JPS58225683A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS58225683A
JPS58225683A JP10891782A JP10891782A JPS58225683A JP S58225683 A JPS58225683 A JP S58225683A JP 10891782 A JP10891782 A JP 10891782A JP 10891782 A JP10891782 A JP 10891782A JP S58225683 A JPS58225683 A JP S58225683A
Authority
JP
Japan
Prior art keywords
groove
layer
substrate
inp
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10891782A
Other languages
Japanese (ja)
Other versions
JPS6367349B2 (en
Inventor
Ryoichi Hirano
良一 平野
Hirobumi Namisaki
浪崎 博文
Wataru Suzaki
須崎 渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10891782A priority Critical patent/JPS58225683A/en
Publication of JPS58225683A publication Critical patent/JPS58225683A/en
Publication of JPS6367349B2 publication Critical patent/JPS6367349B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the laser having excellent oscillation made characteristics by a method wherein a V-groove is formed on an InP substrate, and an InGaAsP layer is epitaxially grown in such a manner that it is astriding the groove while it is being contacted to the top part of the groove, thereby enabling to oscillate at a low threshold current. CONSTITUTION:A V-groove 2 is cut in the center part on the surface of the InP substrate 1 having the surface (100), an InP layer 7 is epitaxially grown on the bottom face of said groove 2 and, at the same time, a grown layer 8 is generated on the flat part 1a on the surface of the substrate 1. Then, for the purpose of filling up the V-groove 2, an InGaAsP layer 11 is grown on the whole surface including the groove 2, said layer 11 is contacted to the upper parts 2a and 2b of the V-groove 2, and above is brought into the state wherein the layer is astriding the groove. Subsequently, an InP layer 12 is epitaxially grown on the layer 11, and the entire surface is flattened by removing the stepping located between the internal part and the external part of the V-groove 2.

Description

【発明の詳細な説明】 この発明框低しきい値電流で発振し、発振モード特性に
優れた半導体レーザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser that oscillates with a low threshold current and has excellent oscillation mode characteristics.

半導体レーザが低しきい値電流で発振することに、活性
層における発熱會小さくシ、かつ良好な高温動作?可能
にするものであり、また、発熱を小さく抑えることは、
素子の寿命全長くする事にもつながるものでろる0 そして、低しきい値軍流で発振する半導体レーfi得る
ためにσ、活性領域の共振器長方向における断面積を小
さくすることに工って達成されるものでろる0このよう
に共振器長方向の断面積會小さくすることは、また、発
複モード特性に優した半導体レーザを作る事にもつなが
るものである。
Semiconductor laser oscillates at a low threshold current, generates less heat in the active layer, and has good high-temperature operation? It is possible to reduce heat generation, and to keep heat generation low,
In order to obtain a semiconductor laser that oscillates with a low threshold current, efforts are made to reduce σ and the cross-sectional area of the active region in the cavity length direction. This reduction in the cross-sectional area in the resonator length direction also leads to the creation of a semiconductor laser with excellent multimode characteristics.

一方、半導体レーザの一般的な製造方法として、液相エ
ピタキシャル法が知られている。この方法a1結晶性の
良好なエピタキシャル成長m’inるものとして、簡便
で、しかも成長層厚さfr o、 1μm程度と薄く成
長できる特長全盲するものである。
On the other hand, a liquid phase epitaxial method is known as a general method for manufacturing semiconductor lasers. This method (a1) allows epitaxial growth with good crystallinity, is simple, and has the advantage of being able to grow as thin as about 1 μm in growth layer thickness.

しかしながら、半導体レーザの活性層として必要な幅方
向の制御は容易でなく、このため[2回成長の方法が一
般的に行なわれており、この方法に大きく分けて二つの
種類に分けられるものである。
However, it is not easy to control the width direction required for the active layer of a semiconductor laser, and for this reason, a two-step growth method is generally used, and this method can be broadly divided into two types. be.

第一の方法は一回目成長で通常のダブルへテロ接合構造
を成長させ、狭い巾で活性層部分ケ残して両側面をエツ
チングで除去し、しかる後にその両側面全二回目成長で
埋めるものであって、その−例ttx T、Tauka
da (ティ、ツカダ〕により、J、Appl、   
The first method is to grow a normal double heterojunction structure in the first growth, remove the active layer by etching on both sides leaving only a narrow width, and then fill in both sides with the second growth. Yes, that-examplettx T, Tauka
da (T, Tsukada), J, Appl,
.

Phya (ジャーナル、アプライド、フイズツクス)
の第45巻、 1974年、 4899頁に記載されて
いる。
Phya (Journal, Applied, Phiztsux)
Volume 45, 1974, page 4899.

また、第二の方法a、−回目成長全行ったエピタキシャ
ル基板(あるいa単なる基板でるってtよい)t/c狭
いrlJの溝會堀O1しかる後に、この溝内に二回目成
長として通常のダブルへテロ接合構造7に成長させるも
のであって、その−例はT、Mu−rotani (テ
ィー、ムロタニ〕らによるEJaetroniosde
tters 、 tiE 16巻1080年556頁に
記載されティる0 特に後者の場合、結晶基板に対する形成溝の結晶学的方
位を(100) InP表面に対して(011)方向に
平行に指足することによってdovetail!(鳩尾
)状の溝全形成すれば、溝内の成長が比較的容易で再現
性よく行なわれるという利点を有するものであった。
In addition, in the second method a, the epitaxial substrate on which the -th growth has been completely performed (or it is better to just use a substrate) is formed into a groove hole O1 with a narrow t/c RLJ, and then the second growth is performed normally within this groove. A double heterojunction structure 7 is grown, an example of which is shown in Ejaetroniosde by T. Mu-rotani et al.
Particularly in the latter case, the crystallographic orientation of the forming groove with respect to the crystal substrate should be set parallel to the (011) direction with respect to the (100) InP surface. by dovetail! If the entire (dovetail) groove is formed, growth within the groove is relatively easy and can be performed with good reproducibility.

しかしながら、dovatai/ (鳩尾)状の溝巾を
2.0μm程度以下に再現性よく作成することば次の点
から難しいものである。
However, it is difficult to create a dovetail-shaped groove width of approximately 2.0 μm or less with good reproducibility due to the following points.

■通常の写真製版法でニ1.0μm程度のマスク巾を抜
くのが限度で、溝形成におけるエツチングによって巾の
広がりで形成溝幅が2.0μm前後になることが避けら
れなかった。
(2) Normal photolithography is limited to a mask width of about 1.0 μm, and it is inevitable that the width of the grooves will be around 2.0 μm due to the etching during groove formation.

■形状がdoveta1/ (鳩尾)状でめゐため、基
板の深さ方向に溝巾が広くなる。
■Since the shape is doveta1/ (dovetail), the groove width becomes wider in the depth direction of the board.

これらのことから、活性層幅全2.0μm以下にして発
振モード特性の良好な素子?得ることがむずかしかった
Based on these facts, is it possible to create a device with good oscillation mode characteristics with a total active layer width of 2.0 μm or less? It was difficult to obtain.

一方、dovetai/ (鳩尾)状の溝の形成に代え
てV@全形成した場合、上記の欠点は解消する。すなわ
ち、 ■結晶表面から深さ方向に溝幅が狭くなり、2.0μm
以下の活性層?綽内Vc成長できる〇■■溝側面は低指
数面で形成され、この而に通常、エツチング速度が遅い
為、溝の広がりがほとんどなく、再現性よく一足の形態
に溝の断面形状全制御することができる。
On the other hand, if V@ is formed entirely instead of forming a dovetail groove, the above-mentioned drawbacks will be solved. In other words, ■The groove width becomes narrower in the depth direction from the crystal surface to 2.0 μm.
Active layer below? 〇 ■■Groove side surfaces are formed with low index surfaces, and because the etching speed is usually slow, there is almost no spread of the groove, and the cross-sectional shape of the groove can be completely controlled to form a single leg with good reproducibility. be able to.

■V#l側面は平担な表面となり、このことば、溝内に
活性層など全形成した場合、溝の長さ方向に見て均一な
断面形状¥r有する層が得られ、素子特性の安定化に有
効である。
■The V#l side surface becomes a flat surface, and when the entire active layer is formed within the groove, a layer with a uniform cross-sectional shape in the length direction of the groove is obtained, resulting in stable device characteristics. It is effective for

壓 などの利点が生ずる。bottle Benefits such as:

しかしながら、V溝全形成した基板上に液相エピタキシ
ャル成長ケ行うと、鍔部分が埋着りに(く、平担な結晶
界面が得にくいという致命的な欠点があった0 この発明a、■溝が形成された基板ケ用いてV溝形成に
よる長所をそのま\生かし、かつV溝上端部に接し、こ
のV溝の上端を跨いでInGaAaPからなるエピタキ
シャル層を形成して、平担な結晶界面を得ることを目的
としたものである。
However, when liquid phase epitaxial growth is performed on a substrate in which all V grooves are formed, there is a fatal drawback that the flange part is buried and it is difficult to obtain a flat crystal interface. By using the substrate on which the V-groove is formed, we take advantage of the advantages of V-groove formation, and form an epitaxial layer made of InGaAaP in contact with the upper end of the V-groove and spanning the upper end of the V-groove to create a flat crystal interface. The purpose is to obtain.

まず、■溝が形成された基板上に液相エピタキシャル層
會形成する場合、特にV溝内部をこのエピタキシャル層
にて埋め尽(丁場合について考察するO 1つとして、■溝が形成された(100)表面を有する
lnP基板Ill上にInPからなるエピタキシャル7
#I +成長させた場合について、第1図ないし第3図
に基づいて説明する。
First, when a liquid-phase epitaxial layer is formed on a substrate on which a groove has been formed, the inside of the V-groove is filled with this epitaxial layer. 100) Epitaxial layer 7 made of InP on an InP substrate Ill having a surface
The case where #I+ is grown will be explained based on FIGS. 1 to 3.

まず、  (10G) ff面を有するInP結晶基板
(1)上に溝を有するフォトレジスト膜を用いて写真製
版法によ!IV@121會形成したもの全用意する。こ
の時lnPのエッチャントとして通常Hat ’(10
0%濃度)かBi (5%)−メタノール溶液が使われ
るものであり、Hcl (10096濃度)を用いた場
合にa1vStZ+而[(221)而が顕われ、Br 
(5%)−メタノール溶液を用Vh 7j fjii合
fCH2VI#t2+面に(111) A面が顕われて
いるものでろる〇 次に、第2図に示すように、この様I/CL、てV溝(
2)が形成された基板(1)上にInP全■溝(2j内
部の中途までエピタキシャル成長させる0この時形成さ
れたV 溝121内部のInPエピタキシャル贋(81
表面は、基板111表面、つ″19基板il+の平担面
(1a)と平行に成長し、また、■溝(2)内部の1n
P工ピタキシヤル成長層(3)の成長厚ざdlと基板(
1)の平担面(1a)上に形成されたInPエピタキシ
ャル層(4)の成長厚さd2Th比べてみると、エピタ
キシャル成長段階において、V$121底部におけるI
nPエピタキシャル成長)* 131の成長厚さdlの
増加は夏nPエピタキシャル成長層(4)の成長厚さd
2の増加よりも比較的速いが、エピタキシャル成長がV
#H2+上部に進むに、従い、InPエピタキシャル成
長層(3)の成長厚さdiの増加率がエピタキシャル成
長層(4)の成長厚さd2の増加率に比べて小さくなっ
た。このよりK:、V#1(21円部のInPエピタキ
シャル層(31の成長が進むにつれて成長厚さdiの増
加率が基板il+の平担面(la)l:のIhPエピタ
キシャル層(4)の成長厚さdlに比べて小さくなる理
由に次のように考えられる。−fなわち、エピタキシャ
ルM +81141 ト4 (100)面上の1nPの
成長で、同じ成長層[’l?持つ筈でにあるが、■溝(
21円部ば平担面(la)に比べて液相からの溶質(P
)の拡散が行なわれVC<<、相対的にV溝(2)内部
の成長速度が小さくなるためであると推察される。
First, a photoresist film having a groove is formed on an InP crystal substrate (1) having a (10G) ff plane using a photolithography method. IV@121 Prepare everything that was formed. At this time, the lnP etchant is usually Hat' (10
0% concentration) or Bi (5%)-methanol solution is used, and when Hcl (10096 concentration) is used, a1vStZ+[(221)] appears, and Br
(5%)-methanol solution is applied to Vh 7j fjii fCH2VI#t2+ surface with (111) A surface exposed. Next, as shown in Figure 2, V groove (
The InP epitaxial growth inside the V groove 121 formed at this time is epitaxially grown on the substrate (1) on which the InP groove (2j) is formed.
The surface grows parallel to the surface of the substrate 111, the flat surface (1a) of the 19 substrate il+, and 1n inside the groove (2).
The growth thickness dl of the P-type pitaxial growth layer (3) and the substrate (
Comparing the growth thickness d2Th of the InP epitaxial layer (4) formed on the flat surface (1a) in 1), the I
nP epitaxial growth) * The increase in the growth thickness dl of 131 is the growth thickness d of the summer nP epitaxial growth layer (4).
Although the epitaxial growth is relatively faster than the increase in V
#H2+ As the layer progresses to the top, the rate of increase in the growth thickness di of the InP epitaxial growth layer (3) becomes smaller than the rate of increase in the growth thickness d2 of the epitaxial growth layer (4). From this, as the growth of the InP epitaxial layer (31) progresses, the rate of increase in the growth thickness di of the IhP epitaxial layer (4) on the flat surface (la) of the substrate il+ l: The reason why the growth thickness dl is smaller than the growth thickness dl is thought to be as follows. There is, but there is a groove (
The solute from the liquid phase (P
) is diffused and the growth rate inside the V-groove (2) becomes relatively low when VC<<.

上記の様にV#1121上部の成長の際V溝(21円部
の成長厚さdlの増加率が■溝(2)外部の成長厚さd
lの増加ぷり小さいということば、InP kエピタキ
シャル成長させればさせるほど、二つのInPfill
の段差が大l!(な^ということ全意味し、平担な表面
を1するInPエピタキシャル層を得られないというこ
とが−mる〇 この結果を基に、1nPエピタキシヤル& 長71+ 
1ull+41會さらに厚く成長させた場合全第3図に
示す。
As mentioned above, when growing the upper part of V#1121, the increase rate of the growth thickness dl of the V groove (21 circular part) is
The term "increase in l" means that the more InP k epitaxially grows, the more the two InP fills.
The difference in level is huge! (That means that it is not possible to obtain an InP epitaxial layer with a flat surface of 1.)Based on this result, 1nP epitaxial & long 71+
The case of growing even thicker than 1ull+41 is shown in Figure 3.

この第3図から明らかな様に、夏nPエピタキシャル成
長18131141μ、段違いのままである。つまり、
基板111i面VCおけ、bVg12+上端E (2a
)(2b) 上ニkl、 InPば成長せず、■溝(2
)内部のエピタキシャル成長層(3)と平担面(la)
上のエピタキシャル成長M(4)との間の亀裂15] 
161として残り、V溝(2)内部を埋め尽くし、平担
な表面ケ得るに汀、InPエピタキシャル層2槓む方法
は適当でない事がわかる。
As is clear from FIG. 3, the summer nP epitaxial growth 18131141μ remains uneven. In other words,
On the board 111i side VC, bVg12+upper end E (2a
) (2b) Upper Nikl, InP does not grow, ■ Groove (2
) Internal epitaxial growth layer (3) and flat surface (la)
Crack 15 between upper epitaxial growth M(4)]
It can be seen that the method of pressing the InP epitaxial layer 2 is not suitable because it remains as 161 and fills the inside of the V groove (2), leaving a flat surface.

したがって、基板+11のV溝(21円に活性層として
InGaAsP x ヒタキシャル成長層を成長させ、
その上に1nP工ピタキシヤル敢長層を成長させて■溝
(21内を埋め尽くして半導体レーザ會得ようとする場
合にも、V mj121 上端部(2a)(2b)上に
a亀裂(5)(8)が生じるものでめった。
Therefore, an InGaAsP x hytaxial growth layer is grown as an active layer in the V groove (21 circles) of the substrate +11,
When a 1nP pitaxial long layer is grown on top of it to fill the groove (21) to form a semiconductor laser, a crack (5) is created on the upper end (2a) (2b) of V mj121. (8) rarely occurs.

第4図り、この状態?示す半導体レーザの断面図でめ9
1図において111r[V商(2;が形成された1nP
結晶基板、(7)はこの基板のV#1121底部にエピ
タキシャル成長された第1の1nP工ピタキシヤル成長
層で、同時に′基板(1)の平担面(la)上にも成長
層(81が形成される。(91はこのmlのInPエピ
タキシャル成長層(7)土に形成されたInGaAsP
エピタキシャル成長層からなる活性層で、同時に成長層
(8)上VC%、 InGaAsPエピタキシャル成長
層(10)が形成されるo 131141 rI基板1
1)のV溝(2)内を埋め尽(f7tメに:、この活性
層(8)およびIHGBA@Fエピタキシャル成長層(
lO)土に形成された第2の1nP工ピタキシヤル成長
層、+511611;3:上記V溝121の上端部(2
m)(2b) % ツまり■溝(2)内に形成された第
2のInPエピタキシャル成長層(3)と基板ill平
担向(l&)上に形成された第2のlnPエピタキシャ
ル成長層(4)との間に出来た亀裂でろる〇 この第4図に示すよう・に、■溝+21内に形成される
第2のInPエピタキシャル成長層131表面ば%V溝
t21外部、つまり基板11+の平担面(la)上に形
成される第2In?エピタキシヤル成長層(41界面ま
で成長が追い付かず、かつ、基板(1)光面におけるψ
溝(2)上端fIS(2m)(2b)上にInPUg長
しないため亀裂+51 +61が残ることになり、平担
な表面が得られず、半導体レーザとしてa不適なもので
あった0発明者らはさらに種々検討を加えた結果、■溝
(2)が形成されたInPからなる基板(1)における
V溝121t−埋め尽くす際に、InGaAsP 會エ
ピタキシャル成長させることにより、■溝(2)上端部
(2B)(2b)における亀裂の発生が阻止でき、平担
な表面が得られることを見出した。
Fourth plan, this state? Figure 9 is a cross-sectional diagram of the semiconductor laser shown.
In Figure 1, 1nP formed with 111r[V quotient (2;
The crystal substrate (7) is the first 1nP epitaxial growth layer epitaxially grown on the bottom of the V#1121 of this substrate, and at the same time, a growth layer (81) is also formed on the flat surface (la) of the substrate (1). (91 is this ml of InP epitaxial growth layer (7) InGaAsP formed on soil
An active layer consisting of an epitaxially grown layer, in which an InGaAsP epitaxially grown layer (10) is simultaneously formed on the grown layer (8) 131141 rI substrate 1
The V-groove (2) of 1) is filled (in f7t), this active layer (8) and the IHGBA@F epitaxial growth layer (
lO) Second 1nP pitaxial growth layer formed in soil, +511611; 3: Upper end of the V groove 121 (2
m) (2b) % Tsumari■ Second InP epitaxial growth layer (3) formed in the groove (2) and second InP epitaxial growth layer (4) formed on the substrate ill-plane orientation (l&) As shown in FIG. The second In? formed on (la)? The epitaxial growth layer (growth cannot catch up to the 41 interface, and ψ at the optical surface of the substrate (1)
Since the InPUg is not long on the upper end fIS (2m) (2b) of the groove (2), cracks +51 +61 remain, making it impossible to obtain a flat surface and making it unsuitable for use as a semiconductor laser0 Inventors et al. As a result of further various studies, it was found that by epitaxially growing InGaAsP when filling the V-groove 121t in the InP substrate (1) on which the groove (2) was formed, ■ the upper end of the groove (2) ( 2B) It has been found that the occurrence of cracks in (2b) can be prevented and a flat surface can be obtained.

第5Nはこの発明の一実施例を示す断面図であり、図に
おいてil+に第1図に示したV溝(2)が形成された
(100) 9面を有するInP結晶基板、(7)はこ
ノ基板のV溝(2)底部にエピタキシャル成長された第
1の1nP工ピタキシヤル成長層で、同時に基板(1)
の平担面(1a)上にも成長層(8)が形成される。
No. 5N is a cross-sectional view showing an embodiment of the present invention. In the figure, an InP crystal substrate (7) having 9 (100) planes is formed with the V groove (2) shown in FIG. 1 at il+. A first 1nP epitaxial growth layer is epitaxially grown on the bottom of the V-groove (2) of this substrate, and at the same time the substrate (1) is grown.
A growth layer (8) is also formed on the flat surface (1a).

O1)H上記基板111のV溝(2;内會埋め尽くすた
めに、第1のInPエピタキシャル成長層fil +8
1および基板fllのV溝(2)上部上に形成されたI
nGaABPからなるエピタキシャル成長層で、基板+
11衣面におけるV溝(2)上端′5(2a)(2b)
 IC接し、V m (21の上端部(2a)(2b)
k跨いで形成されているものである。O2はこの1nG
aAsPからなるエビタキシーヤル成長hap上[1n
Piエピタキシヤル成長させた第3のInPエピタキシ
ャル成長I−である。
O1)H To fill the V-groove (2; inner space) of the substrate 111, first InP epitaxial growth layer fil +8
1 and I formed on the upper part of the V groove (2) of the substrate full.
An epitaxially grown layer made of nGaABP,
11 V groove on the garment surface (2) Upper end '5 (2a) (2b)
IC contact, V m (upper end of 21 (2a) (2b)
It is formed across k. O2 is this 1nG
On the epitaxial growth hap consisting of aAsP [1n
This is the third InP epitaxial growth I- which was grown by Pi epitaxial growth.

この様に構成されたものにおいて汀、 ■IfiGlAlPエピタキシャル成長層θυはV溝(
21内部に於いて、■溝(21外部、つまり基板(1)
の平担ff1(la)上より厚く成長する。
In the structure configured in this way, the IfiGlAlP epitaxial growth layer θυ has a V-groove (
■Groove inside 21 (external to 21, that is, board (1)
It grows thicker than on the flat layer ff1(la).

■InGaA8Pエピタキシャル成長層(Ill H、
基板(11弐面におけるV溝(21上端WI= (2a
)(2b)において成長が行なわれる為、!3図あるい
uM4図で示したものの1うに、V溝(21’に埋め込
むためのInPエピタキシャル層1B+141の成長で
起きるような亀裂15+ 161を生じない〇 ■InGaAsPエピタキシャル層αυ上への第3のI
nPエビタキシャルノf1!(2)の成長に表面全体に
旦って起こり、第3図あるいは第4図で示したもののよ
うに段違いの(100)表面の場合とは異なり第3の1
nP工ピタキシヤル層Qarl:平担に成長式れる。
■InGaA8P epitaxial growth layer (Ill H,
Substrate (11 V groove on second surface (21 upper end WI= (2a
) (2b) because growth takes place! As shown in Fig. 3 or uM4, cracks 15+161, which occur when the InP epitaxial layer 1B+141 is grown to fill the V-groove (21'), do not occur. I
nP Ebitaxyarno f1! The growth of (2) occurs over the entire surface at once, and unlike the case of the (100) surface with different steps as shown in Fig. 3 or 4, the growth of the third 1
nP pitaxial layer Qarl: Grows flatly.

などの作用により、表■平担な結晶を得ることが出来る
ものである。
Through these actions, it is possible to obtain crystals with a flat surface.

第6図は半導体レーザに適用した場合のこの発明の実施
例を示す断面図でらり、QηばV#l12+を含む基板
(11上に順次mlのInPエピタキシャル成長層+7
1 [81、活性層(9)および1iGaAIP工ピタ
キシヤル成長層(IO)、第2のlnPエピタキシャル
成長層J31141が形成された上に、形成されたIn
GaAsPエピタキシャル成長層で、基板111表面に
おけるV溝(2)上端ff1s (2a)(2b)に接
し、■溝(2)の上端fl(i (2a)(2b) k
跨いで形成されているものである。(ハ)はこのIn−
GaAs Pエピタキシャル成長層Qll上に形成され
た第3のInPエピタキシャル成長層である。
FIG. 6 is a cross-sectional view showing an embodiment of the present invention when applied to a semiconductor laser.
1 [81, the active layer (9), the 1iGaAIP epitaxial growth layer (IO), and the second InP epitaxial growth layer J31141 were formed, and then the In
The GaAsP epitaxial growth layer is in contact with the top end ff1s (2a) (2b) of the V groove (2) on the surface of the substrate 111, and the top end fl(i (2a) (2b) k
It is formed by straddling it. (c) is this In-
This is a third InP epitaxial growth layer formed on the GaAsP epitaxial growth layer Qll.

この様に構成された半導体レーザにおいて汀。In a semiconductor laser configured in this way,

上記第5図に示したものと同様に人血が平担な結晶を得
ることができるものである。
Similar to the one shown in FIG. 5 above, flat crystals of human blood can be obtained.

この発明に以上述べたとうり、InGaAaPのエピタ
キシャル層?■溝が形成された基板表面における■溝上
端部に接し、■溝の上端部全路いで形成させたので、■
溝内部と溝外部、つまり基板平担面における成長の段差
をなくすことがでキ、表面全体全平滑化できるという効
果を有するものでああ。              
       1
As stated above in this invention, the epitaxial layer of InGaAaP? ■On the surface of the substrate where the groove was formed, ■It was in contact with the upper end of the groove, and ■It was formed at the entire upper end of the groove.
By eliminating the difference in growth between the inside of the groove and the outside of the groove, that is, the flat surface of the substrate, it has the effect of making the entire surface completely smooth.
1

【図面の簡単な説明】[Brief explanation of drawings]

第1図はV#1121が形成された基板fll’に示す
断面図、第2図および第3図に基板(1)上に1nP工
ピタキシヤル成長層全形成した時の断面図、第4図a基
板(1)のV#f121内¥r1nPエピタキシャル成
長層で埋めようとした場合の半導体レーザを示す断面図
、第5図はこの発明の一実施例上水す断面図、第6図a
この発明の実施例となる半導体レーザの一例全示す断面
図である。 図において(1)に基板、121t’IV溝、(2m)
(2b) uV溝(2)の上端部、αυU InGaA
sP層からなるエピタキシャル層でおる。 なお、各図中同一符号は同一またに相尚部分を示す。 代理人 葛野信− 第1図 第2図 第3図
Fig. 1 is a cross-sectional view showing the substrate fl' on which V#1121 is formed, Figs. 2 and 3 are cross-sectional views when the entire 1nP epitaxial growth layer is formed on the substrate (1), and Fig. 4 a. A cross-sectional view showing a semiconductor laser in the case where V#f121 of the substrate (1) is filled with a ¥r1nP epitaxial growth layer, FIG. 5 is a cross-sectional view of an embodiment of the present invention, and FIG. 6a
1 is a sectional view showing an entire example of a semiconductor laser according to an embodiment of the present invention. In the figure (1) is the substrate, 121t'IV groove, (2m)
(2b) Upper end of uV groove (2), αυU InGaA
It is an epitaxial layer consisting of an sP layer. Note that the same reference numerals in each figure indicate the same or similar parts. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] ■溝か形成されたInPからなる基板、この基板表面に
おけるV#l上端部に接し、■溝の上端部を跨いで形成
されたInGBAgFからなるエピタキシャル層を備え
た半導体レーザ。
A semiconductor laser comprising: (1) a substrate made of InP with a groove formed therein; (2) an epitaxial layer made of InGBAgF formed across the top end of the groove, in contact with the upper end of V#l on the surface of the substrate;
JP10891782A 1982-06-22 1982-06-22 Semiconductor laser Granted JPS58225683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10891782A JPS58225683A (en) 1982-06-22 1982-06-22 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10891782A JPS58225683A (en) 1982-06-22 1982-06-22 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS58225683A true JPS58225683A (en) 1983-12-27
JPS6367349B2 JPS6367349B2 (en) 1988-12-26

Family

ID=14496920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10891782A Granted JPS58225683A (en) 1982-06-22 1982-06-22 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58225683A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226603A (en) * 1989-02-28 1990-09-10 Fuji Photo Optical Co Ltd Spot-light device
JPH0474139U (en) * 1990-11-09 1992-06-29

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523392A (en) * 1975-06-23 1977-01-11 Xerox Corp Hetero juntion diode laser and method of producing same
JPS56110288A (en) * 1980-02-05 1981-09-01 Mitsubishi Electric Corp Semiconductor laser element
JPS5795689A (en) * 1980-12-05 1982-06-14 Nec Corp Stripe shaped type double hetero junction laser element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523392A (en) * 1975-06-23 1977-01-11 Xerox Corp Hetero juntion diode laser and method of producing same
JPS56110288A (en) * 1980-02-05 1981-09-01 Mitsubishi Electric Corp Semiconductor laser element
JPS5795689A (en) * 1980-12-05 1982-06-14 Nec Corp Stripe shaped type double hetero junction laser element

Also Published As

Publication number Publication date
JPS6367349B2 (en) 1988-12-26

Similar Documents

Publication Publication Date Title
JPS58225683A (en) Semiconductor laser
JPH0474877B2 (en)
JPH0552676B2 (en)
JP2639933B2 (en) Manufacturing method of semiconductor laser
JPS63124484A (en) Semiconductor laser element
JPS599990A (en) Manufacture of semiconductor laser
JPS6351558B2 (en)
JPH0260075B2 (en)
JPS5834988A (en) Manufacture of semiconductor laser
JPH0116035B2 (en)
JPS62286294A (en) Manufacture of semiconductor laser
JPH0837338A (en) Double channel planar buried structure semiconductor laser and its manufacture
JPS6062173A (en) Semiconductor laser device
JPS61244085A (en) Manufacture of semiconductor laser
JPS5925398B2 (en) Manufacturing method of semiconductor laser
JPS6241437B2 (en)
JPH01215087A (en) Semiconductor light emitting device
JPS649751B2 (en)
JPS6119185A (en) Manufacture of semiconductor laser
JPH01166592A (en) Semiconductor laser element
JPS63281487A (en) Semiconductor laser
JPH0260077B2 (en)
JPS6194389A (en) Manufacture of semiconductor laser element
JPH0243789A (en) Manufacture of buried type semiconductor laser element
JPS58137283A (en) Manufacture of semiconductor laser