JPS6151626B2 - - Google Patents

Info

Publication number
JPS6151626B2
JPS6151626B2 JP57116328A JP11632882A JPS6151626B2 JP S6151626 B2 JPS6151626 B2 JP S6151626B2 JP 57116328 A JP57116328 A JP 57116328A JP 11632882 A JP11632882 A JP 11632882A JP S6151626 B2 JPS6151626 B2 JP S6151626B2
Authority
JP
Japan
Prior art keywords
temperature
zirconium
quenching
manufacturing
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57116328A
Other languages
Japanese (ja)
Other versions
JPS5825467A (en
Inventor
Besuterurundo Gunnaa
Anderuson Tomasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Sweden AB
Original Assignee
ASEA Atom AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA Atom AB filed Critical ASEA Atom AB
Publication of JPS5825467A publication Critical patent/JPS5825467A/en
Publication of JPS6151626B2 publication Critical patent/JPS6151626B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Extrusion Of Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】 本発明は原子炉の燃料棒のためのジルコニウム
基合金製のクラツド管の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a zirconium-based alloy cladding tube for a nuclear reactor fuel rod.

原子炉の燃料棒のためのクラツド管としては普
通ジルカロイなる名称で知られたジルコニウム基
合金の肉薄の管が使用されている。これらの合金
には錫、鉄、ニツケルなどの如き合金材料が含ま
れている。ジルカロイの場合、α相は790℃以下
で安定しβ相は950℃以上で安定し、これに対し
二相領域即ちαプラスβ相領域は790℃と950℃と
の間において発生する。α相ではジルコニウム原
子は六方稠密格子状に配置され、β相では体心立
方格子状に配列されている。腐食特性改善などの
ような所望の特性を得るためのジルカロイのいわ
ゆるβ急冷時には、材料はβ相域の温度に加熱さ
れ且つ次にα相域における温度に急冷される。
Clad tubes for nuclear reactor fuel rods are commonly made of thin-walled zirconium-based alloy tubes known as Zircaloy. These alloys include alloying materials such as tin, iron, nickel, and the like. In the case of Zircaloy, the α phase is stable at temperatures below 790°C and the β phase is stable at temperatures above 950°C, whereas the two-phase region, ie, the α plus β phase region, occurs between 790°C and 950°C. In the α phase, zirconium atoms are arranged in a hexagonal close-packed lattice, and in the β phase, they are arranged in a body-centered cubic lattice. During so-called β-quenching of Zircaloy to obtain desired properties, such as improved corrosion properties, the material is heated to a temperature in the β-phase region and then quenched to a temperature in the α-phase region.

従来ジルカロイのクラツド管の製造に当つて
は、インゴツトをロツドに鍛造した後β急冷を実
施する。ロツドを押出しビレツトへ製造した後、
ビレツトは680℃の温度でα相域状態に押出しさ
れその後この押出し品は数段階にわたる冷間圧延
を受け、引続く冷間圧延工程の間で引続く冷間圧
延を可能ならしめるよう625°−700℃で焼鈍即ち
中間焼鈍を施す。夫々の中間焼鈍後の押出し品の
冷却は焼鈍温度のすぐ下の温度範囲でかついかな
る冷却剤も使用せずに毎分最大3℃の割合で比較
的ゆるやかに行われる。最後の冷間圧延工程の後
で最終焼鈍を施し所望特性を材料に付与する。こ
の最終焼鈍は400°から700℃の温度で実施され
る。
Conventionally, in manufacturing Zircaloy clad pipes, an ingot is forged into a rod and then subjected to β-quenching. After manufacturing the rod into an extruded billet,
The billet is extruded to the alpha phase state at a temperature of 680°C and the extrudate is then subjected to several stages of cold rolling, with a 625°- Annealing or intermediate annealing is performed at 700°C. Cooling of the extrudate after each intermediate annealing takes place relatively slowly at a rate of up to 3° C. per minute in a temperature range just below the annealing temperature and without the use of any coolant. After the final cold rolling step, a final anneal is applied to impart the desired properties to the material. This final annealing is carried out at a temperature of 400° to 700°C.

従来採用された条件の下でジルカロイから製造
した管は一般に原子炉に適用される運転条件で腐
食に対する十分な抵抗をもつものと立証されてい
る。しかしながら、情勢の発展は燃料組立体の作
動時間が更に長びくことにある。従つて、クラツ
ド材料は従来より長時間にわたり腐食性の水にさ
らされその結果腐食損傷の危険が増大する。従つ
て、この機械的特性の好ましからざる変化をとも
なうことなしに使用合金により良好な腐食特性を
得るのが望ましいことである。
Tubes made from Zircaloy under conditions conventionally employed have generally proven to have sufficient resistance to corrosion at the operating conditions applicable to nuclear reactors. However, the development of the situation is that the operating time of fuel assemblies is becoming longer and longer. Therefore, the cladding material is exposed to corrosive water for a longer period of time than previously, thereby increasing the risk of corrosion damage. It is therefore desirable to obtain better corrosion properties from the alloy used without undesirable changes in its mechanical properties.

特に米国特許明細書第4238251号より既に知ら
れている如くジルカロイの仕上がり管をβ急冷す
ることによりいわゆる水中および高圧蒸気におけ
るいわゆる加速ノジユラー腐食に対する管の抵抗
性を改善することができる。米国特許明細書第
3865635号より明らかなように、押出し品を最終
冷間圧延工程にかける前にβ急冷を施すことによ
り良好な機械的特性を有するジルカロイの管を得
ることができる。
By β-quenching finished tubes of Zircaloy, as is already known from US Pat. No. 4,238,251, it is possible to improve the resistance of the tubes to so-called accelerated nodular corrosion in water and high-pressure steam. US Patent Specification No.
No. 3,865,635, Zircaloy tubes with good mechanical properties can be obtained by β-quenching the extrudate before subjecting it to the final cold rolling step.

β急冷により加速ノジユラー腐食に対する抵抗
の向上が達成される正確な理由については末だ完
全には確定されてはいない。しかし、改良点は材
料における金属間化合物の寸法ならびにその分布
に係るものと考えられる。金属間化合物いわゆる
第二相はジルコニウム以外に主として鉄、クロー
ム、ニツケルの諸成分を含有する化合物より成り
粒状の形態を呈する。β急冷により達成される溶
解ならびに析出により、粒子サイズが減少し均等
に分布した粒からβ相変態時に形成されるα粒の
結晶粒界における配列を構成する粒子への再分布
が得られる。
The exact reason why beta quenching achieves improved resistance to accelerated nodular corrosion has not yet been completely determined. However, improvements are believed to be related to the dimensions of the intermetallic compounds in the material as well as their distribution. The intermetallic compound, the so-called second phase, is composed of a compound containing mainly iron, chromium, and nickel in addition to zirconium, and has a granular form. The dissolution and precipitation achieved by β-quenching results in a reduction in grain size and a redistribution of the evenly distributed grains to those that constitute the arrangement at the grain boundaries of the α grains formed during the β phase transformation.

仕上がりクラツド管のβ急冷は、管の延性を減
少させ、これにより上記従来製造方法には欠点が
ある。押出し品をその最終寸法にする冷間圧延前
にβ急冷することにより仕上がり管の機械的特性
の劣化が減少する。しかしながら、β急冷はそれ
が仕上がり管に行われようが或は最終冷間圧延工
程の前に行われようがスクラツプ量の増大と更に
管表面に除去せねばならぬ酸化物層が形成される
ことにより生産高が低下することになる。
β-quenching of the finished cladding tube reduces the ductility of the tube, which is a drawback of the conventional manufacturing method described above. Beta quenching the extrudate before cold rolling it to its final dimensions reduces the degradation of the mechanical properties of the finished tube. However, β-quenching, whether performed on the finished tube or before the final cold rolling process, increases the amount of scrap and also forms an oxide layer on the tube surface that must be removed. This will result in a decrease in production.

本発明によれば、少くとも従来知られた最良の
クラツド管の程度の良好なノジユラー腐食に対す
る抵抗ならびにかかるクラツド管より良好な延性
を有する原子炉のための燃料棒のためのクラツド
管を製造できることが立証されている。押出し後
β急冷を使用する従来知られたクラツド管の製造
方法に比較して、同様にβ急冷を用いる(即ち押
出し後にβ急冷をする)本発明では製造工程の初
期段階にβ急冷を実施することにより、より小さ
な表面上で形成酸化物の除去が可能なのでスクラ
ツプの減少更に材料ロスの減少により生産高が向
上することになる。
In accordance with the present invention, it is possible to produce cladding tubes for fuel rods for nuclear reactors that have at least as good a resistance to nodular corrosion as the best cladding tubes known to date, as well as better ductility than such cladding tubes. has been proven. Compared to the conventionally known manufacturing method for clad pipes which uses β-quenching after extrusion, the present invention also uses β-quenching (i.e., β-quenching is performed after extrusion), in which β-quenching is carried out at an early stage of the manufacturing process. This allows the removal of formed oxides over smaller surfaces, resulting in increased throughput due to less scrap and less material loss.

本発明は、原子炉の燃料棒のためのジルコニウ
ム基合金のクラツド管の製造方法にして、ジルコ
ニウム基合金が押出しされ、その押出し品が冷間
圧延と少くとも1つの焼鈍即ち2つの連続する冷
間圧延の間における中間焼鈍と最終冷間圧延より
も前の段階でのβ急冷とを受ける方法において、
β急冷が冷間圧延の初期に実施され、その後少く
とも1つの中間焼鈍が500−610℃の温度で行われ
ることを特徴とし中間焼鈍のための好適温度は
500−610℃特に好適には550−600℃である。換言
すればβ急冷は、最終冷間圧延を含めて少なくと
も2つの冷間圧延の前に実施される。
The present invention provides a method for manufacturing zirconium-based alloy cladding tubes for nuclear reactor fuel rods, in which the zirconium-based alloy is extruded and the extrudate is subjected to cold rolling and at least one annealing, i.e., two successive cold rolling steps. In a method of undergoing intermediate annealing during inter-rolling and β-quenching at a stage before final cold rolling,
The preferred temperature for intermediate annealing is
500-610°C, particularly preferably 550-600°C. In other words, β quenching is performed before at least two cold rollings including the final cold rolling.

押出しはα相域で任意の温度で行われる。 Extrusion is carried out at any temperature in the alpha phase region.

最後の冷間圧延の後押出し品は400−675℃好適
には400−610℃最も好適には550−600℃の温度で
最終焼鈍を受ける。
After the final cold rolling, the extrudate is subjected to a final annealing at a temperature of 400-675°C, preferably 400-610°C, most preferably 550-600°C.

押出し品のβ急冷はβ相域の温度即ち適当には
950−1250℃好適には1000−1150℃の温度に加熱
しその後α相域における温度に急冷することによ
り実施される。次にβ相域で使用した温度から
790℃の温度に適当に冷却が毎秒20−400℃の割合
で行われ、790℃から500℃又はそれ以下の温度に
毎分5℃以上の割合で冷却が行われる。
β-quenching of extrudates is carried out at temperatures in the β-phase region, i.e. suitably
This is carried out by heating to a temperature of 950-1250°C, preferably 1000-1150°C, followed by rapid cooling to a temperature in the alpha phase region. Next, from the temperature used in the β phase region,
Cooling is suitably carried out to a temperature of 790°C at a rate of 20-400°C per second, and from 790°C to a temperature of 500°C or less at a rate of 5°C or more per minute.

本発明のクラツド管の製造に当り、仕上がり管
の第二相粒子のサイズはβ急冷を使用した場合の
如く、押出し後β急冷をともなわない従来のクラ
ツド管製造の場合のサイズよりかなり小さい点が
判明している。しかしながら、従来法でのβ急冷
後の場合とは反対に第二相粒子は材料中に均等に
分布されている。ノジユラー腐食に対する良好な
抵抗力と良好な機械的特性との好適な組合せを与
えるものは本発明により達せられる第二相粒が小
さいことならびにその均等な分布であり得る。
In manufacturing the clad tube of the present invention, it is important to note that the size of the second phase particles in the finished tube is considerably smaller than the size in the conventional clad tube manufacturing without β quenching after extrusion, such as when β quenching is used. It's clear. However, the second phase particles are evenly distributed in the material, contrary to the case after beta quenching in conventional methods. It may be the small size of the second phase grains achieved by the present invention as well as their uniform distribution that provides a favorable combination of good resistance to nodular corrosion and good mechanical properties.

ジルコニウム基合金は好適にはジルコニウム錫
合金であり、例えば商品名ジルカロイ2およびジ
ルカロイ4として知られた合金であり、この合金
成分含有量は錫で1.2−1.7%、鉄で、0.07−0.24
%、クロームで0.05−0.15%、ニツケルで0−
0.080%の範囲内にあり、残りはジルコニウムな
らびに通常の現存する不純物であり、その%は本
文記載の他の%と同様重量%で記載されている。
ジルカロイ2は1.2−1.7%の錫、0.07−0.20%の
鉄、0.05−0.15%のクロムおよび0.03−0.08%の
ニツケルを含有している。ジルカロイ4は1.2−
1.7%の錫、0.18−0.24%の鉄、0.07−0.13%のク
ロムを含み、ニツケルは含まない。
The zirconium-based alloy is preferably a zirconium-tin alloy, such as the alloys known under the trade names Zircaloy 2 and Zircaloy 4, with an alloy component content of 1.2-1.7% tin and 0.07-0.24% iron.
%, 0.05-0.15% for chrome, 0- for nickel
It is in the range of 0.080%, the remainder being zirconium as well as normal existing impurities, the percentages of which are stated in weight percentages like the other percentages in the text.
Zircaloy 2 contains 1.2-1.7% tin, 0.07-0.20% iron, 0.05-0.15% chromium and 0.03-0.08% nickel. Zircaloy 4 is 1.2−
Contains 1.7% tin, 0.18-0.24% iron, 0.07-0.13% chromium, and no nickel.

ジルコニウム基合金は好適には、押出し前にβ
急冷処理を受ける即ちβ相領域における温度に加
熱しα相領域における温度に急冷する。しかしな
がら、ジルコニウム基合金をβ急冷処理を施さず
に使用することが可能である。押出し前のβ急冷
は合金を適当には950−1250℃好適には1000−
1150℃の温度に熱しα相領域の温度に急冷するこ
とにより行われる。β相領域の使用温度から750
℃の温度へのこの冷却は毎秒1−50℃の割合で行
われ、790℃から500℃又はそれ以下の温度への冷
却は毎分5℃より大きな割合で好適に行われる。
The zirconium-based alloy is preferably β-treated before extrusion.
It undergoes a rapid cooling treatment, that is, it is heated to a temperature in the β phase region and rapidly cooled to a temperature in the α phase region. However, it is possible to use zirconium-based alloys without β-quenching. β quenching before extrusion is performed to suitably cool the alloy to 950-1250°C, preferably 1000-1000°C.
This is done by heating to a temperature of 1150°C and rapidly cooling to a temperature in the α phase region. 750 from the operating temperature in the β phase region
This cooling to a temperature of 0.degree. C. is carried out at a rate of 1-50.degree. C. per second, and cooling from 790.degree. C. to a temperature of 500.degree. C. or less is preferably carried out at a rate of greater than 5.degree. C. per minute.

次に本発明をその実施例をあげて詳述する。 Next, the present invention will be described in detail by giving examples thereof.

ジルカロイ2のインゴツトを直径150−200mmの
ロツドに鍛造する。このロツド片を1050℃の温度
で15分間加熱し毎秒5−10℃の割合で室温に冷却
することによりβ急冷処理する。押出しビレツト
をロツドから作る。これらのビレツトは700−740
℃即ちα相域の温度で押出しされる。その後押出
し品には3段階の冷間圧延工程を施しそれにより
管の最終外径は12.3mmとなる。第1と第2の圧延
の間において、押出し品のまわりに配置された高
周波コイルを使用し数秒間この押出し品を1050℃
までに加熱しβ急冷を施した。その後押出し品は
200℃/秒の割合で水噴射により室温に冷却され
た。第2と最後の圧延の間で押出し品は1時間に
わたり575℃の温度に焼鈍される。夫々の中間焼
鈍後押出し品は焼鈍温度即ち700℃から650℃の温
度範囲における冷却速度が毎分10℃になるようヘ
リウムを満たした炉内で冷却される。最後の冷間
圧延後管は565℃の温度で最終的に焼鈍される。
中間焼鈍と最終焼鈍の両方は真空炉内で行われ
る。仕上がり管において、第二相粒子はほぼ0.01
−0.2μmの範囲のサイズと約0.1μmの平均粒子
サイズをもつ、在来の方法で製造され仕上がり状
態又は押出し状態の初期においてβ急冷を受けな
かつたクラツド管においては、第二相粒子はほぼ
0.1−0.6μmの範囲のサイズと約0.3μmの平均粒
子サイズをもつ。
Forge Zircaloy 2 ingots into rods with a diameter of 150-200 mm. The rod piece is subjected to a β-quenching treatment by heating it at a temperature of 1050°C for 15 minutes and cooling it to room temperature at a rate of 5-10°C per second. Make an extruded billet from a rod. These billets are 700-740
It is extruded at a temperature in the α phase region. The extrusion was then subjected to a three-stage cold rolling process, which resulted in a final outside diameter of the tube of 12.3 mm. Between the first and second rolling, a high frequency coil placed around the extrudate was used to heat the extrudate to 1050°C for a few seconds.
The sample was heated until then and subjected to β-quenching. After that, the extruded product
It was cooled to room temperature by water jet at a rate of 200°C/sec. Between the second and last rolling the extrudate is annealed to a temperature of 575° C. for 1 hour. After each intermediate annealing, the extrudates are cooled in a helium-filled furnace at a cooling rate of 10°C per minute at the annealing temperature, i.e., in the temperature range from 700°C to 650°C. After the final cold rolling, the tube is finally annealed at a temperature of 565℃.
Both intermediate and final annealing are performed in a vacuum furnace. In the finished tube, the second phase particles are approximately 0.01
In clad tubes produced by conventional methods and not subjected to β-quenching in the finished or early extruded state, with sizes in the range -0.2 μm and average particle size of about 0.1 μm, the second phase particles are approximately
It has a size in the range 0.1-0.6 μm and an average particle size of about 0.3 μm.

原子炉運転条件をそつくり模凝するものと立証
されている腐食テスト時、本発明により作られた
クラツド管は、押出し後β急冷処理をしない在来
の製造で得られるもののほんの一部でかつ押出し
後β急冷処理して製造時得られるものとほぼ同じ
位の大きさのウエートゲインを示し、本発明の場
合50−100mg/dm2でβ急冷を使用せざる在来の製
造時には350−4000mg/dm2である。本発明により
作られたクラツド管の延性は、仕上げ状態でβ急
冷を受けた管よりも良好であり且つ最終冷間圧延
の直前にβ急冷を受けた管よりも良好である。
During corrosion tests, which have been demonstrated to simulate nuclear reactor operating conditions, the clad tubes made according to the present invention are only a fraction of those obtained with conventional manufacturing without post-extrusion β-quenching treatment. The weight gain is approximately the same as that obtained during production by β-quenching after extrusion, and is 50-100 mg/dm 2 in the case of the present invention and 350-4000 mg in conventional production without β-quenching. /dm 2 . The ductility of clad tubes made in accordance with the present invention is better than tubes that have undergone beta quenching in the finished state and better than tubes that have undergone beta quenching immediately prior to final cold rolling.

上記腐食試験は、9.8MPaの圧力で且つ500℃の
温度で水蒸気の圧力容器内でおこらわれた。ウエ
ートゲインは、管が受けた腐食の程度を示す。
The above corrosion tests were carried out in a steam pressure vessel at a pressure of 9.8 MPa and a temperature of 500°C. Weight gain indicates the degree of corrosion that the tube has undergone.

Claims (1)

【特許請求の範囲】 1 原子炉の燃料棒のためのジルコニウム基合金
のクラツド管の製造方法であつて、ジルコニウム
基合金が押出しされ、この押出し品が、冷間圧延
を受け且つ2つの連続する冷間圧延の間において
少なくとも1つの中間焼鈍を受け、更にこの押出
し品は、最後の冷間圧延よりも前の段階でβ急冷
を受ける上記製造方法に於いて、 β急冷は、最終冷間圧延を含めて少なくとも2
つの冷間圧延の前に実施され、 この2つの冷間圧延の間において前記中間焼鈍
は500−675℃の温度で実施されることを特徴とす
る上記製造方法。 2 特許請求の範囲第1項による製造方法にし
て、中間焼鈍は500−610℃好適には550−600℃の
温度で実施される、上記製造方法。 3 特許請求の範囲第1項又は第2項のいづれか
による製造方法にして、ジルコニウム基合金は重
量で1.2−1.7%の錫と、0.07−0.24%の鉄と、
0.05−0.15%のクロムと、0−0.08%のニツケル
を含有し、残りはジルコニウムと普通の種類の任
意の現存する不純物である、上記製造方法。 4 特許請求の範囲第1項から第3項のいづれか
1つの項による製造方法にして、押出し時使用さ
れるジルコニウム基合金はβ急冷される、上記製
造方法。 5 特許請求の範囲第1項から第4項のいづれか
1つの項による製造方法にして、押出し品は最後
の冷間圧延後400−675℃の温度で最終焼鈍を受け
る、上記製造方法。
[Claims] 1. A method for manufacturing a zirconium-based alloy cladding tube for a nuclear reactor fuel rod, wherein the zirconium-based alloy is extruded and the extrudate is subjected to cold rolling and two consecutive In the above manufacturing method, the extrudate is subjected to at least one intermediate annealing during cold rolling, and the extrudate is further subjected to β quenching at a stage prior to the final cold rolling. At least 2 including
The above manufacturing method, characterized in that the intermediate annealing is carried out before two cold rollings, and the intermediate annealing is carried out at a temperature of 500-675°C between the two cold rollings. 2. A manufacturing method according to claim 1, wherein the intermediate annealing is carried out at a temperature of 500-610°C, preferably 550-600°C. 3 In the manufacturing method according to either claim 1 or 2, the zirconium-based alloy contains 1.2-1.7% tin and 0.07-0.24% iron by weight;
The above manufacturing method containing 0.05-0.15% chromium and 0-0.08% nickel, the remainder being zirconium and any existing impurities of the common type. 4. The manufacturing method according to any one of claims 1 to 3, wherein the zirconium-based alloy used during extrusion is β-quenched. 5. A method according to any one of claims 1 to 4, wherein the extrudate is subjected to a final annealing at a temperature of 400-675° C. after the final cold rolling.
JP57116328A 1981-07-07 1982-07-06 Manufacture of zirconium base alloy-clad pipe Granted JPS5825467A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8104213-7 1981-07-07
SE8104213A SE426890B (en) 1981-07-07 1981-07-07 SET TO MANUFACTURE Capsules of Zirconium-Based Alloy for Fuel Rods for Nuclear Reactors

Publications (2)

Publication Number Publication Date
JPS5825467A JPS5825467A (en) 1983-02-15
JPS6151626B2 true JPS6151626B2 (en) 1986-11-10

Family

ID=20344212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116328A Granted JPS5825467A (en) 1981-07-07 1982-07-06 Manufacture of zirconium base alloy-clad pipe

Country Status (9)

Country Link
JP (1) JPS5825467A (en)
BE (1) BE893787A (en)
CA (1) CA1211344A (en)
DE (1) DE3224686C2 (en)
ES (1) ES513793A0 (en)
FI (1) FI72006C (en)
FR (1) FR2509509B1 (en)
IT (1) IT1191203B (en)
SE (1) SE426890B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195938U (en) * 1986-05-31 1987-12-12

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576654A (en) * 1982-04-15 1986-03-18 General Electric Company Heat treated tube
JPS60165580A (en) * 1984-02-08 1985-08-28 株式会社日立製作所 Coated tube for reactor fuel and manufacture thereof
DE3429567A1 (en) * 1984-08-10 1986-02-20 Kraftwerk Union AG, 4330 Mülheim METHOD FOR STABILIZING THE CORROSION RESISTANCE OF A PIPE PIPE MADE OF A ZIRCONIUM ALLOY FOR A CORE REACTOR FUEL
FR2575764B1 (en) * 1985-01-10 1992-04-30 Cezus Co Europ Zirconium PROCESS FOR MANUFACTURING A STRIP OF ZIRCONIUM ALLOY ZIRCALOY 2 OR ZIRCALOY 4 RESTORED, AND STRIP OBTAINED
JP2600057B2 (en) * 1985-12-09 1997-04-16 株式会社日立製作所 Cladding tube, spacer, and channel box for highly corrosion resistant nuclear fuel, fuel assembly thereof, and method of manufacturing the same
JPH0625389B2 (en) * 1985-12-09 1994-04-06 株式会社日立製作所 Zirconium based alloy with high corrosion resistance and low hydrogen absorption and method for producing the same
US5437747A (en) * 1993-04-23 1995-08-01 General Electric Company Method of fabricating zircalloy tubing having high resistance to crack propagation
SE514678C2 (en) 1998-11-12 2001-04-02 Westinghouse Atom Ab Process for producing a component exposed to elevated radiation in a corrosive environment
CN113667914B (en) * 2021-08-09 2022-04-19 燕山大学 Method for preparing high-strength pure zirconium through cold deformation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1014833A (en) * 1974-07-12 1977-08-02 Stuart R. Macewen Zirconium base alloy and method of production
AU498717B2 (en) * 1975-02-25 1979-03-22 General Electric Company Zirconium alloy heat treatment
FR2334763A1 (en) * 1975-12-12 1977-07-08 Ugine Aciers PROCESS FOR IMPROVING THE HOT RESISTANCE OF ZIRCONIUM AND ITS ALLOYS
CA1139023A (en) * 1979-06-04 1983-01-04 John H. Davies Thermal-mechanical treatment of composite nuclear fuel element cladding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195938U (en) * 1986-05-31 1987-12-12

Also Published As

Publication number Publication date
FR2509509A1 (en) 1983-01-14
ES8401665A1 (en) 1983-12-16
JPS5825467A (en) 1983-02-15
SE8104213L (en) 1983-01-08
FI822394L (en) 1983-01-08
CA1211344A (en) 1986-09-16
FI72006C (en) 1987-03-09
ES513793A0 (en) 1983-12-16
DE3224686A1 (en) 1983-01-27
IT1191203B (en) 1988-02-24
FI822394A0 (en) 1982-07-06
FI72006B (en) 1986-11-28
IT8267860A0 (en) 1982-07-06
FR2509509B1 (en) 1985-07-12
DE3224686C2 (en) 1987-02-19
BE893787A (en) 1982-11-03
SE426890B (en) 1983-02-14

Similar Documents

Publication Publication Date Title
US4450020A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
US4450016A (en) Method of manufacturing cladding tubes of a zirconium-based alloy for fuel rods for nuclear reactors
US4689091A (en) Process for producing zirconium-based alloy
US4584030A (en) Zirconium alloy products and fabrication processes
US6514360B2 (en) Method for manufacturing a tube and a sheet of niobium-containing zirconium alloy for a high burn-up nuclear fuel
US6811746B2 (en) Zirconium alloy having excellent corrosion resistance and mechanical properties for nuclear fuel cladding tube
EP0085553B1 (en) Zirconium alloy fabrication processes
EP0198570A2 (en) Process for producing a thin-walled tubing from a zirconium-niobium alloy
JPH08239740A (en) Production of pipe for nuclear fuel aggregate,and pipe obtained thereby
US3645800A (en) Method for producing wrought zirconium alloys
JPS6145699B2 (en)
US4360389A (en) Zirconium alloy heat treatment process
JPS6151626B2 (en)
JPS6234095A (en) Nuclear fuel coated tube
US5887045A (en) Zirconium alloy tube for a nuclear reactor fuel assembly, and method for making same
JPS5825466A (en) Manufacture of zirconium base alloy-clad pipe
KR100353125B1 (en) Method for the manufacture of tubes of a zirconium based alloy for nuclear reactors and their usage
CA1080513A (en) Zirconium alloy heat treatment process and product
EP0425465A1 (en) A method of manufacturing cladding tubes for fuel rods for nuclear reactors
US4717434A (en) Zirconium alloy products
JPS5822365A (en) Preparation of zirconium base alloy
JPS6026650A (en) Fuel cladding pipe for nuclear reactor
JPH0421746B2 (en)
JPS59226158A (en) Manufacture of fuel structural member with high corrosion resistance
JPH02270948A (en) Production of zirconium alloy tube