料集合体(310)の断面図である。It is sectional drawing of the MOX nuclear fuel rod element utilization type | mold square nuclear fuel assembly (310) for PWR. ホウ化ジルコニウム型正方形の核燃料集合体(320)の断面図である。FIG. 3 is a cross-sectional view of a zirconium boride-type square nuclear fuel assembly (320). 低減速型正方形の核燃料集合体(330)の断面図である。FIG. 6 is a cross-sectional view of a low-deceleration type square nuclear fuel assembly (330).

符号の説明Explanation of symbols

1は濃縮度1番の核燃料棒。
2は濃縮度2番の核燃料棒。
3は濃縮度3番の核燃料棒。
4は濃縮度4番の核燃料棒。
5はガドリニア添加核燃料棒。
6は水棒。
30は従来の正方形の核燃料集合体。
31は核燃料棒。
32は上側結合板。
33は下側結合板。
34はスペーサ。
35はチャンネルボックス。
36はスペーサ外枠。
41は被覆管。
42は上部端栓。
43は下部端栓。
44は核燃料ペレット。
45はスプリング。
46は下部端栓差込口。
47は冷却材流入口。
48は上部プレナム。
51は制御棒側漏洩水通路。
52は制御棒と反対側漏洩水通路。
60は制御棒。
230は本発明のPWR用核燃料棒要素利用型正方形の核燃料集合体。
231は濃縮度1番のペレット充填核燃料棒。
232は濃縮度2番の二重ペレット充填核燃料棒。
233は濃縮度3番の二重ペレット充填核燃料棒。
234は濃縮度4番の二重ペレット充填核燃料棒。
235はガドリニア添加核燃料棒。
236はジルカロイ4水棒。
240は本発明のPWR用核燃料棒多要素利用型正方形の核燃料集合体。
241は濃縮度1番のPWR同一被覆管核燃料棒。
242は濃縮度2番のPWR同一被覆管核燃料棒。
243は濃縮度3番のPWR同一被覆管核燃料棒。
244はガドリニア添加のPWR同一被覆管核燃料棒。
246はジルカロイ4枠。
247はガドリニア添加ジルカロイ4内張り。
248は低速流水。
300は従来のBWR用MOX正方形の核燃料集合体。
301はPu富化度5番の核燃料棒。
302はPu富化度4番の核燃料棒。
303はPu富化度3番の核燃料棒。
304はPu富化度2番の核燃料棒。
305はPu富化度1番の核燃料棒。
306はガドリニア添加核燃料棒。
307は正方形水棒。
310は本発明のPWR用MOX核燃料棒要素利用型正方形の核燃料集合体。
311はLi2O棒。
313はP3核燃料棒。
314はP2核燃料棒。
315はP1核燃料棒。
316はホウ化ジルコニウム添加MOX棒。
320は本発明のホウ化ジルコニウム型正方形の核燃料集合体。
321はホウ化ジルコニウム棒。
330は本発明の低減速型正方形の核燃料集合体。
334はPWRMOX兼用核燃料棒。
335はホウ化ジルコニウム外張り。
1 is the nuclear fuel rod with the highest concentration.
2 is a nuclear fuel rod of enrichment number 2.
3 is a nuclear fuel rod of enrichment number 3.
4 is a nuclear fuel rod No. 4 enrichment.
5 is a gadolinia-added nuclear fuel rod.
6 is a water rod.
30 is a conventional square nuclear fuel assembly.
31 is a nuclear fuel rod.
32 is an upper coupling plate.
33 is a lower coupling plate.
34 is a spacer.
35 is a channel box.
Reference numeral 36 denotes a spacer outer frame.
41 is a cladding tube.
42 is an upper end plug.
43 is a lower end plug.
44 is a nuclear fuel pellet.
45 is a spring.
46 is a lower end plug insertion port.
47 is a coolant inlet.
48 is the upper plenum.
51 is a control rod side leakage water passage.
52 is a leakage water passage opposite to the control rod.
60 is a control rod.
230 is a square nuclear fuel assembly utilizing the PWR nuclear fuel rod element of the present invention.
231 is a pellet-filled nuclear fuel rod with the highest enrichment.
232 is a double pellet-filled nuclear fuel rod No. 2 enrichment.
233 is a double pellet-filled nuclear fuel rod of enrichment number 3.
234 is a double pellet-filled nuclear fuel rod No. 4 enrichment.
235 is a gadolinia-added nuclear fuel rod.
236 is a Zircaloy 4 water rod.
240 is a square nuclear fuel assembly utilizing the PWR nuclear fuel rod multi-element type of the present invention.
241 is the enrichment No. 1 PWR same cladding nuclear fuel rod.
242 is an enrichment No. 2 PWR same cladding nuclear fuel rod.
243 is the enrichment No. 3 PWR same cladding tube nuclear fuel rod.
244 is gadolinia-added PWR same cladding nuclear fuel rod.
246 is Zircaloy 4 frame.
247 is a gadolinia-added Zircaloy 4 lining.
248 is low-speed running water.
300 is a conventional MOX square nuclear fuel assembly for BWR.
301 is a nuclear fuel rod of Pu enrichment number 5.
302 is a nuclear fuel rod of Pu enrichment number 4.
303 is a nuclear fuel rod of Pu enrichment number 3.
304 is a nuclear fuel rod of Pu enrichment number 2.
305 is the number 1 Pu enrichment nuclear fuel rod.
306 is a gadolinia-added nuclear fuel rod.
307 is a square water rod.
310 is a square nuclear fuel assembly utilizing MOX nuclear fuel rod elements for PWR of the present invention.
311 is a Li2O stick.
313 is a P3 nuclear fuel rod.
314 is a P2 nuclear fuel rod.
315 is a P1 nuclear fuel rod.
316 is a MOX rod containing zirconium boride.
320 is a zirconium boride-type square nuclear fuel assembly of the present invention.
321 is a zirconium boride rod.
Reference numeral 330 denotes a reduced-speed square nuclear fuel assembly according to the present invention.
334 is a nuclear fuel rod for PWRMOX.
335 is a zirconium boride outer coating.

Claims (2)

正方格子状に配列された十字形制御棒に隣接せるBWR用正方形の核燃料集合体は、
ジルコニウムの合金製の被覆管(41)内に核燃料を円柱状に焼結してなる多数個の核燃料ペレット(44)を内封している円柱形状の核燃料棒(31)を多数本正方格子状に配列し、前記核燃料棒(31)の高さ途中に位置して核燃料棒(31)間の間隔を規制する数個のスペーサ(34)と、これ等を4面で覆うジルコニウムの合金製のチャンネルボックス(35)から構成され、
当該BWR用正方形の核燃料集合体において、製造コスト低減のために、
「核燃料ペレットのU235濃縮度またはPu富化度、および形状寸法」、「被覆管の材質、内直径、および外直径D」、および「チャンネルボックス材質」をPWR用核燃料棒と同じにし、1mm以上の核燃料棒間隔Δを考慮した隣接する核燃料棒の距離PがP=D+Δにおいて、チャンネルボックス肉厚をΣとし、スペーサ外枠厚さをδとし、制御棒厚さの半分をSとし、制御棒表面とチャンネルボックスとの間隙をhとし、隣接せるチャンネルボックス間隙の半分をgとし、核燃料棒の配列をm×mとすると、チャンネルボックス1辺幅CLをL-S-h-g>CL>P×(m-1)+D+δ×2+Σ×2としたことにより、正方形の単位格子幅Lの従来のBWRに装荷できるようにしたことを特徴とするBWR用正方形の核燃料集合体製造法。
A square nuclear fuel assembly for a BWR adjacent to a cross-shaped control rod arranged in a square grid is
A large number of cylindrical nuclear fuel rods (31) containing a large number of nuclear fuel pellets (44) formed by sintering nuclear fuel in a cylindrical shape in a zirconium alloy cladding tube (41). And several spacers (34) which are positioned in the middle of the height of the nuclear fuel rods (31) and regulate the spacing between the nuclear fuel rods (31), and made of a zirconium alloy covering these on four sides It consists of a channel box (35)
In order to reduce manufacturing costs in the square nuclear fuel assembly for BWR,
“U235 enrichment or Pu enrichment of nuclear fuel pellets and geometry”, “cladding tube material, inner diameter and outer diameter D”, and “channel box material” are the same as the nuclear fuel rod for PWR, 1mm or more When the distance P between adjacent nuclear fuel rods taking into account the nuclear fuel rod interval Δ is P = D + Δ, the channel box thickness is Σ, the spacer outer frame thickness is δ, and half of the control rod thickness is S, If the gap between the control rod surface and the channel box is h, half of the gap between adjacent channel boxes is g, and the arrangement of the nuclear fuel rods is m × m, then the channel box side width CL is LShg>CL> P × (m -1) A BWR square nuclear fuel assembly manufacturing method characterized in that it can be loaded on a conventional BWR with a square unit cell width L by + D + δ × 2 + Σ × 2.
請求項1における製造法で作成されたるBWR用正方形の核燃料集合体において、
可燃性毒物兼減速材である酸化リチウム(Li2O)またはホウ化ジルコニウム(ZrB2またはZrB12)を充填したLi2O棒(311)またはホウ化ジルコニウム棒(321)またはホウ化ジルコニウム添加MOX棒(316)またはホウ化ジルコニウム外張り(335)を内蔵したことを特徴とするMOXを核燃料とする正方形の核燃料集合体。
In the BWR square nuclear fuel assembly produced by the manufacturing method according to claim 1,
Li2O rod (311) or zirconium boride rod (321) or zirconium boride added MOX rod (316) or boron filled with flammable poison and moderator lithium oxide (Li2O) or zirconium boride (ZrB2 or ZrB12) A square nuclear fuel assembly using MOX as a nuclear fuel, characterized in that it has a built-in zirconium oxide outer layer (335).
JP2006221381A 2006-08-15 2006-08-15 PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly Expired - Fee Related JP5090687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006221381A JP5090687B2 (en) 2006-08-15 2006-08-15 PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006221381A JP5090687B2 (en) 2006-08-15 2006-08-15 PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly

Publications (2)

Publication Number Publication Date
JP2008045980A JP2008045980A (en) 2008-02-28
JP5090687B2 true JP5090687B2 (en) 2012-12-05

Family

ID=39179866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006221381A Expired - Fee Related JP5090687B2 (en) 2006-08-15 2006-08-15 PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly

Country Status (1)

Country Link
JP (1) JP5090687B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117098A (en) * 2013-02-04 2013-05-22 中国核动力研究设计院 Square fuel assembly structure suitable for supercritical water-cooled reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165580A (en) * 1984-02-08 1985-08-28 株式会社日立製作所 Coated tube for reactor fuel and manufacture thereof
JPH08209305A (en) * 1995-02-06 1996-08-13 Mitsubishi Materials Corp End plug for fuel rod of nuclear reactor
JPH0961570A (en) * 1995-08-23 1997-03-07 Nuclear Fuel Ind Ltd Production of zirconium alloy-based reactor core structural material excellent in corrosion resistance, particularly in uniform corrosion resistance and hydrogen absorption resistance

Also Published As

Publication number Publication date
JP2008045980A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
Galahom Investigation of different burnable absorbers effects on the neutronic characteristics of PWR assembly
JP3428150B2 (en) Light water reactor core and fuel assemblies
US20170040069A1 (en) Dispersion Ceramic Micro-encapsulated (DCM) Nuclear Fuel and Related Methods
Reda et al. Investigating the performance and safety features of pressurized water reactors using the burnable poisons
JP5006233B2 (en) Propagable nuclear fuel assembly using thorium-based nuclear fuel.
JP5090946B2 (en) BWR nuclear fuel rods and nuclear fuel assemblies
JPS58135989A (en) Fuel assembly for bwr type reactor
JP5090687B2 (en) PWR nuclear fuel rod-based BWR square nuclear fuel assembly manufacturing method and nuclear fuel assembly
JP5312754B2 (en) Light water reactor core
Pergreffi et al. Neutronics characterization of an erbia fully poisoned PWR assembly by means of the APOLLO2 code
Attom et al. Comparison of homogeneous and heterogeneous thorium fuel blocks with four drivers in advanced high temperature reactors
JP2003222694A (en) Light water reactor core, fuel assembly, and control rod
Kim et al. Long-cycle and high-burnup fuel assembly for the VHTR
Zuhair et al. Study on neutronic characteristics of NuScale reactor core with thorium coating
Zhang et al. Core design and neutronic study on small reactor with advanced fuel designs
JP2006064678A (en) Fuel assembly arrangement method, fuel rod, and fuel assembly of nuclear reactor
Hejzlar et al. Minor actinide burning in dedicated lead-bismuth cooled fast reactors
JPH05232276A (en) Core of nuclear reactor
JP2012127749A (en) High conversion sauna-type nuclear reactor
Galahom Analyze the effect of void fraction on the main operating parameters of the VVER-1200
JP2610254B2 (en) Boiling water reactor
Galahom et al. Analysis of neutronic characteristics of uranium zirconium hydride fuel in advanced boiling water reactor
JP2509625B2 (en) Core structure of fast breeder reactor
Sweng-Woong Nuclear Fuel Technology
Xia et al. Preliminary study on the feasibility of utilizing the thermal fissile breeding capability of the Th-U fuel cycle in HTR-PM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees