JPS6062174A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS6062174A
JPS6062174A JP17014183A JP17014183A JPS6062174A JP S6062174 A JPS6062174 A JP S6062174A JP 17014183 A JP17014183 A JP 17014183A JP 17014183 A JP17014183 A JP 17014183A JP S6062174 A JPS6062174 A JP S6062174A
Authority
JP
Japan
Prior art keywords
layer
substrate
groove
plane
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17014183A
Other languages
Japanese (ja)
Other versions
JPS6355230B2 (en
Inventor
Hideaki Horikawa
英明 堀川
Akihiro Matoba
的場 昭大
Kazuya Sano
一也 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP17014183A priority Critical patent/JPS6062174A/en
Publication of JPS6062174A publication Critical patent/JPS6062174A/en
Publication of JPS6355230B2 publication Critical patent/JPS6355230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make it easier to produce a laser with refractive index waveguide construction by a method wherein, when an InGaAsP/InP semiconductor laser is produced by liquid epitaxial growth, a groove with (111)A face as side is opened from (100) face of a substrate while a current strangulating layer and a beam guide layer are formed by one time growth making use of the difference in the growth characteristics of both surfaces. CONSTITUTION:A P type InP substrate 11 with a surface 11a containing a surface (100) is provided and a mask of an SiO2 film 12 with a stripe window 13 extending in the direction of <0, 1, anti 1> is provided on the surface 11a while a groove 14 with its side 14a to be (111)A surface and its bottom 14b swelled a little bit is formed by etching process using Br2-CH3OH solution. Later the film 12 is removed and firstly an N type InP current strangulating layer 15 is grown on the substrate 11 making use of the dependability of the growth of the substrate 11 and the groove 14 upon surface and secondly a P type InGaAsP beam guide layer 16, an InGaAsP active layer 17 and an N type InP clad layer 18 may be laminated to be grown all over the surface while burying the groove 14.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はInGaAsP / InP半導体レーザを液
相エピタキシャル成長法を用いて製造する方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing an InGaAsP/InP semiconductor laser using a liquid phase epitaxial growth method.

(従来技術の説明) 先ず、本発明に説明に入る前に、液相エピタキシャル成
長法を用いた従来の1nGaAsP / 1nP半導体
レーザの製造方法につき第1図を参照して説明する。
(Description of Prior Art) First, before entering into the description of the present invention, a conventional method for manufacturing a 1nGaAsP/1nP semiconductor laser using a liquid phase epitaxial growth method will be described with reference to FIG.

従来においては、第1図に示すように、基板表面が(1
00)面であるn −1nP基板1を用意し、この基板
1を液相エピタキシャル成長炉に入れ、この基板1の上
側表面la上に第一クラッド層であるn −InP層2
、活性層である1nGaAsP層3、第二クラット層で
あるp −Ir+P層4、キャップ層であるn −In
GaAsP層5の4層を順次に液相エピタキシャル成長
させる。次いで、このキャンプ層5の表面5a上に、例
えば、醇化膜(5i02)6を被着し、通常のフォトリ
ン手法により、この醇化膜6にストライブ上の窓7を開
け、この窓7を利用して電流狭窄と横モード安定化用の
Zn拡散層8を第二クランド層4中に至るまで形成して
いる。然る後この拡散層8と醇化膜6上及び基板1の下
側面1b及び第二クラット層4上に夫々十及び−のオー
ミック電極9及び10を夫々形成するようにしている。
Conventionally, as shown in FIG.
An n -1nP substrate 1 having a 00) plane is prepared, this substrate 1 is placed in a liquid phase epitaxial growth furnace, and an n -InP layer 2 which is a first cladding layer is formed on the upper surface la of this substrate 1.
, a 1nGaAsP layer 3 as an active layer, a p-Ir+P layer 4 as a second crat layer, and an n-In as a cap layer.
The four GaAsP layers 5 are sequentially grown by liquid phase epitaxial growth. Next, on the surface 5a of this camp layer 5, for example, a fertilized film (5i02) 6 is deposited, and a window 7 on the stripe is opened in this fertilized film 6 by a normal photorin method. Using this, a Zn diffusion layer 8 for current confinement and transverse mode stabilization is formed up to the second ground layer 4. Thereafter, 10 and - ohmic electrodes 9 and 10 are formed on the diffusion layer 8 and the liquefied film 6, on the lower surface 1b of the substrate 1, and on the second crat layer 4, respectively.

この素子は利得率導波構造である。This element is a gain factor waveguide structure.

この従来の製造方法によれば、上述した通り、電流狭窄
と構モード安定化とのためにZn拡散を用いているが、
その拡散の深さを制御することが困難であるため、製造
された素子間で拡散深さのバラツキが多く、また、この
素子は利得率導波構造であるため、横モードの安定性が
充分に得られなかった。
According to this conventional manufacturing method, as mentioned above, Zn diffusion is used for current confinement and structural mode stabilization.
Because it is difficult to control the diffusion depth, there are many variations in the diffusion depth between manufactured devices.Also, since this device has a gain factor waveguide structure, the transverse mode stability is sufficient. I couldn't get it.

また、この従来の方法では、電流狭窄と横モード安定用
のZn拡散層を液相エピタキシャル成長工程外の別の拡
散工程で形成するので製造工程が複雑で、時間が掛り1
、シかも、製造歩留が悪いという欠点があった。
In addition, in this conventional method, the Zn diffusion layer for current confinement and transverse mode stabilization is formed in a separate diffusion process other than the liquid phase epitaxial growth process, making the manufacturing process complicated and time consuming.
However, it also had the disadvantage of poor manufacturing yield.

(発明の目的) 本発明の目的は、このような従来の欠点を除去するため
、−回の連続した液相エピタキシャル成長で電流狭窄層
と、横モード安定化のための光ガイド層とを有する屈折
率導波構造の半導体レーザを製造する方法を提供するに
ある。
(Object of the Invention) In order to eliminate such conventional drawbacks, the object of the present invention is to create a refractive material having a current confinement layer and an optical guide layer for transverse mode stabilization by continuous liquid phase epitaxial growth. The present invention provides a method for manufacturing a semiconductor laser having an index waveguide structure.

(発明の構成) この目的の達成を図るため、本発明によれば、1、nG
aAsP / InP半導体レーザの各層を一回の液相
エピタキシャル成長法を用いて順次に連続成長させる工
程中に、InP基板の結晶面に対するInPの選択成長
性を利用して電流狭窄層の形成し及び結晶面に対するI
nGaAsPの結晶成長速度の差を利用して光ガイド層
の形成することを特徴とする。
(Structure of the Invention) In order to achieve this object, according to the present invention, 1, nG
During the process of sequentially and continuously growing each layer of an aAsP/InP semiconductor laser using a single liquid phase epitaxial growth method, a current confinement layer is formed and the crystal is I for the surface
A feature of this method is that the light guide layer is formed by utilizing the difference in the crystal growth rate of nGaAsP.

(実施例の説明) 以下、第2図(a)〜U)及び第3図を参照しながら本
発明の半導体レーザの製造方法の一実施例につき説明す
る。
(Description of an Example) Hereinafter, an example of the method for manufacturing a semiconductor laser of the present invention will be described with reference to FIGS. 2(a) to 3) and FIG.

第2図は半導体レーザの製造段階での状態をレーザの襞
間面またはこの襞間面と平行な面での断面で夫々示す製
造工程図であり、第3図はこのレーザに使用する基板の
製造途中における状態を説明するだめの斜視図である。
Fig. 2 is a manufacturing process diagram showing the state of the semiconductor laser at the manufacturing stage as a cross-section taken at the inter-fold plane of the laser or a plane parallel to the inter-fold plane, and Fig. 3 is a diagram of the substrate used in this laser. FIG. 3 is a perspective view illustrating a state in the middle of manufacturing.

これらの図において、各構成成分の寸法、形状などは本
発明の構成が理解出来る程度に概略的に示しであるにす
ぎない。また、図中、断面を表わすハツチングを省略し
て示しである。
In these figures, the dimensions, shapes, etc. of each component are merely shown schematically to the extent that the structure of the present invention can be understood. In addition, hatching representing a cross section is omitted from the drawing.

先ず、第2図(a)に示すように、p −1nP基板1
1を用意する。この基板11の上側前面11aを(10
0)面とする。次ぎに、第2図(b)に示すように、基
板表面11a上に、エツチングマスク層として供する、
例えば、 S i02等のような膜12を形成し、次い
で、第2図(C)に示すよこのエツチングマスク層12
に通常のフォトリングラフィ手法によって、幅約2gr
n程度のストライプ窓13をく011〉方向に延在する
ように開け、この窓13を介して、基板11の露出した
表面11aをブロムメタノール(Br2−CH30)1
)でエツチングする。このエツチングによって、第2図
(d)に示すように、凹型の溝14を形成する。次に、
第2図(e)に示すように、このエンチングマスク層1
2を除去する。
First, as shown in FIG. 2(a), a p -1nP substrate 1 is
Prepare 1. The upper front surface 11a of this substrate 11 is (10
0) side. Next, as shown in FIG. 2(b), an etching mask layer is provided on the substrate surface 11a.
For example, a film 12 such as Si02 is formed, and then an etching mask layer 12 is formed as shown in FIG. 2(C).
Approximately 2 gr in width using normal photolithography method.
A stripe window 13 of about n length is opened extending in the <011> direction, and the exposed surface 11a of the substrate 11 is exposed to bromine methanol (Br2-CH30) 1 through this window 13.
) to etch. By this etching, a concave groove 14 is formed as shown in FIG. 2(d). next,
As shown in FIG. 2(e), this etching mask layer 1
Remove 2.

尚、この状態におけるこの溝14の様子を第3図に斜視
図で示す。この溝の側面14aは(111) A面と成
り、この溝14の断面形状は図示のようなほぼ底面)4
1)がやや盛上った状態となっていてもよく、また、更
にエツチングを進めて底面14bを実質的に有しないよ
うな、断面がほぼV字状の溝としても良いし、他の形状
であっても良い。いずれの場合であっても、この底面1
4bの幅はInPが成長しない程度の幅に押えておく必
要がある。
Incidentally, the state of the groove 14 in this state is shown in a perspective view in FIG. The side surface 14a of this groove is a (111) A surface, and the cross-sectional shape of this groove 14 is approximately the bottom surface as shown in the figure)4.
1) may be in a slightly raised state, or may be further etched to form a groove with a substantially V-shaped cross section that does not substantially have the bottom surface 14b, or may have other shapes. It may be. In any case, this bottom surface 1
The width of 4b needs to be kept to a width that does not allow InP to grow.

次ぎに、この溝14が形成された基板11を液相エピタ
キシャル成長炉に入れ、第2図(f)〜(i)に示すよ
うに、−回の液相エピタキシャル成長法で各レーザ層を
順次に連続的に成長させる。すなわち、電流狭窄層(電
流ブロック層)となるべきn−InP M15 (第2
図(f) ) 、光ガイド層であるP−InGaAsP
層16(第2図16) ) 、活性層であるInGaA
sP層17(第2図17))及びクラッド層テするn 
−1nP層18(第2図(1))を−回の液相エピタキ
シャル成長で順次に連続成長さ、せる。
Next, the substrate 11 on which the grooves 14 have been formed is placed in a liquid phase epitaxial growth furnace, and each laser layer is successively formed using the liquid phase epitaxial growth method - times as shown in FIGS. 2(f) to (i). to grow. That is, n-InP M15 (second
Figure (f)), P-InGaAsP as the optical guide layer
layer 16 (FIG. 2 16)), an active layer of InGaA;
sP layer 17 (FIG. 2 17)) and cladding layer 17)
The -1nP layer 18 (FIG. 2(1)) is successively grown by -times of liquid phase epitaxial growth.

この連続エピタキシャル成長の際、n −1nP層15
は結晶成長速度の面方位依存性により基板11の表面1
1a上にのみ成長する。つまり基板11の表面である(
400)面上ではn−1nPの結晶は成長するが、溝1
4の底辺14bが基板11の表面11aに比べて充分狭
く、また、溝14内、すなわち、(111)A面である
側面14a上での成長速度が著しく遅いので、溶!夜の
過飽和度に見合った成長時間を選定することにより、第
2図(f)に示すように、実質的に基板11の表面11
a上にのみn −1nPが成長し、溝14内には全く成
長しないように、選択成長させることかできる。続いて
、このn −1nP層15及び溝14上にp −InG
aAsP光ガイド層16を成長させる。この場合、In
GaAsPの結晶成長速度の1m方位依存性により、r
nGaAsPの結晶はi+1!14の側面14aである
(111) A面上で速く成長し、先に成長させたn 
−1nP層15上では遅く成長するので、溶液の過飽和
度に見合った成長u4j間を選定することにより、第2
図(g)に示す如く、このp−InGaAsPは溝外の
n −1nP層15J−では1.’7 <成長し−i+
1>14内ではこのp −InGaAsP テ埋めつく
されて厚く成長する。
During this continuous epitaxial growth, the n -1nP layer 15
is the surface 1 of the substrate 11 due to the plane orientation dependence of the crystal growth rate.
Grows only on 1a. In other words, it is the surface of the substrate 11 (
Although n-1nP crystal grows on the 400) plane, groove 1
4 is sufficiently narrower than the surface 11a of the substrate 11, and the growth rate inside the groove 14, that is, on the side surface 14a which is the (111)A plane, is extremely slow. By selecting a growth time commensurate with the degree of supersaturation at night, the surface 11 of the substrate 11 can be substantially grown as shown in FIG. 2(f).
It is possible to selectively grow n -1nP so that it grows only on the surface a and does not grow inside the trench 14 at all. Subsequently, p-InG is deposited on this n-1nP layer 15 and groove 14.
Grow an aAsP light guide layer 16. In this case, In
Due to the 1m orientation dependence of the crystal growth rate of GaAsP, r
The nGaAsP crystal grows quickly on the (111) A plane, which is the side surface 14a of i+1!14.
Since growth is slow on the −1nP layer 15, the second
As shown in Figure (g), this p-InGaAsP is 1. '7 <Grow-i+
If 1>14, this p-InGaAsP layer is buried and grows thickly.

このようにして、各液相エピタキシャル成長層を基板1
1上に形成した後1例えば、これら層を有する基板を成
長炉から取り出し、第21J(Dに示すように、クラ、
 l’ )’!218の表面18a」−に及び基板1】
の下側表im+1b上に夫々オーミンク電極19及び2
0を被着形成する。
In this way, each liquid phase epitaxial growth layer is deposited on the substrate 1.
For example, the substrate with these layers is taken out of the growth furnace and the layers are formed on the layer 21 (as shown in D).
l')'! surface 18a'' of 218 and substrate 1]
ohmink electrodes 19 and 2 on the lower surface im+1b, respectively.
0 is deposited and formed.

このようにして得られた半導体レーザの両電極19及び
20間に適切な電圧を印加して注入電流を流すと、n 
−’InP M2Sが電流狭窄層として作用し、これが
ため、電流は溝部分にのみ集中して流れ、横モード閉込
めも可能と成り、光力イト層18によリレーザ光は溝内
部に閉込められ水平横モードの安定化が図られる。また
、この構造では、基板が一方のクラット層として作用す
る。
When an appropriate voltage is applied between the electrodes 19 and 20 of the semiconductor laser thus obtained and an injection current flows, n
-'InP M2S acts as a current confinement layer, so the current flows concentrated only in the groove portion, and transverse mode confinement is also possible, and the laser light is confined inside the groove by the optical power layer 18. The horizontal transverse mode is stabilized. Also, in this structure, the substrate acts as one of the crat layers.

(発明の効果) 上述した本発明の判導体レーザの製造方法によれは、一
旦、基板を成長炉中に入れた後、この基板をその上側に
所要の各レーザ層の全てがエピタキシャル成長し終るま
で成長炉の外へ取り出ないという、−回の液相エピタキ
シャル成長工程において、InPの選択エピタキシャル
成長を利用して電流狭窄層を形成し及びGa1nAsP
の結晶成長速度の差を利用して横モートの安定化のため
の光ガイド層を形成する。従って、本発明の方法では、
従来のように液相エピタキシャル成長工程以外のZn拡
散工程を必要とせずに、電流狭窄層と、横モート安定化
のための光ガイド層とを有した、低しきい値電流で発振
しかつ安定な横モード発振し得る屈折率導波構造の半導
体レーザを製造することが出来る。しかも、この方法に
よれば、製造が簡単で、時間が掛らず、製造歩留りかよ
いという利点かある。
(Effects of the Invention) According to the method for manufacturing a conductor laser of the present invention described above, once a substrate is placed in a growth furnace, this substrate is placed on top of the substrate until all of the required laser layers are epitaxially grown. In the second liquid phase epitaxial growth process, which is not taken out of the growth furnace, a current confinement layer is formed using selective epitaxial growth of InP, and Ga1nAsP is
The difference in crystal growth rate is utilized to form a light guide layer for stabilizing the transverse moat. Therefore, in the method of the present invention,
It has a current confinement layer and an optical guide layer for stabilizing the transverse moat, and oscillates at a low threshold current and is stable, without requiring a Zn diffusion process other than the liquid phase epitaxial growth process as in the past. A semiconductor laser having a refractive index waveguide structure capable of transverse mode oscillation can be manufactured. Furthermore, this method has the advantage that manufacturing is simple, takes little time, and has a high manufacturing yield.

上述した実施例では、基板としてp −1nP基板を用
いたが、n −InP 基板を使用、してもよいこと勿
論であり、その場合には各エビクキシャル層の導電型を
これに対応させて反転させるだけで、前述した方法で製
−造することができる。
In the above embodiment, a p-1nP substrate was used as the substrate, but it goes without saying that an n-InP substrate may also be used, in which case the conductivity type of each evixial layer is reversed accordingly. It can be manufactured by the method described above by simply following the steps described above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電流狭窄層及び横モード安定化のための
Zn拡散層を有する利得導波構造の半導体レーザの製造
方法を説明するための断面図、第2図(a)〜(」)は
本発明の半導体レーザの製造方法一実施例を説明するだ
めの製造工程図である。 第3図は本発明により製造されるべき半導体レーザー使
用される基板の製造途中における状態を説明するための
略図的斜視図である。 1、】ト・・基板、 1a、lla・・・基板の上側表
面lb、llb・・・基板の下側表面 2・・・第一クラッド層 3、I7・・・活性層、4・・・第二クラ、膜層5・・
・キャップ層、5a・・・キャップ層の表面6・・・醇
化膜層、 7・・・スI・ライブ状の窓8・・・Zn拡
散層、 9,10.1!3.20・・・オーミック電極
12・・・エツチングマスク層 13・・・ストライブ窓、14・・・溝+4a・・・溝
の側面、 14b・・・溝の底面】5・・・電JIt狭
窄層、】6・・・光力イト層18・・・クラ、膜層、1
8a・・・クラツ[・層の表面。 第1図 第2図 第2図 第2図
Figure 1 is a cross-sectional view for explaining a conventional method for manufacturing a semiconductor laser with a gain waveguide structure having a current confinement layer and a Zn diffusion layer for transverse mode stabilization, and Figures 2 (a) to (''). 1 is a preliminary manufacturing process diagram for explaining an embodiment of a method for manufacturing a semiconductor laser according to the present invention. FIG. 3 is a schematic perspective view for explaining the state of a substrate used in a semiconductor laser to be manufactured according to the present invention during its manufacture. 1, ]...Substrate, 1a, lla... Upper surface of substrate lb, llb... Lower surface of substrate 2... First cladding layer 3, I7... Active layer, 4... Second crack, membrane layer 5...
・Cap layer, 5a...Surface of cap layer 6...Fused film layer, 7...Sliver shaped window 8...Zn diffusion layer, 9,10.1!3.20... - Ohmic electrode 12... Etching mask layer 13... Stripe window, 14... Groove +4a... Side surface of groove, 14b... Bottom surface of groove] 5... Electron JIt constriction layer, ] 6 ... Optical power layer 18 ... Cla, film layer, 1
8a...Kuratu [・Surface of layer. Figure 1 Figure 2 Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] InGaAsP / InP半導体レーザを液相エピタ
キシャル成長法を用いて製造するに当り、InP基板の
(100)面から(111)A面を側面とする溝を形成
する工程と、該1nP基板の(100)面と(111)
 A面とに対するInPの選択成長性を利用した電流狭
窄層の形成及び前記(100)面と(111) A面と
に対するInGaAsPの結晶成長速度の差を利用した
光ガイド層の形成を一回の液相エピタキシャル成長で連
続して行う工程とを含むことを特徴とする半導体レーザ
の製造方法。
In manufacturing an InGaAsP/InP semiconductor laser using the liquid phase epitaxial growth method, there are two steps: forming a groove whose side faces are from the (100) plane of the InP substrate to the (111) A plane, and the step of forming a groove from the (100) plane of the InP substrate to the (111) A plane. and (111)
Formation of a current confinement layer using the selective growth property of InP with respect to the A-plane and formation of a light guide layer using the difference in the crystal growth rate of InGaAsP between the (100) plane and the (111) A-plane are performed in one step. 1. A method of manufacturing a semiconductor laser, comprising a step of successively performing liquid phase epitaxial growth.
JP17014183A 1983-09-14 1983-09-14 Manufacture of semiconductor laser Granted JPS6062174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17014183A JPS6062174A (en) 1983-09-14 1983-09-14 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17014183A JPS6062174A (en) 1983-09-14 1983-09-14 Manufacture of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6062174A true JPS6062174A (en) 1985-04-10
JPS6355230B2 JPS6355230B2 (en) 1988-11-01

Family

ID=15899423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17014183A Granted JPS6062174A (en) 1983-09-14 1983-09-14 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6062174A (en)

Also Published As

Publication number Publication date
JPS6355230B2 (en) 1988-11-01

Similar Documents

Publication Publication Date Title
JPS6237904B2 (en)
JPH05327112A (en) Manufacture of semiconductor laser
JPS6062174A (en) Manufacture of semiconductor laser
JPS5940317B2 (en) Rib guide stripe type semiconductor multilayer thin film optical waveguide and its manufacturing method
KR100261238B1 (en) Manufacturing method of a laser diode
JPS6032384A (en) Manufacture of semiconductor laser
JPS599990A (en) Manufacture of semiconductor laser
JPS6351558B2 (en)
JPS5834988A (en) Manufacture of semiconductor laser
JPS63305582A (en) Semiconductor laser
JPH0260075B2 (en)
JPS6334293Y2 (en)
JPS5858783A (en) Semiconductor laser
JPH067632B2 (en) Method for manufacturing semiconductor laser
JPH0567849A (en) Semiconductor light emitting element
JPH06283804A (en) Distributed reflector laser and fabrication thereof
JPS6353715B2 (en)
JPS60165782A (en) Semiconductor laser
JPH01215087A (en) Semiconductor light emitting device
JPS6014487A (en) Semiconductor laser element and manufacture thereof
JPH0116035B2 (en)
JPH0537088A (en) Distribution feedback type semiconductor laser device and its manufacture
JPS62158387A (en) Manufacture of semiconductor laser
JPS62286294A (en) Manufacture of semiconductor laser
JPS60158686A (en) Semiconductor laser