JPS5825466A - Manufacture of zirconium base alloy-clad pipe - Google Patents

Manufacture of zirconium base alloy-clad pipe

Info

Publication number
JPS5825466A
JPS5825466A JP57116327A JP11632782A JPS5825466A JP S5825466 A JPS5825466 A JP S5825466A JP 57116327 A JP57116327 A JP 57116327A JP 11632782 A JP11632782 A JP 11632782A JP S5825466 A JPS5825466 A JP S5825466A
Authority
JP
Japan
Prior art keywords
temperature
annealing
cold rolling
carried out
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57116327A
Other languages
Japanese (ja)
Inventor
グンナ−・ベステルルンド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Sweden AB
Original Assignee
ASEA Atom AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA Atom AB filed Critical ASEA Atom AB
Publication of JPS5825466A publication Critical patent/JPS5825466A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Heat Treatment Of Steel (AREA)
  • Extrusion Of Metal (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子炉の燃料棒のためのジルコニウム基合金製
のクラツド管の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a zirconium-based alloy cladding tube for a nuclear reactor fuel rod.

原子炉の燃料棒のためのクラツド管としては普通シルカ
■イなる名称で知られたジルコニウム基台金の肉薄の管
が使用されている。これらの合金には錫、鉄、ニッケル
などの如き合金材料が含まれている。ジルカロイの場合
、α相は790℃以下で安定しβ相は950℃以上で安
定し、これに対し二相領域即ちαプラスβ相領域は79
0 ’Oと950℃の間において発生する。α相ではジ
ルコニウム原子は六角缶詰格子状に配置され、β相では
体心立方格子状に配列されている。腐食特性改善などの
ような所望の特性を得るためのジルカロイのいわゆるβ
急冷時には材料はβ相域の温度に加熱しα相域における
温度に急冷される。
Thin-walled zirconium-based tubes known as silica are commonly used as clad tubes for fuel rods in nuclear reactors. These alloys include alloying materials such as tin, iron, nickel, etc. In the case of Zircaloy, the α phase is stable at temperatures below 790°C and the β phase is stable at temperatures above 950°C, whereas the two-phase region, that is, the α plus β phase region
Occurs between 0'O and 950°C. In the α phase, zirconium atoms are arranged in a hexagonal canned lattice, and in the β phase, they are arranged in a body-centered cubic lattice. The so-called β of Zircaloy to obtain desired properties such as improved corrosion properties, etc.
During rapid cooling, the material is heated to a temperature in the β phase region and rapidly cooled to a temperature in the α phase region.

従来ジルカロイのクラツド管の製造に当っては、インボ
ッ)Yロッドに鍛造した後β急冷を実施する。ロッドの
押出しビレットの製造後ビレットは680℃以下の温度
でα相域状態に押出されその後この押出し材は数段階に
わたる冷間圧延を受は相次ぐ冷間圧延工程間で後の冷間
圧延な可能ならしめるよう625’−700℃で焼鈍、
中間焼鈍を施す。夫々の中間焼鈍後の押出し品の冷却は
焼鈍温度のすぐ下の温度範囲でかついかなる冷却剤も使
用せずに毎分最大6℃の割合で比較的ゆるやかに行われ
る。最後の冷間圧延工程の後で最終焼鈍な施し所望特性
を材料に付与する。この最終焼鈍従来採用された条件の
下でシリカロイから製造した管は一般に原子炉に適用さ
れる運転条件で腐食に対する十分な抵抗をもつものと立
証されている。しかしながら、情勢の発展は燃料のます
ます増大する使用にありこの意味する所は燃料組立体の
作動時間が更に長びくことにある。従って、クラッド材
料は従来より長時間にわたり腐食水にさらされその結果
腐食損傷の危険が増大する。従って、この機械的特性の
好ましからざる変化をともなうことなしに使用合金によ
り良好な腐食特性を得るのか望ましいことである。
Conventionally, in the production of Zircaloy clad tubes, β-quenching is performed after forging them into in-bod Y rods. After producing the extruded billet of the rod, the billet is extruded to the α-phase state at a temperature below 680°C, and then this extruded material undergoes several stages of cold rolling, which allows subsequent cold rolling between successive cold rolling steps. Annealed at 625'-700℃ for smoothing.
Perform intermediate annealing. Cooling of the extrudate after each intermediate annealing takes place relatively slowly at a rate of up to 6° C. per minute in a temperature range just below the annealing temperature and without the use of any coolant. After the final cold rolling step, a final annealing imparts the desired properties to the material. Tubes made from silicalloy under this final annealing conditions conventionally employed have proven to have sufficient resistance to corrosion at the operating conditions commonly applied in nuclear reactors. However, the evolving situation is one of ever-increasing use of fuel, which means that the operating time of fuel assemblies is becoming longer and longer. Therefore, the cladding material is exposed to corrosive water for a longer period of time than before, increasing the risk of corrosion damage. It would therefore be desirable to obtain better corrosion properties from the alloys used without undesirable changes in mechanical properties.

特に米1ii1%許明細書[4,238,251号より
既に知られている如くシリカロイの仕上がり管をβ急冷
することによりいわゆる水中および高圧蒸気におけるい
わゆる加速ノジュラー腐食に対する管の抵抗性を改善す
ることができる。米国特許明細書第3,865,635
号より明らかなように、押出し材を最終冷間圧延工程に
かける前にβ急冷を施すことにより良好な機械的特性を
有するジルカロイの管を得ることができる。
In particular, it is already known from U.S. Pat. I can do it. U.S. Patent No. 3,865,635
As is clear from the above, Zircaloy tubes with good mechanical properties can be obtained by subjecting the extruded material to β-quenching before subjecting it to the final cold rolling process.

β急冷により加速ノジュラー腐食に対する抵抗の向上が
達成される正確な理由については未だ完全には確定され
てはいない。しかし、改良点は材料における金属間化合
物のサイズならびにその分布に係るものと考えられる。
The exact reason why β-quenching achieves improved resistance to accelerated nodular corrosion has not yet been fully determined. However, the improvements appear to be related to the size of the intermetallic compounds as well as their distribution in the material.

金属間化合物いわゆる第二相はジルコニウム以外に主と
して鉄、クローム、ニッケルの鎖成分を含有する化合物
より成り粒状の形態を呈する。β急冷により達成される
溶解ならびに沈殿により、粒子サイズが減少し均等分布
粒からβ相変1時形成されるα粒の結晶粒界における配
列を構成する粒子への再分布か得られる。
The intermetallic compound, the so-called second phase, is composed of a compound mainly containing chain components of iron, chromium, and nickel in addition to zirconium, and has a granular form. The dissolution and precipitation achieved by β quenching results in a reduction in grain size and a redistribution from uniformly distributed grains to grains constituting an arrangement at the grain boundaries of the α grains formed during the β phase change.

仕上がりクラツド管のβ急冷により管の延性か減少しこ
れKより製造方法の欠点が生じる。押出し材を冷間圧延
前にその最終寸法にβ急冷することにより仕上がり管の
機械的特性の劣等化が減少する。しかしながら、β急冷
はそれが仕上かり管上に行われようか或は最終冷間圧延
工程の前に行われようがスクラップ量の増大と更に管表
面に除去せねばならぬ酸化物層の形成により生産高が低
下するととKなる。更に、β急冷はそれ自体クラツド管
の製造を複雑にさせる工程である。
β-quenching of the finished cladding tube reduces the ductility of the tube, which causes drawbacks in the manufacturing method. Beta-quenching the extrusion to its final dimensions before cold rolling reduces deterioration of the mechanical properties of the finished tube. However, β-quenching, whether performed on the finished tube or before the final cold rolling process, increases the amount of scrap and also forms an oxide layer on the tube surface that must be removed. When the output decreases, it becomes K. Furthermore, β-quenching is itself a process that complicates the manufacture of clad tubes.

本発明によれは、押出し後β急冷を使用せずに従来知ら
れた最良のクラッド管程の良好なノジュラー腐食に対す
る抵抗ならびに少くともその程度の良好な機械的特性を
有する原子炉用燃料棒のクラツド管の製造が可能である
と立証されている。
The present invention provides a nuclear reactor fuel rod having resistance to nodular corrosion and mechanical properties at least as good as the best cladding pipes known to date without the use of post-extrusion beta quenching. It has been demonstrated that it is possible to manufacture clad pipes.

本発明は、原子炉の燃料棒のためのシリコニウム基合金
のクラツド管の製造方法にして、シリコニウム基合金を
680℃以下の温度で押出し、押出し品に冷間圧延およ
び焼鈍、冷関正弧関の中間焼鈍を施し、少くとも1つの
中間焼鈍tα相域で650℃な超える温度で実施し、最
後の冷間圧延の後に最終焼鈍を実施する方法において、
押出し品が次の冷間圧延を受ける前にα相域で650℃
を超える温WILにおける夫々の中間焼鈍の後押出し品
が焼鈍温度から650℃までの温度範囲内で少くとも毎
分5℃に達する割合で冷却され、α相域で650℃を超
える温度における最後の中間焼鈍後の焼鈍が最大600
°Cの温度で実施されることを特徴とする製造方法に係
る。α相域で650°Cを超える温度における中間焼鈍
は好適には675−725℃の範囲内の温度で行われる
。冷却は良好な熱伝導性を有するヘリウムを充満した炉
内で好適に実施される。冷却は毎分5℃を超える任意の
割合で行われる。α相域で650℃を超える温1におけ
る焼鈍の時間は0.5−10時間になる。
The present invention is a method for manufacturing a cladding tube of a silicone-based alloy for a fuel rod of a nuclear reactor, in which the silicone-based alloy is extruded at a temperature of 680°C or less, and the extruded product is subjected to cold rolling, annealing, cold rolling and straight arcing. In the method, the intermediate annealing is performed at a temperature exceeding 650 ° C. in at least one intermediate annealing tα phase region, and the final annealing is performed after the final cold rolling,
650°C in the alpha phase region before the extrudate undergoes the next cold rolling.
After each intermediate annealing at a temperature WIL greater than Annealing after intermediate annealing is up to 600
It relates to a manufacturing method characterized in that it is carried out at a temperature of °C. Intermediate annealing at temperatures above 650°C in the alpha phase region is preferably carried out at temperatures in the range 675-725°C. Cooling is preferably carried out in a furnace filled with helium, which has good thermal conductivity. Cooling is performed at any rate greater than 5° C. per minute. The annealing time at temperature 1 above 650° C. in the α phase region is 0.5 to 10 hours.

最後の冷間圧延の後、押出し品は40〇−600℃好適
には525−575℃の温度で最終焼鈍が施される。
After the final cold rolling, the extrudate is subjected to a final annealing at a temperature of 400-600°C, preferably 525-575°C.

本発明のクラツド管の製造に当り、仕上がり管の第二相
粒子のサイズはβ急冷を使用した場合の如く、押出し後
β急冷をともなわない従来のクラツド管製造の場合のサ
イズよりかなり小さい点が判っている。しかしながら、
β急冷後の場合とは反対KIに相粒子は材料中に均等に
分布されている。ノゾ二う−腐食に対する良好な抵抗力
と良好な機械的特性との好適な組合せを与えるものは本
発明により達せられる第二相粒子の小サイズならびにそ
の均岬な分布であり得る。
In manufacturing the clad tube of the present invention, it is important to note that the size of the second phase particles in the finished tube is considerably smaller than the size in the conventional clad tube manufacturing without β quenching after extrusion, such as when β quenching is used. I understand. however,
Contrary to the case after β-quenching, in KI the phase particles are evenly distributed in the material. It may be the small size of the second phase particles as well as their uniform distribution achieved by the present invention that provides a favorable combination of good resistance to corrosion and good mechanical properties.

シIJコニゆム基合金は好適にはシリコニウム錫合金で
あり、例えば商品名シリカロイ2およびシリカロイ4と
して知られた合金であり、この合金i分業有量は錫T1
.2−1.7%、鉄”t’ 0.07−0.2416、
クロームで0.05−0.15−、ニッケルでo−o、
o’so−の範囲内に秦り、残りはシリコニウムならび
に通常の現存する不純物であり、その優は本文記載の他
の−と同様重量当りチで記載されている。シリカロイ2
は1.2−1.7 %の錫、0.07−0.20%の鉄
、0.05−0.15−のクロームおよび0.03−o
、oa1%のニッケルを含有している。シリカロイ4は
1.2−1.7 %の錫、0.18−0.24町の鉄、
0.07−0.13 %のクロームを含み、ニッケルは
含まない。
The siliconium-based alloy is preferably a siliconium-tin alloy, such as the alloys known under the trade names Silicalloy 2 and Silicalloy 4, in which the amount of tin T1
.. 2-1.7%, iron"t' 0.07-0.2416,
0.05-0.15- for chrome, o-o for nickel,
o'so-, the remainder being siliconium and the usual existing impurities, the weight of which is stated in units by weight as with the other -s mentioned in the text. Silicaloy 2
is 1.2-1.7% tin, 0.07-0.20% iron, 0.05-0.15% chromium and 0.03-o
, contains 1% oa of nickel. Silicaloy 4 contains 1.2-1.7% tin, 0.18-0.24% iron,
Contains 0.07-0.13% chromium and is nickel-free.

シリコニウム基合金は好適には、押出し前にβ急冷処理
即ちβ相領域における温度に加熱しα相領域における温
度に急冷する。しかしながら、シリコニウム基合金なβ
急冷処理を施さずに使用することか可能である。押出し
前のβ急冷は合金な適当には950−1250°C好適
には1000−1150℃の温度に熱しα相領域の温度
に急冷することにより行われる。次に、β相領域の使用
温度から750℃の温度への冷却が毎秒1−50°Gの
割合で行われ790℃から500℃又はそれ以下の温度
への冷却は毎分5°Cより大きな割合で好適に行われる
The siliconium-based alloy is preferably beta-quenched, ie heated to a temperature in the beta phase region and rapidly cooled to a temperature in the alpha phase region, prior to extrusion. However, silicon-based alloy β
It is possible to use it without quenching. Beta quenching prior to extrusion is carried out by heating the alloy to a temperature suitably 950 DEG-1250 DEG C., preferably 1000 DEG-1150 DEG C., and rapidly cooling it to a temperature in the alpha phase region. Next, cooling from the operating temperature of the β phase region to a temperature of 750°C is carried out at a rate of 1-50°G per second, and cooling from 790°C to a temperature of 500°C or less is greater than 5°C per minute. This is preferably done in proportion.

次に本発明をその実施例をあげて詳述する。Next, the present invention will be described in detail by giving examples thereof.

ジルカロイ2のインク9ツトを直径150−200薫の
ロッドに鍛造する。このロッド片を1050°Cの温度
で15分間加熱し毎秒5−10℃の割合で室温に冷却す
ることによりβ急冷処理する。押出しビレットをロッド
から作る。これらのビレットは先行加熱なしに押出しさ
れる。次いで、この押出し品を6段の圧延工程にかけそ
れにより最後の外径を12.3smにする。第1と第2
の圧延工程間ならびにw、2と最終圧延間において押出
し品&1565℃の温度に焼鈍される。最後の冷間圧延
後、管は565℃の温度に最終的に焼鈍される。中間焼
鈍ならびに最終焼鈍の両方は真空炉内で実施される。仕
上がり管においては第二相粒子ははソ0.05−0.4
μmの間のサイズと約0.15μmの平均粒子サイズを
もっている。在来の方法で作られ完成状態もしくは押出
し状態の早期においてβ急冷を受けないクラツド管の場
合、第二相粒子はほぼ0.1−0.6μmの間のサイズ
と約0.5μmの平均粒子サイズをもっている。700
℃の温度でWJ2と最後の冷間圧延の間における中間焼
鈍を実施する代りにこの中間焼鈍は例示例の場合575
°Cの温度で実施できる。原子炉運転条件誉そっくり模
擬するものと立証されている腐食テスト時、本発明によ
り作られたクラツド管は、押出し後β急冷処理をしない
在来の製造で得られるもののほんの一部でかつ押出し後
β急冷処理して製造特待られるものとはy同じ位の大き
さのウエートデインを示す。本発明により製作されたク
ラツド管の機械的特性は押出し彼のβ急冷をと、もなわ
ない普通の方法で作った管の場合とに1. を同じでお
り、仕上がり状態でβ急冷処理を施した管の場合よりか
なり良好である。
Forge 9 inks of Zircaloy 2 into a rod with a diameter of 150-200 mm. The rod piece is subjected to a β-quenching treatment by heating it at a temperature of 1050°C for 15 minutes and cooling it to room temperature at a rate of 5-10°C per second. Extruded billets are made from rods. These billets are extruded without prior heating. The extrudate is then subjected to a 6-stage rolling process, which results in a final outer diameter of 12.3 sm. 1st and 2nd
The extrudate is annealed to a temperature of 1565° C. between the rolling steps and the final rolling. After the final cold rolling, the tube is finally annealed to a temperature of 565°C. Both the intermediate annealing as well as the final annealing are carried out in a vacuum furnace. In the finished pipe, the second phase particles are 0.05-0.4
with a mean particle size of about 0.15 μm. For clad tubes made by conventional methods and not subjected to beta quenching early in the finished or extruded state, the second phase particles have a size between approximately 0.1-0.6 μm and an average particle size of about 0.5 μm. It has size. 700
Instead of carrying out an intermediate annealing between WJ2 and the last cold rolling at a temperature of 575 °C, this intermediate annealing is
It can be carried out at temperatures of °C. During corrosion tests, which have been shown to closely simulate nuclear reactor operating conditions, clad tubes made according to the present invention are only a fraction of those obtained with conventional manufacturing without post-extrusion beta quenching, and It shows a weight dein of the same size as that of the product manufactured by β quenching process. The mechanical properties of the clad tube made according to the present invention are as follows: 1. is the same, and is considerably better than the case of a pipe subjected to β-quenching treatment in the finished state.

上述の腐食テストは9.8MPaの圧力と500°Cの
l1ljで水蒸気と共にオートクレーブ内で実施される
。ウェートゲインは管の受けた腐食の程度を示す測定値
である。
The corrosion test described above is carried out in an autoclave with water vapor at a pressure of 9.8 MPa and l1lj of 500°C. Weight gain is a measure of the degree of corrosion the tube has undergone.

代理人 浅 村   皓 外4名Agent Asamura Hao 4 other people

Claims (4)

【特許請求の範囲】[Claims] (1)  j[子炉の燃料棒のためのシリコニウム基合
金のクラツド管の製造方法にして、シリコニウム基合金
が680℃未満の温度で押出しされ、この押出品が冷間
圧延および焼鈍、該冷間圧延間における中間焼鈍を受け
、少くとも1つの中間焼鈍はα相領域において650℃
を超える温度で最後の冷間圧延から最終焼鈍までに実施
される方法において、押出品が次の冷間圧延を受ける前
にα相領域で650℃を超える温度における夫々の中間
焼鈍後、焼鈍温Jf、1−ら650℃までは少くとも毎
分5℃に達する割合で冷却され、α相領域で650°C
を超える温度における最後の中間焼鈍後に焼鈍か最高6
00℃の温度で実施されることを特徴とする製造方法。
(1) j [A method for producing a silicone-based alloy clad tube for a fuel rod in a child reactor, in which the silicone-based alloy is extruded at a temperature below 680°C, and the extrudate is subjected to cold rolling and annealing, and At least one intermediate annealing is performed at 650°C in the α phase region.
In a process carried out from the last cold rolling to the final annealing at a temperature exceeding 650 °C, the annealing temperature From Jf, 1 to 650°C, it is cooled at a rate of at least 5°C per minute, and at 650°C in the α phase region.
Annealed after the last intermediate annealing at temperatures exceeding 6
A manufacturing method characterized in that it is carried out at a temperature of 00°C.
(2)  特許請求の範囲第1項による方法にして、少
くとも1つの中間焼鈍は675’−725℃の温度で実
施されることを特徴とする製造方法。
(2) A method according to claim 1, characterized in that at least one intermediate annealing is carried out at a temperature of 675'-725°C.
(3)特許請求の範囲ll!1項又はW!、2項による
方法にして、シリコニ9五基合金は重量当り1.2−1
.7−の量と、重量肖り0.07−0.24−の鉄と、
重量当り0.05−0.15−のクロムと、重量当り0
−0.08−のニッケルを含有し、残りはシリ;ニウム
と普通の種類の任意の現存する不純−であることを特徴
とする製造方法。
(3) Scope of claims! Item 1 or W! , according to the method according to Section 2, the silicone 9 five-base alloy has a weight of 1.2-1
.. 7 - amount of iron and weight ratio 0.07 - 0.24 -,
0.05-0.15- of chromium per weight and 0.05-0.15- of chromium per weight
- 0.08 - of nickel, the remainder being silicon; nium and any existing impurities of the usual type.
(4)特許請求の範ii!8第1項から纂3項のいづれ
か1つの項による方法にして、押出し時使用されるシリ
コニウム基合金がβ急冷されることt%像とする製造方
法。
(4) Claims ii! 8. A manufacturing method according to any one of Items 1 to 3, in which the siliconium-based alloy used during extrusion is β-quenched by t%.
JP57116327A 1981-07-07 1982-07-06 Manufacture of zirconium base alloy-clad pipe Pending JPS5825466A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE81042145 1981-07-07
SE8104214A SE426891B (en) 1981-07-07 1981-07-07 SET TO MANUFACTURE Capsules of Zirconium-Based Alloy COMBUSTION RODS FOR NUCLEAR REACTORS

Publications (1)

Publication Number Publication Date
JPS5825466A true JPS5825466A (en) 1983-02-15

Family

ID=20344213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116327A Pending JPS5825466A (en) 1981-07-07 1982-07-06 Manufacture of zirconium base alloy-clad pipe

Country Status (6)

Country Link
JP (1) JPS5825466A (en)
BE (1) BE893788A (en)
DE (1) DE3224685A1 (en)
FI (1) FI72007C (en)
FR (1) FR2509510B1 (en)
SE (1) SE426891B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299432A (en) * 1985-10-22 1987-05-08 ウエスチングハウス エレクトリック コ−ポレ−ション Fuel coated pipe comprising single zirconium base alloy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3663372D1 (en) * 1985-03-12 1989-06-22 Santrade Ltd Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors
FR2579122B1 (en) * 1985-03-19 1989-06-30 Cezus Co Europ Zirconium PROCESS FOR PRODUCING COMPOSITE SHEATH TUBES FOR NUCLEAR FUEL AND PRODUCTS OBTAINED
US4717428A (en) * 1985-08-02 1988-01-05 Westinghouse Electric Corp. Annealing of zirconium based articles by induction heating
US4671826A (en) * 1985-08-02 1987-06-09 Westinghouse Electric Corp. Method of processing tubing
DE3528545A1 (en) * 1985-08-08 1987-02-19 Kraftwerk Union Ag FUEL ROD FOR A CORE REACTOR FUEL
FR2599049B1 (en) * 1986-05-21 1988-07-01 Cezus Co Europ Zirconium PROCESS FOR THE MANUFACTURE OF A ZIRCALOY 2 OR ZIRCALOY 4 SHEET PARTIALLY RECRYSTALLIZED AND SHEET OBTAINED
EP0498259B1 (en) * 1991-02-04 1996-03-27 Siemens Aktiengesellschaft Nuclear reactor fuel assembly component and method for the fabrication of same
US5245645A (en) * 1991-02-04 1993-09-14 Siemens Aktiengesellschaft Structural part for a nuclear reactor fuel assembly and method for producing this structural part
DE19709929C1 (en) 1997-03-11 1998-08-13 Siemens Ag Cladding tube of a fuel rod for a boiling water reactor fuel element and method for its production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431104A (en) * 1966-08-08 1969-03-04 Atomic Energy Commission Zirconium base alloy
CA988748A (en) * 1973-05-11 1976-05-11 Donald J. Cameron High strenght corrosion-resistant zirconium aluminum alloys
FR2334763A1 (en) * 1975-12-12 1977-07-08 Ugine Aciers PROCESS FOR IMPROVING THE HOT RESISTANCE OF ZIRCONIUM AND ITS ALLOYS
CA1139023A (en) * 1979-06-04 1983-01-04 John H. Davies Thermal-mechanical treatment of composite nuclear fuel element cladding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299432A (en) * 1985-10-22 1987-05-08 ウエスチングハウス エレクトリック コ−ポレ−ション Fuel coated pipe comprising single zirconium base alloy

Also Published As

Publication number Publication date
FI822395L (en) 1983-01-08
FI72007C (en) 1987-03-09
FR2509510A1 (en) 1983-01-14
FI822395A0 (en) 1982-07-06
SE8104214L (en) 1983-01-08
FI72007B (en) 1986-11-28
BE893788A (en) 1982-11-03
SE426891B (en) 1983-02-14
DE3224685A1 (en) 1983-01-20
FR2509510B1 (en) 1988-06-17

Similar Documents

Publication Publication Date Title
US4450020A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
US4450016A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
JP2575644B2 (en) Method for producing article made of zirconium-niobium alloy containing tin and third alloy element
EP0198570A2 (en) Process for producing a thin-walled tubing from a zirconium-niobium alloy
JP2976992B2 (en) Method for producing strip-shaped Zircaloy 4
JPS60165580A (en) Coated tube for reactor fuel and manufacture thereof
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
JPS6145699B2 (en)
JPS5825466A (en) Manufacture of zirconium base alloy-clad pipe
US4360389A (en) Zirconium alloy heat treatment process
KR100423109B1 (en) Zirconium alloy tube for a nuclear reactor fuel assembley, and method for making same
JPS5825467A (en) Manufacture of zirconium base alloy-clad pipe
JPS6234095A (en) Nuclear fuel coated tube
JPH10501846A (en) Method for producing zirconium-based alloy tubes for nuclear reactors and uses thereof
JPH03209191A (en) Manufacture of clad tube for nuclear fuel rods
JPS6050869B2 (en) Method for manufacturing zirconium alloy structural members for boiling water reactors
JPS5822365A (en) Preparation of zirconium base alloy
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JPS59226158A (en) Manufacture of fuel structural member with high corrosion resistance
JP3910645B2 (en) Fuel rod cladding tube for boiling water nuclear reactor fuel element and method of manufacturing the same
JPS5822366A (en) Preparation of zirconium base alloy
EP0065816A2 (en) Zirconium based alloy
JPH0421746B2 (en)
JP2001262259A (en) Highly corrosion resistant zirconium alloy, structural material for nuclear reactor core and its producing method
JPH079054B2 (en) Zirconium alloy reactor core member