JPS649751B2 - - Google Patents

Info

Publication number
JPS649751B2
JPS649751B2 JP14177083A JP14177083A JPS649751B2 JP S649751 B2 JPS649751 B2 JP S649751B2 JP 14177083 A JP14177083 A JP 14177083A JP 14177083 A JP14177083 A JP 14177083A JP S649751 B2 JPS649751 B2 JP S649751B2
Authority
JP
Japan
Prior art keywords
layer
inp
substrate
plane
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14177083A
Other languages
Japanese (ja)
Other versions
JPS6032384A (en
Inventor
Hideaki Horikawa
Koichi Imanaka
Akira Watanabe
Kazuya Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP14177083A priority Critical patent/JPS6032384A/en
Publication of JPS6032384A publication Critical patent/JPS6032384A/en
Publication of JPS649751B2 publication Critical patent/JPS649751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は一回の連続液相ピタキシヤル成長で電
流ブロツク層を有した屈折率ガイド構造の半導体
レーザを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a semiconductor laser having an index-guided structure having a current blocking layer by one continuous liquid phase epitaxial growth.

(従来技術の説明) 先ず、本発明に説明に入る前に、従来の電流ブ
ロツク層を有した屈折率ガイド構造の半導体レー
ザの製造方法につき第1図a及びbを参照して説
明する。
(Description of Prior Art) First, before entering into a description of the present invention, a method of manufacturing a conventional semiconductor laser having a refractive index guide structure having a current blocking layer will be described with reference to FIGS. 1a and 1b.

従来においては、第1図aに示すように、基板
表面が(100)面であるn−InP基板1を用意し、
この基板1を液相エピタキシヤル成長炉に入れ、
この基板1の上側表面1a上に電流ブロツク層と
なるべきp−InP層2を液相エピタキシヤル成長
させる。次ぎに、一旦この基板1を成長炉から取
り出して、この層2上に、エツチングマスク用
の、例えば、SiO2などを被着して通常のフオト
リソグラフイ方法により、<011>方向に延在する
ストライプ窓を開け、次いで、塩酸、リン酸系エ
ツチヤントを用いて、この層2から基板1に達す
る断面ほぼV字状のストライプ状の溝3をエツチ
ング形成する。次ぎに、再度、電流ブロツク層2
を有するこの溝付き基板1を成長炉に入れて、第
1図bに示すように、この基板1の溝3が形成さ
れている側に第一クラツド層であるn−InP層
4、活性層であるInGaAsP層5、第二クラツド
層であるp−InP層6を順次に液相エピタキシヤ
ル成長させる。次いで、最終的に基板1の下側面
1b及び第二クラツド層6上に夫々電極7及び8
を形成するように成している。
Conventionally, as shown in FIG. 1a, an n-InP substrate 1 whose surface is a (100) plane is prepared,
This substrate 1 is placed in a liquid phase epitaxial growth furnace,
A p-InP layer 2 to serve as a current blocking layer is grown on the upper surface 1a of this substrate 1 by liquid phase epitaxial growth. Next, the substrate 1 is taken out of the growth furnace, and a film such as SiO 2 for an etching mask is deposited on the layer 2, and is etched in the <011> direction using a normal photolithography method. Next, a stripe-shaped groove 3 having a substantially V-shaped cross section is formed from this layer 2 to the substrate 1 by etching using a hydrochloric acid or phosphoric acid etchant. Next, again, the current blocking layer 2
This grooved substrate 1 having a groove 3 is placed in a growth furnace, and as shown in FIG. An InGaAsP layer 5, which is a cladding layer, and a p-InP layer 6, which is a second cladding layer, are sequentially grown by liquid phase epitaxial growth. Then, finally, electrodes 7 and 8 are placed on the lower surface 1b of the substrate 1 and the second cladding layer 6, respectively.
It is designed to form a

しかしながら、この従来の製造方法によれば、
基板1を成長炉に入れて電流ブロツク層2を成長
させ、然る後、この基板を溝形成のために一旦成
長炉から取り出し、その後再び溝付き基板を成長
炉に入れて第一クラツド層4以下の液相エピタキ
シヤル成長を行うため、独立した二回のエピタキ
シヤル成長工程が必要と成り、従つて、製造工程
が複雑で、時間が掛り、原料の損失が多く、しか
も、製造歩留が悪いという欠点があつた。
However, according to this conventional manufacturing method,
The substrate 1 is placed in a growth furnace to grow a current blocking layer 2, and then this substrate is temporarily taken out of the growth furnace to form grooves, and then the grooved substrate is placed in the growth furnace again to form a first cladding layer 4. In order to carry out the liquid phase epitaxial growth described below, two independent epitaxial growth processes are required, which makes the manufacturing process complicated, time-consuming, and results in a large loss of raw materials, and also reduces the manufacturing yield. It had the drawback of being bad.

(発明の目的) 本発明の目的は、このような従来の欠点を除去
するため、一回の連続した液相エピタキシヤル成
長で製造出来る半導体レーザの製造方法を提供す
るにある。
(Object of the Invention) An object of the present invention is to provide a method for manufacturing a semiconductor laser that can be manufactured by one continuous liquid phase epitaxial growth in order to eliminate such conventional drawbacks.

(発明の構成) この目的の達成を図るため、本発明によれば、
InGaAsP/InP半導体レーザを液相エピタキシヤ
ル成長法を用いて製造するに当り、InP基板の
(100)面から(111)A面を側面とする溝を形成
し、この(100)面と(111)A面とに対するInP
の結晶成長速度の差及び(111)A面に対する
InP及びInGaAsPの結晶成長速度の差を利用する
ことを特徴とする。
(Structure of the Invention) In order to achieve this object, according to the present invention,
When manufacturing an InGaAsP/InP semiconductor laser using the liquid phase epitaxial growth method, a groove is formed from the (100) plane of the InP substrate with the (111) A plane as the side surface, and this (100) plane and (111) ) InP with respect to A side
The difference in the crystal growth rate of and for the (111)A plane
It is characterized by utilizing the difference in crystal growth rate between InP and InGaAsP.

(実施例の説明) 以下第2図a〜fに従つて本発明の半導体レー
ザの製造方法の一実施例につき説明する。
(Description of Embodiment) An embodiment of the method for manufacturing a semiconductor laser according to the present invention will be described below with reference to FIGS. 2a to 2f.

第2図a〜fは半導体レーザの製造段階での状
態をレーザ素子の劈開面またはこの劈開面と平行
な面での断面で夫々示す製造工程図であり、各構
成成分の寸法、形状などは本発明の構成が解る程
度に概略的に示してあるにすぎない。また、図
中、断面を表わすハツチングを省略して示してあ
る。
Figures 2a to 2f are manufacturing process diagrams showing the state of the semiconductor laser at the manufacturing stage, respectively, as a cross section taken at the cleavage plane of the laser element or a plane parallel to the cleavage plane, and the dimensions, shapes, etc. of each component are The drawings are merely shown schematically to the extent that the structure of the present invention can be understood. In addition, hatching representing a cross section is omitted in the drawings.

先ず、第2図aに示すように、p−InP基板1
1を用意する。この基板11の上側表面11aを
(100)面とする。次ぎに、第2図bに示すよう
に、基板表面11a上に、エツチングマスク層と
して供する、例えば、SiO2等のような層12を
形成する。次いで、第2図cに示すように、この
エツチングマスク層12に通常のフオトリソグラ
フイ手法によつて、幅約2μmの程度のストライ
プ窓13を<011>方向に延在するように開け、
この窓13を介して、基板11の露出した表面1
1aをブロムメタノール(Br2−CH3OH)でエ
ツチングする。このエツチングによつて、第2図
dに示すように、凹型の溝14を形成する。尚、
この溝14の様子を第2図eに斜視図で示す。こ
の溝の側面14aは(111)A面と成り、この溝
14の断面形状は図示のようなほぼ底面14bが
やや盛上つた状態となつていてもよく、また、更
にエツチングを進めて底面14bを実質的に有し
ない断面がほぼV字状の溝としても良い。いずれ
にしても、この底面14bの幅はInPが成長しな
い程度の幅に押えておく必要がある。
First, as shown in FIG. 2a, a p-InP substrate 1 is
Prepare 1. The upper surface 11a of this substrate 11 is a (100) plane. Next, as shown in FIG. 2b, a layer 12 of, for example, SiO 2 is formed on the substrate surface 11a to serve as an etching mask layer. Next, as shown in FIG. 2c, a striped window 13 having a width of approximately 2 μm is opened in the etching mask layer 12 by a conventional photolithography method so as to extend in the <011> direction.
Through this window 13, the exposed surface 1 of the substrate 11
1a is etched with bromomethanol (Br 2 --CH 3 OH). By this etching, a concave groove 14 is formed as shown in FIG. 2d. still,
The condition of this groove 14 is shown in a perspective view in FIG. 2e. The side surface 14a of this groove is a (111)A surface, and the cross-sectional shape of this groove 14 may be such that the bottom surface 14b is slightly raised as shown in the figure, or the bottom surface 14b may be etched further. The groove may have a substantially V-shaped cross section that does not substantially have any. In any case, the width of the bottom surface 14b must be kept to a width that will not allow InP to grow.

次ぎに、この溝14が形成された基板11を液
相エピタキシヤル成長炉に入れ、電流ブロツク層
となるべきn−InP層15、バツフア層であるp
−InGaAsP層16、第一クラツド層であるp−
InP層17、活性層であるInGaAsP層18及び第
二クラツド層19を一回の液相エピタキシヤル成
長で順次に連続成長させる。
Next, the substrate 11 with the grooves 14 formed thereon is placed in a liquid phase epitaxial growth furnace, and the n-InP layer 15, which is to become a current blocking layer, and the p-InP layer, which is a buffer layer, are placed in a liquid phase epitaxial growth furnace.
-InGaAsP layer 16, first cladding layer p-
The InP layer 17, the active layer InGaAsP layer 18, and the second cladding layer 19 are successively grown in one liquid phase epitaxial growth process.

この連続エピタキシヤル成長の際、n−InP層
15は結晶成長速度の面方向依存性により基板1
1の表面である(100)面上での成長速度が速く、
溝14内、すなわち、(111)A面の側面14a上
での成長速度が著しく遅いので、溶液の過飽和度
に見合つた成長時間を選定することにより実質的
に基板11の表面11a上にのみn−InPを成長
させることができる。続いて、このn−InP層1
5及び溝14上にp−InGaAsPバツフア層16
を成長させると、InGaAsPの結晶成長速度の面
方向依存性により、InGaAsPの結晶は溝14の
側面14aである(111)A面上で速く成長し、
先に成長させたn−InP層15上では遅く成長す
るので、溶液の過飽和度に見合つた成長時間を選
定することにより、図示の如く溝外のn−InP層
15上では薄く、溝14内ではやや厚くて溝内に
下方に向けて凹状に湾曲して成長させることが出
来る。この溝14内に成長したバツフア層16の
湾曲した面には(111)A面以外の面もでる。こ
れがため、続いて、このp−InGaAsPバツフア
層16上にp−InP第一クラツド層17を成長さ
せると、このクラツド層17は溝14の内部にも
成長し、この場合にも溶液の過飽和度に見合つた
成長時間を選定することによつて図示のようにこ
の層17を溝14に対応する箇所で湾曲するよう
に成長させることが出来る。そして、この第一ク
ラツド層17上にInGaAsP活性層18を成長時
間を選定して成長させると、この活性層18も図
示のように溝14に対応する箇所で湾曲する。そ
して最終的にn−InP第二クラツド層19を活性
層18上に液相エピタキシヤル成長させ、この場
合にはこのクラツド層9の上側表面20が平担と
なるように成長させる。このように、溝14に対
応する箇所の各液相エピタキシヤル層を湾曲させ
て屈折率ガイド構造の半導体レーザを得ることが
出来る。
During this continuous epitaxial growth, the n-InP layer 15 grows on the substrate 1 due to the in-plane direction dependence of the crystal growth rate.
The growth rate on the (100) plane, which is the surface of 1, is fast;
Since the growth rate within the groove 14, that is, on the side surface 14a of the (111) A plane, is extremely slow, by selecting a growth time commensurate with the degree of supersaturation of the solution, the growth rate is substantially only on the surface 11a of the substrate 11. -InP can be grown. Next, this n-InP layer 1
5 and the p-InGaAsP buffer layer 16 on the groove 14.
When growing, the InGaAsP crystal grows quickly on the (111) A plane, which is the side surface 14a of the groove 14, due to the in-plane direction dependence of the crystal growth rate of InGaAsP.
Since growth is slow on the n-InP layer 15 that was grown first, by selecting a growth time that matches the supersaturation degree of the solution, the n-InP layer 15 outside the groove is thin as shown in the figure, and the layer inside the groove 14 is thin. It is rather thick and can be grown in a downward concave curve within the groove. The curved surface of the buffer layer 16 grown in the groove 14 also has surfaces other than the (111)A surface. Therefore, when the p-InP first cladding layer 17 is subsequently grown on this p-InGaAsP buffer layer 16, this cladding layer 17 also grows inside the groove 14, and in this case too, the supersaturation level of the solution By selecting a suitable growth time, this layer 17 can be grown curved at the locations corresponding to the grooves 14, as shown. When an InGaAsP active layer 18 is grown on this first cladding layer 17 at a selected growth time, this active layer 18 also curves at a location corresponding to the groove 14 as shown in the figure. Finally, an n-InP second cladding layer 19 is grown on the active layer 18 by liquid phase epitaxial growth, in which case the upper surface 20 of this cladding layer 9 is grown flat. In this way, by curving each liquid phase epitaxial layer at the portions corresponding to the grooves 14, a semiconductor laser having a refractive index guide structure can be obtained.

このようにして、各液相エピタキシヤル成長層
を基板11上に形成した後、例えば、これら層を
有する基板を成長炉から取り出し、第二クラツド
層19の表面20上に及び基板11の下側面11
b上に夫々電極21及び22を被着形成する。
After each liquid phase epitaxial growth layer has been formed on the substrate 11 in this manner, the substrate having these layers is removed from the growth furnace and deposited on the surface 20 of the second cladding layer 19 and on the underside of the substrate 11, for example. 11
Electrodes 21 and 22 are deposited on b, respectively.

このようにして得られた半導体レーザの両電極
21及び22間に適切な電圧を印加して注入電流
を流すと、n−InP層15が電流ブロツク層とし
て作用し、これがため、電流は溝部分にのみ集中
して流れ、横モード閉込めも可能と成る。
When an appropriate voltage is applied between the electrodes 21 and 22 of the semiconductor laser obtained in this way to cause an injection current to flow, the n-InP layer 15 acts as a current blocking layer, so that the current flows through the groove. The flow is concentrated only in the area, and transverse mode confinement is also possible.

(発明の効果) 上述した本発明の半導体レーザの製造方法によ
れば、一旦、基板を成長炉中に入れれば、この基
板をその上側に所要の各層の全てがエピタキシヤ
ル成長し終るまで成長炉の外へ取り出すことがな
いので、一回の液相エピタキシヤル成長で各層を
連続成長させることが出来、従つて、本発明方法
は簡単で、時間が掛らず、原料を節約出来、製造
歩留りがよいという利点がある。
(Effects of the Invention) According to the method for manufacturing a semiconductor laser of the present invention described above, once a substrate is placed in a growth furnace, this substrate is kept in the growth furnace until all the required layers have been epitaxially grown on top of the substrate. Since there is no need to take the material out of the cell, each layer can be grown continuously in a single liquid phase epitaxial growth process. Therefore, the method of the present invention is simple, takes less time, saves raw materials, and improves manufacturing yield. It has the advantage of being good.

上述した実施例では、基板としてp−InP基板
を用いたが、n−InP基板を使用してもよいこと
勿論であり、その場合には各エピタキシヤル層の
導電型をこれに対応させて反転させることが必要
である。
In the above embodiment, a p-InP substrate was used as the substrate, but it goes without saying that an n-InP substrate may also be used, in which case the conductivity type of each epitaxial layer is reversed accordingly. It is necessary to do so.

このように、本発明は、液相エピタキシヤル成
長の選択成長性、すなわち、両方向依存性を利用
し各層を選択的に成長させることにより、一回の
液相エピタキシヤル成長で電流ブロツク層を有し
た屈折率ガイド構造の半導体レーザを製造するこ
とが出来る。
As described above, the present invention utilizes the selective growth property of liquid phase epitaxial growth, that is, the bidirectional dependence, to grow each layer selectively, thereby forming a current blocking layer with one liquid phase epitaxial growth. A semiconductor laser having a refractive index guide structure can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a及びbは従来の電流ブロツク層を有す
る屈折率ガイド構造の半導体レーザの製造方法を
説明するための製造工程図、第2図a〜fは本発
明の半導体レーザの製造方法一実施例を説明する
ための製造工程図である。 1,11……基板、1a,11a……基板の上
側表面、1b,11b……基板の下側面、2,1
5……電流ブロツク層、3,14……溝、4,1
7……第一クラツド層、5,18……活性層、
6,19……第二クラツド層、7,8,21,2
2……電極、12……エツチングマスク層、13
……ストライプ窓、14a……溝の側面、14b
……溝の底面、16……バツフア層、20……第
二クラツド層の上側表面。
FIGS. 1a and 1b are manufacturing process diagrams for explaining a conventional method for manufacturing a semiconductor laser having a refractive index guide structure having a current blocking layer, and FIGS. 2a to 2f are illustrations of a method for manufacturing a semiconductor laser according to the present invention. It is a manufacturing process diagram for explaining an example. 1, 11... Substrate, 1a, 11a... Upper surface of substrate, 1b, 11b... Lower surface of substrate, 2, 1
5... Current blocking layer, 3, 14... Groove, 4, 1
7...first cladding layer, 5,18...active layer,
6, 19...second cladding layer, 7, 8, 21, 2
2... Electrode, 12... Etching mask layer, 13
... Striped window, 14a ... Groove side, 14b
... bottom surface of the groove, 16 ... buffer layer, 20 ... upper surface of the second cladding layer.

Claims (1)

【特許請求の範囲】 1 (100)面を表面に有するInP基板の前記表
面をエツチングして(111)A面を側面とする溝
を形成する工程と、 (100)面と(111)A面とに対するInPの結晶
成長速度の差を利用して、液相エピタキシヤル成
長により前記(100)面上に選択的にInPからな
る電流ブロツク層を形成する工程と、 該電流ブロツク層が形成されている前記基板の
上側全面にInGaAsPからなるバツフア層を形成
する工程と、 前記バツフア層上にInPからなる第一クラツド
層を形成する工程と、 前記第一クラツド層上にInGaAsPからなる活
性層を形成する工程と、 前記活性層上にInPからなる第二クラツド層を
形成する工程と を有することを特徴とする屈折率ガイド構造の半
導体レーザの製造方法。
[Claims] 1. A step of etching the surface of the InP substrate having the (100) plane on the surface to form a groove with the (111) A plane as the side surface, and (100) plane and the (111) A plane. a step of selectively forming a current blocking layer made of InP on the (100) plane by liquid phase epitaxial growth using the difference in crystal growth rate of InP with respect to the current blocking layer; forming a buffer layer made of InGaAsP on the entire upper surface of the substrate; forming a first cladding layer made of InP on the buffer layer; and forming an active layer made of InGaAsP on the first cladding layer. 1. A method for manufacturing a semiconductor laser having a refractive index guide structure, comprising the steps of: forming a second cladding layer made of InP on the active layer.
JP14177083A 1983-08-02 1983-08-02 Manufacture of semiconductor laser Granted JPS6032384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14177083A JPS6032384A (en) 1983-08-02 1983-08-02 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14177083A JPS6032384A (en) 1983-08-02 1983-08-02 Manufacture of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6032384A JPS6032384A (en) 1985-02-19
JPS649751B2 true JPS649751B2 (en) 1989-02-20

Family

ID=15299765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14177083A Granted JPS6032384A (en) 1983-08-02 1983-08-02 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6032384A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274383A (en) * 1985-05-11 1986-12-04 Oki Electric Ind Co Ltd Manufacture of semiconductor laser

Also Published As

Publication number Publication date
JPS6032384A (en) 1985-02-19

Similar Documents

Publication Publication Date Title
JPH0621575A (en) Manufacture of semiconductor device of buried heterostructure
JPS58216486A (en) Semiconductor laser and manufacture thereof
JPS649751B2 (en)
JPS5940317B2 (en) Rib guide stripe type semiconductor multilayer thin film optical waveguide and its manufacturing method
JPS6062174A (en) Manufacture of semiconductor laser
JPS6014487A (en) Semiconductor laser element and manufacture thereof
JPS599990A (en) Manufacture of semiconductor laser
JPS6349918B2 (en)
JPS5834988A (en) Manufacture of semiconductor laser
JPS5830186A (en) Manufacture of optical semiconductor element
JPS6351558B2 (en)
JPS62286294A (en) Manufacture of semiconductor laser
JPH0260075B2 (en)
JPH067632B2 (en) Method for manufacturing semiconductor laser
JPS6353715B2 (en)
JPS61244085A (en) Manufacture of semiconductor laser
JPH05226767A (en) Buried semiconductor laser and its production
JPH04133315A (en) Manufacture of semiconductor device
JPH09293926A (en) Semiconductor device and its manufacture
JPH0837338A (en) Double channel planar buried structure semiconductor laser and its manufacture
JPH01215087A (en) Semiconductor light emitting device
JPS6367349B2 (en)
JPS6062181A (en) Manufacture of semiconductor light emitting element
JPH0936475A (en) Fabrication of ridge waveguide semiconductor laser
JPH06283804A (en) Distributed reflector laser and fabrication thereof