JPS6334293Y2 - - Google Patents

Info

Publication number
JPS6334293Y2
JPS6334293Y2 JP1982005841U JP584182U JPS6334293Y2 JP S6334293 Y2 JPS6334293 Y2 JP S6334293Y2 JP 1982005841 U JP1982005841 U JP 1982005841U JP 584182 U JP584182 U JP 584182U JP S6334293 Y2 JPS6334293 Y2 JP S6334293Y2
Authority
JP
Japan
Prior art keywords
layer
guide layer
groove
refractive index
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982005841U
Other languages
Japanese (ja)
Other versions
JPS58109271U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP584182U priority Critical patent/JPS58109271U/en
Publication of JPS58109271U publication Critical patent/JPS58109271U/en
Application granted granted Critical
Publication of JPS6334293Y2 publication Critical patent/JPS6334293Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は基本モード発振する半導体レーザの構
造に関するものである。横モード制御された基本
モード発振する半導体レーザはPCW(Plano−
Convex Waveguide)型半導体レーザと称する
構造で本考案者等によつて提案されている(特願
昭54−33742)。この構造は、活性層の下側に平凸
状の光ガイド層を設けて、接合の横方向に屈折率
分布を形成し、活性層に強い光導波作用を持たせ
たものである。以下まずこの型式の構造、機能等
について、その何処を本考案で解決すべきか、図
面を用いて簡単に説明する。第1図は、従来の
PCW型半導体レーザの概略図を示す断面図であ
る。
[Detailed Description of the Invention] The present invention relates to the structure of a semiconductor laser that oscillates in a fundamental mode. A semiconductor laser that oscillates in a fundamental mode with transverse mode control is PCW (Plano−
A structure called a convex waveguide type semiconductor laser has been proposed by the inventors of the present invention (Japanese Patent Application No. 33742/1983). In this structure, a plano-convex optical guide layer is provided below the active layer to form a refractive index distribution in the lateral direction of the junction, giving the active layer a strong optical waveguide effect. First, the structure, functions, etc. of this type will be briefly explained using drawings, and what problems should be solved by the present invention. Figure 1 shows the conventional
1 is a cross-sectional view showing a schematic diagram of a PCW type semiconductor laser.

例えば、(100)面n型InP基体1上に〈011〉
方向に平行なストライプ状に矩形状の溝部2を形
成する。このInP基体1の上に液相エピタキシヤ
ル成長工程によりn型InGaAsP光ガイド層3、
InGaAsP活性層4、P型InPクラツド層5を順次
成長せしめて、P型InPクラツド層5上にSiO2
6を付け、溝部2の真上の活性層領域に電流が流
れるようにSiO2窓を設け電極7,8を取り付け、
PCW型半導体レーザが製作される。この構造に
よれば光ガイド層3と活性層4の屈折率は相互に
近づけ、光ガイド層3のそれがわずかに小さくな
るように設計する。この様な構造に於いては活性
層厚が一定の場合、光ガイド層3側に活性層4か
らレーザ光がしみ出し、そのしみ出す程度は、光
ガイド層厚の相違により変わる。したがつて、光
ガイド層3の凸部領域とその両側部で光ガイド層
3へのレーザ光のしみ出し量が異なり、それがた
めに両領域部間で実効屈折率分布が生じる。この
実効屈折率分布がレーザ光を接合面に平行な横方
向に閉じ込める光導波作用をもたらし、レーザ発
振の横モード安定化がなされる。又、ガイド層3
の厚い凸部と、その外部との実効的な屈折率差△
nは基本横モードを高出力まで安定に維持するた
めには10-2代を形成する必要がある。△nの値が
大きくなると一般に高次横モード発振が容易とな
り、又逆に小さくなると安定した光導波作用が得
られなくなる。
For example, on the (100) plane n-type InP substrate 1, <011>
Rectangular grooves 2 are formed in stripes parallel to the direction. On this InP substrate 1, an n-type InGaAsP light guide layer 3,
An InGaAsP active layer 4 and a P-type InP cladding layer 5 are sequentially grown, a SiO 2 film 6 is formed on the P-type InP cladding layer 5, and a SiO 2 window is formed so that current flows into the active layer region directly above the trench 2 . and attach the electrodes 7 and 8.
A PCW type semiconductor laser is manufactured. According to this structure, the refractive index of the light guide layer 3 and the active layer 4 is designed to be close to each other, and that of the light guide layer 3 is slightly smaller. In such a structure, when the active layer thickness is constant, laser light leaks from the active layer 4 to the light guide layer 3 side, and the extent to which it leaks varies depending on the difference in the light guide layer thickness. Therefore, the amount of laser light seeping into the light guide layer 3 differs between the convex region of the light guide layer 3 and both sides thereof, which causes an effective refractive index distribution between both regions. This effective refractive index distribution brings about an optical waveguide effect that confines the laser light in the lateral direction parallel to the cemented surface, thereby stabilizing the transverse mode of laser oscillation. Also, guide layer 3
Effective refractive index difference between the thick convex part and the outside △
In order to maintain the fundamental transverse mode stably up to high output, n needs to form an order of 10 -2 . As the value of Δn increases, higher-order transverse mode oscillation generally becomes easier, and conversely, as the value of Δn decreases, a stable optical waveguide effect cannot be obtained.

設計の際、この様な事を十分考慮して△nを設
定する必要がある。例えば、ガイド層3として波
長(λG)=1.1μmのものを用い、活性層4として
λA=1.3μm、層厚d=0.2μmとしたとき、ガイ
ド層3の凸部の厚さを0.5μm、外部を0.3μm(溝
の深さt=0.2μm)とすることにより△nがほぼ
1×10-2にあり、基本横モード発振が発振しきい
値の2倍以上の電流値まで維持される。
When designing, it is necessary to set Δn with sufficient consideration to such matters. For example, when the guide layer 3 has a wavelength (λG) of 1.1 μm, and the active layer 4 has λA = 1.3 μm and layer thickness d = 0.2 μm, the thickness of the convex portion of the guide layer 3 is 0.5 μm, By setting the outside to 0.3 μm (groove depth t = 0.2 μm), △n is approximately 1×10 -2 and fundamental transverse mode oscillation is maintained up to a current value that is more than twice the oscillation threshold. .

しかしながら、従来のPCW型半導体レーザで
は、ガイド層3と活性層4の組成が近い場合、す
なわち、ガイド層3の屈折率が大きいほど光のガ
イド層へのしみ出しは増加し、△nがガイド層厚
の変化に敏感となり、例えば、ガイド層3として
λG=1.03μmのものを用い、活性層4としてλA
=1.2μm、層厚d=0.2μmとしたとき、ガイド層
3の凸部の厚さを0.5μm、外部を0.3μm(溝の深
さt=0.2μm)とすると、△nが約8×10-3と小
さくなり安定した光導波作用が得られなくなり、
基本横モードを高出力まで安定に維持することが
困難となる。
However, in a conventional PCW type semiconductor laser, when the compositions of the guide layer 3 and the active layer 4 are similar, that is, the larger the refractive index of the guide layer 3, the more light seeps into the guide layer, and △n It is sensitive to changes in layer thickness, for example, the guide layer 3 is made with λG = 1.03 μm, and the active layer 4 is made with λA
= 1.2 μm, layer thickness d = 0.2 μm, and if the thickness of the convex portion of the guide layer 3 is 0.5 μm and the outside is 0.3 μm (groove depth t = 0.2 μm), then △n is approximately 8× 10 -3 , and a stable optical waveguide effect cannot be obtained.
It becomes difficult to maintain the fundamental transverse mode stably up to high output.

又、安定した光導波路を形成するには光ガイド
層の表面が平坦で、その上に一様な厚さの活性層
が成長する必要がある。しかしながら、従来の
PCW型半導体レーザで用いている溝部2は溝深
さtに対して溝の外部に成長する層厚が大きくな
る様にしなければ溝が確実に埋まらない。前記し
たガイド層のλG=1.03μm、活性層のλA=1.2μm
において、10-2代の△nを形成するためには、溝
2の外部に成長する層厚が溝深さtの値以下にす
る必要があり、従来のPCW型半導体レーザでは、
溝部2がガイド層3で十分埋まりきらず、活性層
4に凹凸が生じ、PCW型半導体レーザの本来の
特徴である安定な基本横モード発振が困難とな
り、又発振しきい値も高まる等の欠点を有する。
In order to form a stable optical waveguide, the surface of the optical guide layer must be flat, and an active layer of uniform thickness must be grown on the surface.
In the groove 2 used in the PCW type semiconductor laser, the thickness of the layer grown outside the groove must be made large relative to the groove depth t, otherwise the groove will not be filled reliably.
In order to form a Δn of 10 −2 , the thickness of the layer grown outside the groove 2 must be equal to or less than the groove depth t. In the conventional PCW type semiconductor laser,
The grooves 2 are not completely filled with the guide layer 3, causing unevenness in the active layer 4, making it difficult to obtain stable fundamental transverse mode oscillation, which is an inherent feature of PCW type semiconductor lasers, and also increasing the oscillation threshold value.

本考案の目的は、従来の半導体レーザが有して
いる上記の欠点を除去し、比較的大きい屈折率を
有し、且つ活性層の組成に近いガイド層を用いて
も、十分な屈折率差を有し、広い動作電流領域に
わたつて基本横モード発振を維持し、発振しきい
値が小さく、高出力化が可能で且つ製作が容易
で、歩留りの高い量産性に適した半導体レーザの
構造を提供することである。
The purpose of the present invention is to eliminate the above-mentioned drawbacks of conventional semiconductor lasers, and to achieve a sufficient refractive index difference even when using a guide layer that has a relatively large refractive index and has a composition close to that of the active layer. A semiconductor laser structure that maintains fundamental transverse mode oscillation over a wide operating current range, has a small oscillation threshold, is capable of high output, is easy to manufacture, and is suitable for high-yield mass production. The goal is to provide the following.

本考案の半導体レーザは、(211)A面を両側面
とする矩形状の断面の溝を有する半導体基体上に
少なくとも、該半導体基体よりも禁止帯幅が小さ
く且つ屈折率の小さな光ガイド層と、該光ガイド
層よりも禁止帯幅が小さく且つ屈折率の大きな活
性層と、該光ガイド層と該活性層の両方の禁止帯
幅よりも大きく、且つ両方の屈折率より小さい屈
折率を有するクラツド層とを順次形成し、該活性
層に所定の電流を注入して励起する構造を備えた
構成となつている。
The semiconductor laser of the present invention includes at least a light guide layer having a bandgap narrower and a refractive index smaller than that of the semiconductor substrate on a semiconductor substrate having a groove with a rectangular cross section having both sides of the (211) A plane. , an active layer having a bandgap width smaller than that of the light guide layer and a larger refractive index, and a refractive index larger than the bandgap width of both the light guide layer and the active layer and smaller than the refractive index of both. The active layer has a structure in which a cladding layer is sequentially formed and a predetermined current is injected into the active layer to excite it.

本考案者等の研究によれば、従来のPCW型半
導体レーザを構成する矩形状の溝部を両側面が
(211)A面の結晶方位を有する溝にすることによ
り、溝の外部に成長する層厚が溝深さtの値以下
にしても溝は確実に埋まりその表面も平面となる
ことを実験的に得た。第2図に溝深さt=0.2μm
と一定にした溝幅Wと溝部を平坦に埋め込むため
に必要な溝の外部に成長するガイド層厚TGとの
関係を示す。実験に用いた溝部は、{100}面n型
InP基体に〈011〉方向に平行なストライプ状の
矩形状の溝であり、図中、黒丸は、従来の溝部を
平坦に埋め込むために必要なガイド層厚TGが前
述した様な溝深さtに対して大きくなる様にすれ
ば溝が確実に埋まることを示している。一方、白
丸は、(211)A面を両側面とする断面が矩形状の
溝部を平坦に埋め込むために必要なガイド層厚
TGであり、溝深さtの約1/2のガイド層厚TGで
溝部を確実に埋めることが出来る事を示してお
り、安定した光導波路を形成できる事が判つた。
According to research by the present inventors, by making the rectangular groove that constitutes a conventional PCW type semiconductor laser into a groove whose both sides have a (211)A-plane crystal orientation, a layer grows outside the groove. It has been experimentally found that even if the thickness is less than the groove depth t, the groove is reliably filled and the surface becomes flat. Figure 2 shows groove depth t = 0.2μm.
The relationship between the constant groove width W and the thickness TG of the guide layer grown outside the groove, which is necessary to fill the groove portion flatly, is shown. The groove used in the experiment was {100} plane n-type
These are striped rectangular grooves parallel to the <011> direction on the InP substrate, and the black circles in the figure indicate the groove depth t, which is the guide layer thickness TG required to fill the conventional groove flatly, as described above. This shows that the groove can be reliably filled if it is made larger than that. On the other hand, the white circle indicates the guide layer thickness required to flatly embed a groove with a rectangular cross section with (211) A side as both sides.
TG, indicating that the groove can be reliably filled with a guide layer thickness TG that is approximately 1/2 of the groove depth t, indicating that a stable optical waveguide can be formed.

以下、本考案の詳細を図面を参照して、InPと
InGaAsPを半導体層として用いる場合について、
その一実施例を述べる。
The details of this invention are explained below with reference to the drawings.
Regarding the case of using InGaAsP as a semiconductor layer,
An example of this will be described.

第3図は、本考案を実施した場合の半導体レー
ザの代表例でレーザ光に垂直な主要断面図であ
る。
FIG. 3 is a main cross-sectional view perpendicular to the laser beam, showing a typical example of a semiconductor laser in which the present invention is implemented.

先ず、(100)面n型InP基本9表面にフオトレ
ジスト膜をマスクにした、〈011〉方向に平行な幅
2.0μmの細長いエツチング窓を形成する。続い
て、塩酸と燐酸の混合液で選択エツチングし、幅
2.3μm、深さ0.2μmのストライプ状の矩形状の溝
10を形成する。このとき、両側面が(211)A
面を有する溝10が形成される。残りのフオトレ
ジスト膜をInP基体9の表面から除去し、この
InP基体上に以下の各層を液相エピタキシヤル成
長法によつて連続して成長させる。先ず第1半導
体層のn型In0.92Ga0.08As0.19P0.81光ガイド層11
を成長する。この成長は(211)A面を両側面と
する矩形状の溝10部分が完全に埋まり全上面が
平坦になるまで続ける。続いて第2半導体層の活
性層にあたるP型In0.81Ga0.19As0.43P0.57層12、
第3半導体層のP型InP層13が成長されて終了
する。
First, the width parallel to the <011> direction was measured using a photoresist film as a mask on the (100) plane n-type InP basic 9 surface.
A long and narrow etching window of 2.0 μm is formed. Next, selective etching is performed with a mixture of hydrochloric acid and phosphoric acid, and the width is
A striped rectangular groove 10 of 2.3 μm and a depth of 0.2 μm is formed. At this time, both sides are (211)A
A groove 10 having a surface is formed. The remaining photoresist film is removed from the surface of the InP substrate 9, and this
The following layers are successively grown on the InP substrate by liquid phase epitaxial growth. First , the n-type In 0.92 Ga 0.08 As 0.19 P 0.81 optical guide layer 11 of the first semiconductor layer .
grow. This growth continues until the rectangular groove 10 having both sides of the (211) A plane is completely filled and the entire top surface is flat. Next , a P-type In0.81Ga0.19As0.43P0.57 layer 12 , which is the active layer of the second semiconductor layer ,
A third semiconductor layer, the P-type InP layer 13, is then grown.

典形的な各層厚は、溝10の領域で各々光ガイ
ド層11が0.3μm、活性層12が0.2μm、キヤリ
ア閉じ込め層13が2μmである。
Typical layer thicknesses are respectively 0.3 .mu.m for the light guide layer 11, 0.2 .mu.m for the active layer 12 and 2 .mu.m for the carrier confinement layer 13 in the region of the grooves 10.

最後にP型電極14はSiO2膜15を介して、
又n型電極16はInP基体9の裏側に各々形成し
て完了する。
Finally, the P-type electrode 14 is connected via the SiO 2 film 15,
Further, the n-type electrodes 16 are formed on the back side of the InP substrate 9 to complete the process.

尚、ガイド層11は波長λG=1.03μmであり、
活性層12はλA=1.2μmであり、比較的ガイド
層11の屈折率(n≒3.35)が大きく、すなわち
光のガイド層11へのしみ出しが大きくても、本
実施例に於いて、半導体レーザのP−N接合に平
行な方向の光放射角を測定して得られる実験的な
△nの値が、約2×10-2にあり、又、基本横モー
ド発振が発振しきい値の2倍以上の電流値まで維
持された。この事は、実施例に於いて溝10の深
さt=0.2μmに対して溝10の外部に成長する光
ガイド層11厚が0.1μmであり、且つ一様な厚さ
(0.2μm)の活性層12が形成されているためで
ある。
Note that the guide layer 11 has a wavelength λG = 1.03 μm,
The active layer 12 has λA = 1.2 μm, and even though the guide layer 11 has a relatively large refractive index (n≒3.35), that is, even if the light seeps into the guide layer 11 is large, in this example, the semiconductor The experimental value of △n obtained by measuring the light emission angle in the direction parallel to the P-N junction of the laser is approximately 2 × 10 -2 , and the fundamental transverse mode oscillation is close to the oscillation threshold. The current value was maintained to more than double. This means that in the example, the thickness of the optical guide layer 11 grown outside the groove 10 is 0.1 μm for the depth t of the groove 10 = 0.2 μm, and the thickness is uniform (0.2 μm). This is because the active layer 12 is formed.

更に、本考案によれば、製作上、溝10部側面
である(211)A面の化学エツチング速度が遅い
ために、溝幅の狭い光導波路を形成できることか
ら、基本横モードが安定し、且つ発振しきい値が
小さく、高出力化が可能である利点を有する。
尚、ガイド層としてλG=1.1μmのものを用い、
活性層としてλA=1.3μmとした場合についても、
本考案によれば、上記と同様な効果が得られる事
は言うまでもない。
Furthermore, according to the present invention, since the chemical etching speed of the (211) A plane, which is the side surface of the groove 10, is slow in manufacturing, it is possible to form an optical waveguide with a narrow groove width, so that the fundamental transverse mode is stabilized. It has the advantage that the oscillation threshold is small and high output is possible.
In addition, using a guide layer with λG = 1.1 μm,
Also when the active layer is λA = 1.3 μm,
According to the present invention, it goes without saying that effects similar to those described above can be obtained.

なお、以上の実験例では結晶成長法として液相
エピタキシヤル成長法を適用した場合を述べたが
別な成長法たとえば気相エピタキシヤル成長法や
分子線エピタキシヤル成長法等を適用し、本発明
を実施しても全く同様な効果が得られる。
In the above experimental example, the liquid phase epitaxial growth method was applied as the crystal growth method, but other growth methods such as the vapor phase epitaxial growth method and the molecular beam epitaxial growth method could also be applied to the present invention. Exactly the same effect can be obtained by implementing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のPCW型半導体レーザの概略を
示す断面図、第2図はPCW型半導体レーザを構
成する溝部を平坦に埋め込むために必要な溝の外
部に成長する光ガイド層の液相エピタキシヤル成
長条件を示す図面、第3図は本考案の一実施例に
おけるPCW型半導体レーザの概略を示す断面図
である。 図において、1,9……半導体基体、2……矩
形溝、3,11……光ガイド層、4,12……活
性層、5,13……クラツド層、6,15……
SiO2膜、7,14……P型電極、8,16……
n型電極、10……(211)A面を両側面とする
矩形溝をそれぞれ示す。
Figure 1 is a cross-sectional view schematically showing a conventional PCW type semiconductor laser, and Figure 2 is a liquid phase epitaxy of the optical guide layer grown outside the groove, which is necessary for flatly filling the groove part of the PCW type semiconductor laser. FIG. 3 is a cross-sectional view schematically showing a PCW type semiconductor laser according to an embodiment of the present invention. In the figure, 1, 9... semiconductor substrate, 2... rectangular groove, 3, 11... optical guide layer, 4, 12... active layer, 5, 13... cladding layer, 6, 15...
SiO 2 film, 7, 14...P-type electrode, 8, 16...
N-type electrode, 10... (211) A rectangular groove with both sides facing A-plane is shown.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 断面が矩形状の溝を有する半導体基体上に少な
くとも、該半導体基体よりも禁止帯幅が小さく且
つ屈折率の小さい光ガイド層と、該光ガイド層よ
りも禁止帯幅が小さく且つ屈折率の大きな活性層
と、該光ガイド層と該活性層の両方の禁止帯幅よ
りも大きく、且つ両方の屈折率より小さい屈折率
を有するクラツド層とを順次形成し、該活性層に
所定の電流を注入して励起する構造を備えた半導
体レーザにおいて、前記断面が矩形状の両側面を
(211)A面としたことを特徴とする半導体レー
ザ。
On a semiconductor substrate having a groove having a rectangular cross section, at least a light guide layer having a narrower bandgap width and a lower refractive index than the semiconductor substrate; and a light guide layer having a smaller bandgap width and a larger refractive index than the light guide layer. An active layer and a cladding layer having a refractive index larger than the forbidden band width of both the optical guide layer and the active layer and smaller than the refractive index of both are sequentially formed, and a predetermined current is injected into the active layer. What is claimed is: 1. A semiconductor laser having a structure in which the cross section is rectangular and both side surfaces thereof are (211)A planes.
JP584182U 1982-01-20 1982-01-20 semiconductor laser Granted JPS58109271U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP584182U JPS58109271U (en) 1982-01-20 1982-01-20 semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP584182U JPS58109271U (en) 1982-01-20 1982-01-20 semiconductor laser

Publications (2)

Publication Number Publication Date
JPS58109271U JPS58109271U (en) 1983-07-25
JPS6334293Y2 true JPS6334293Y2 (en) 1988-09-12

Family

ID=30018635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP584182U Granted JPS58109271U (en) 1982-01-20 1982-01-20 semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58109271U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887370U (en) * 1981-12-08 1983-06-14 日本電気株式会社 semiconductor laser

Also Published As

Publication number Publication date
JPS58109271U (en) 1983-07-25

Similar Documents

Publication Publication Date Title
JPH0231487A (en) Semiconductor laser device and its manufacture
JPS6237904B2 (en)
JP2003229635A (en) Semiconductor optical integrated element
JPS6318877B2 (en)
US4644552A (en) Semiconductor laser
JPS6334293Y2 (en)
JPS6237911B2 (en)
JPS5940317B2 (en) Rib guide stripe type semiconductor multilayer thin film optical waveguide and its manufacturing method
JPS6342871B2 (en)
JPS59127892A (en) Semiconductor laser and manufacture thereof
JPH03227086A (en) Semiconductor laser element and manufacture thereof
US4456998A (en) Semiconductor laser
JPS59197182A (en) Distribution feedback type semiconductor laser
JP3106852B2 (en) Distributed feedback semiconductor laser and method of manufacturing the same
JPH0437597B2 (en)
JPS5834988A (en) Manufacture of semiconductor laser
JPS61104687A (en) Manufacture of buried semiconductor laser
JPS5972787A (en) Semiconductor laser
JPS6364915B2 (en)
JPH065969A (en) Semiconductor laser
JPH0373584A (en) Semiconductor laser device
JPS5857771A (en) Semiconductor laser
JPS6136719B2 (en)
JPS59127889A (en) Semiconductor laser
JPS5858783A (en) Semiconductor laser