JPS5823437A - Impurity introduction method in semiconductor device - Google Patents

Impurity introduction method in semiconductor device

Info

Publication number
JPS5823437A
JPS5823437A JP12322281A JP12322281A JPS5823437A JP S5823437 A JPS5823437 A JP S5823437A JP 12322281 A JP12322281 A JP 12322281A JP 12322281 A JP12322281 A JP 12322281A JP S5823437 A JPS5823437 A JP S5823437A
Authority
JP
Japan
Prior art keywords
oxide film
drive
impurity
diffusion
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12322281A
Other languages
Japanese (ja)
Inventor
Masamichi Manabe
真鍋 昌道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corp, Pioneer Electronic Corp filed Critical Pioneer Corp
Priority to JP12322281A priority Critical patent/JPS5823437A/en
Publication of JPS5823437A publication Critical patent/JPS5823437A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To offer an impurity introduction method by a 2-step diffusion method wherein stepwise differences on an oxide film are removed, the danger of disconnections of a metallic wiring layer is eliminated, and the improvement for a yield is contrived. CONSTITUTION:First, as shown in A, the oxide film 3 as a mask for a diffusion whereon an aperture is selectively opened is adhesionformed on one main surface of a semiconductor substrate 1, and boron serving as an impurity source is introduced. Next, a drive-in process for the first redistribution is performed in a dry oxygen atmosphere at 1,150 deg.C for approx. 100min, and a slightly deep diffusion of impurity is performed resulting in the structure shown in B. Next, as shown in C, all the oxide films 3, 3' are removed by etching, and thereafter a drive-in treatment for 30min is performed in a steam at 1,150 deg.C resulting in the formation of an impurity region 2'' having a desired depth. Finally, an oxide film 3'' is formed by the heat treatment due to the second drive-in, and a wiring layer 4 is provided thereon. Thus, stepwise differences of an oxide film on the surface of a substrate can be eliminated, and besides disconnections of the metallic layer adhered thereon are not generated.

Description

【発明の詳細な説明】 本発明は半導体装置における不純物導入方法に関し、特
に2ステツプ拡散法による不純物導入方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for introducing impurities into a semiconductor device, and particularly to a method for introducing impurities by a two-step diffusion method.

いわゆる2ステツプ拡散による不純物導入法は第1図K
l 、 (B)に示す如き方法である。すなわち、先ず
半導体基板lの一主面上に不純物源となるべき不純物2
を選択的に付着導入しくプレデポジ、ノド)て体)に示
す如き構造とする。尚、3は選択拡散のための不純物拡
散用マスクである酸化膜を示す。次に、付着した不純物
2を更に深く基板1内に再分布させるべくいわゆるドラ
イブイン工程が行われて(B)に示す如き構造となり、
所望の濃度を有する不純物領域2′が形成されることに
なる。
The impurity introduction method by so-called two-step diffusion is shown in Figure 1K.
This is the method shown in (B). That is, first, an impurity 2 to be an impurity source is placed on one main surface of the semiconductor substrate l.
In order to selectively adhere and introduce the material, a pre-deposited structure is formed as shown in the figure. Note that 3 indicates an oxide film which is an impurity diffusion mask for selective diffusion. Next, a so-called drive-in process is performed to redistribute the attached impurities 2 deeper into the substrate 1, resulting in a structure as shown in (B).
An impurity region 2' having a desired concentration is formed.

このドライブイン工程においては、図(B)に示す如く
薄い酸化膜3′が形成されることになり、結果として半
導体基板10表面における酸化膜の膜厚に差を生じて段
差の原因となる。よって酸化膜3.3′上に金属配線層
4を付着する場合には、当該段差部において断線の危険
が生じて歩留りの著しい低下を招来している。
In this drive-in process, a thin oxide film 3' is formed as shown in Figure (B), resulting in a difference in the thickness of the oxide film on the surface of the semiconductor substrate 10, causing a step. Therefore, when the metal wiring layer 4 is deposited on the oxide film 3.3', there is a risk of wire breakage at the stepped portion, resulting in a significant decrease in yield.

本発明の目的は酸化膜の段差をなくして金属配線層の断
線の危険をなくし歩留りの向上を図るようにした2ステ
ツプ拡散法による不純物導入方法を提供することである
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for introducing impurities using a two-step diffusion method, which eliminates the step difference in the oxide film, eliminates the risk of disconnection in the metal wiring layer, and improves the yield.

本発明による半導体装置の不純物導入方法は、2ステツ
プ拡散法におけるドライブ工程を少くとも2回の工程に
分離し、そのうち最初の工程を除く残余の工程における
少くとも1回はその前工程において生じた半導体基板表
面の酸化膜を全て除去するようにしたことを特徴として
いる。
In the method for introducing impurities into a semiconductor device according to the present invention, the drive process in the two-step diffusion method is separated into at least two processes, and at least one of the remaining processes excluding the first process occurs in the preceding process. The feature is that all the oxide film on the surface of the semiconductor substrate is removed.

以下に図面によシ本発明を説明する。The present invention will be explained below with reference to the drawings.

第2図は本発明の詳細な説明する工程順の各断面図であ
り、2ステツプ拡散におけるドライブイン工程を2回に
分けて行う場合のレリである。先ず、体)に示すように
半導体基板1の一主面上に選択的に開口を穿った拡散用
マスクとしての酸化膜3を被着形成し、例えば不純物源
となるボロンを1×10ZcrIなる濃度で付着導入す
る。この時の拡散温度は1,100℃である。こうして
ボロンの不純物層2が形成されていわゆるプレデポジシ
ョン工程がなされる。次に、第1回目の再分布のための
ドライブイン工程が、1,150’Cのドライ酸素雰囲
気中で約100分間なされ、やや深い不純物の拡散が行
われて、(B)に示す構造となる。7がこの第1回目の
ドライブイン工程にょシ形成された不純物領域であシ、
3′は同じくこのドライブイン工程によシ生じた酸化膜
である。
FIG. 2 is a cross-sectional view of the process sequence for explaining the present invention in detail, and shows a case where the drive-in process in two-step diffusion is performed in two steps. First, as shown in Figure 1, an oxide film 3 as a diffusion mask with selective openings is deposited on one main surface of the semiconductor substrate 1, and boron, which will serve as an impurity source, is deposited at a concentration of 1 x 10 ZcrI. Introduce the adhesive. The diffusion temperature at this time is 1,100°C. In this way, a boron impurity layer 2 is formed and a so-called pre-deposition process is performed. Next, a first drive-in process for redistribution is performed for about 100 minutes in a dry oxygen atmosphere at 1,150'C to perform a somewhat deep diffusion of impurities, resulting in the structure shown in (B). Become. 7 is the impurity region formed in this first drive-in process,
3' is an oxide film also produced by this drive-in process.

第1回目のドライブイン工程においては、拡散マスクで
ある酸化膜3の全面エツチングによる除去は行わない。
In the first drive-in step, the entire surface of the oxide film 3 serving as a diffusion mask is not removed by etching.

これは、この時点におけるボロン不・細物濃度が高いた
めに不純物の不要な拡散が生じて基板表面がP型になる
のを、当該酸化膜3により防止するためである。
This is because the oxide film 3 prevents the substrate surface from becoming P-type due to unnecessary diffusion of impurities due to the high concentration of boron impurities at this point.

次に、第2回目のドライブイン工程に入るわけであるが
、この工程前に(C)に示すようにすべての酸化膜3.
3”iエツチングして除去し、しかる後に1,150℃
の水蒸気中で加分間のドライブイン処理が行われ所望の
深さを有する不純物領域2が形成される。rはこの第2
回目のドライブインによる熱処理によって生じた酸化膜
であり、4は金属配線層を示す。
Next, the second drive-in process begins, but before this process, all the oxide films 3.
3"i etching and removal, then 1,150℃
A drive-in process for addition is performed in water vapor to form impurity regions 2 having a desired depth. r is this second
This is an oxide film produced by the second drive-in heat treatment, and 4 indicates a metal wiring layer.

こうすることによシ、基板表面の配化膜の断差をなくす
ことが可能となってその上に被着される金属層の断線は
生じなくなる。尚、上記においては、ドライブイン工程
を2回に分けて第2回目のドライブイン工程前に生じた
酸化膜をすべそ除去するようにしたが、3回以上に分け
て第2回目以後のドライブイン工程における少くとも1
回はその前工程において生じた基板表面の酸化膜を全て
除去するようにしてもよい。
By doing so, it becomes possible to eliminate the difference in the alignment film on the surface of the substrate, and the metal layer deposited thereon will not be disconnected. In the above, the drive-in process was divided into two steps to remove the oxide film formed before the second drive-in process, but the drive-in process after the second drive-in process was divided into three or more steps. At least 1 in the in-process
In this step, the oxide film formed on the surface of the substrate in the previous step may be completely removed.

叙上のように、本発明によれば2ステツプ拡散法におけ
る半導体基板表面における酸化膜の段差を極力なくすこ
とができるので、配線の断線による歩留りの低下を防止
することが可能となる。
As described above, according to the present invention, it is possible to eliminate as much as possible the level difference in the oxide film on the surface of the semiconductor substrate in the two-step diffusion method, thereby making it possible to prevent a decrease in yield due to disconnection of wiring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2ステツプ拡散法を示す図、第2図は本
発明の実施例の製造工程順の各断面図である。 主要部分の符号の説明 1・・・・・・・・・半導体基板 2.2’、2“・・・・・・・・・不純物層3.3’、
!・・・・・・・・・酸化膜出願人  バイオラア株式
会社 代理人  弁理士 藤 村 元 産 乳/図 観2図
FIG. 1 is a diagram showing a conventional two-step diffusion method, and FIG. 2 is a cross-sectional view of the manufacturing process according to an embodiment of the present invention. Explanation of symbols of main parts 1... Semiconductor substrate 2.2', 2''... Impurity layer 3.3',
!・・・・・・・・・Oxide film applicant Biolaa Co., Ltd. Agent Patent attorney Hajime Fujimura Milk production/Illustration 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面に不純物を選択的に付着導入後、こ
の半導体基板内へ前記不純物の再分布をなすようにした
不純物導入方法であって、前記不純物の再分布のための
ドライブイン工程を少くとも2回の工程に分離し、その
うち最初の工程を除く残余の工程における少くとも1回
はその前工程において生じた半導体基板表面の酸化膜を
全て除去するようにしたことを特徴とする不純物導入方
法。
An impurity introduction method that selectively adheres and introduces impurities onto one main surface of a semiconductor substrate and then redistributes the impurities into the semiconductor substrate, the method comprising a drive-in step for redistributing the impurities. An impurity that is separated into at least two steps, in which at least one of the remaining steps excluding the first step removes all the oxide film on the surface of the semiconductor substrate formed in the previous step. How to introduce it.
JP12322281A 1981-08-06 1981-08-06 Impurity introduction method in semiconductor device Pending JPS5823437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12322281A JPS5823437A (en) 1981-08-06 1981-08-06 Impurity introduction method in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12322281A JPS5823437A (en) 1981-08-06 1981-08-06 Impurity introduction method in semiconductor device

Publications (1)

Publication Number Publication Date
JPS5823437A true JPS5823437A (en) 1983-02-12

Family

ID=14855219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12322281A Pending JPS5823437A (en) 1981-08-06 1981-08-06 Impurity introduction method in semiconductor device

Country Status (1)

Country Link
JP (1) JPS5823437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465710A (en) * 1977-11-05 1979-05-26 Dai Ichi Kogyo Seiyaku Co Ltd Additive for mixture of finely pulverized coal and oil
EP0628213A1 (en) * 1992-02-25 1994-12-14 Ag Associates, Inc. Gas phase doping of semiconductor material in a cold-wall radiantly heated reactor under reduced pressure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465710A (en) * 1977-11-05 1979-05-26 Dai Ichi Kogyo Seiyaku Co Ltd Additive for mixture of finely pulverized coal and oil
JPS59548B2 (en) * 1977-11-05 1984-01-07 第一工業製薬株式会社 Additive for pulverized coal-oil mixture
EP0628213A1 (en) * 1992-02-25 1994-12-14 Ag Associates, Inc. Gas phase doping of semiconductor material in a cold-wall radiantly heated reactor under reduced pressure
EP0628213A4 (en) * 1992-02-25 1997-02-19 Processing Technology Inc D B Gas phase doping of semiconductor material in a cold-wall radiantly heated reactor under reduced pressure.

Similar Documents

Publication Publication Date Title
JPS5823437A (en) Impurity introduction method in semiconductor device
JPS60111466A (en) Manufacture of semiconductor device
JPS6119133A (en) Manufacture of semiconductor device
JPS6362326A (en) Manufacture of semiconductor device
JPS6396922A (en) Manufacture of semiconductor device
JPS5817655A (en) Manufacture of semiconductor device
JPH02153525A (en) Manufacture of semiconductor device
JPS6213047A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPS5893343A (en) Forming method for isolation region of semiconductor integrated circuit
JPS6329950A (en) Forming method for metallic wiring pattern of semiconductor device
JPS6116530A (en) Manufacture of semiconductor device
JPS6115579B2 (en)
JPS56137620A (en) Manufacture of semiconductor
JPS61241941A (en) Manufacture of semiconductor device
JPS59161834A (en) Manufacture of semiconductor device
JPH0152900B2 (en)
JPS58147132A (en) Manufacture of semiconductor device
JPH01179313A (en) Manufacture of semiconductor device
JPS58170012A (en) Manufacture of semiconductor device
JPS60226166A (en) Manufacture of semiconductor integrated circuit device
JPS5925220A (en) Manufacture of semiconductor device
JPH0582743A (en) Manufacture of semiconductor device
JPH06167802A (en) Production of phase shift mask
JPH01293533A (en) Manufacture of semiconductor device