JPS59127889A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS59127889A
JPS59127889A JP267483A JP267483A JPS59127889A JP S59127889 A JPS59127889 A JP S59127889A JP 267483 A JP267483 A JP 267483A JP 267483 A JP267483 A JP 267483A JP S59127889 A JPS59127889 A JP S59127889A
Authority
JP
Japan
Prior art keywords
mesa
layer
mesa stripe
active layer
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP267483A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP267483A priority Critical patent/JPS59127889A/en
Publication of JPS59127889A publication Critical patent/JPS59127889A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • H01S5/2277Buried mesa structure ; Striped active layer mesa created by etching double channel planar buried heterostructure [DCPBH] laser

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a non-injection region easily at the step of crystal growth, and to improve the reproducibility of characteristics, yield on manufacture and reliability by forming sections, height thereof differs in the laser resonant-axis direction, in a mesa stripe containing an active layer and forming a current block layer with the exception of only a section, mesa height thereof is high. CONSTITUTION:A mesa stripe 9 containing an active layer, which emits light and recombines, and two parallel etching grooves 7, 8 holding the mesa stripe are formed in parallel in the <011> direction to a DH wafer. In this case, the width of the mesa stripe 9 is brought to 1.5mum in the vicinity of the active layer 4, and depth is brought to approximately 2.5mum and width approximately 10mum in both the etching grooves 7, 8. A photo-resist film is formed in parallel in the <011> direction, and the mesa strip 9 is etched so as to form a stepped difference. N-InP Current block layers 10, 11 are formed with the exception of only the upper surface of a section, height thereof is high, of the mesa stripe 9, and a P-InP buried layer 12 and an electrode layer 13 are laminated on the whole surface.

Description

【発明の詳細な説明】 本発明は活性層の周囲を、活性層よシもエネルギーギャ
ップが大きく、屈折率が小さな半導体層で埋め込んだ埋
め込みへテロ構造半導体レーザ(BH−LD)、特にレ
ーザ共振軸方向に部分的にIキャリア非注入領域を有す
る分布帰還型埋め込み半導体レーザに関する。
Detailed Description of the Invention The present invention relates to a buried heterostructure semiconductor laser (BH-LD) in which an active layer is surrounded by a semiconductor layer with a large energy gap and a small refractive index, especially in laser resonance. The present invention relates to a distributed feedback type buried semiconductor laser having a partial I carrier non-injection region in the axial direction.

埋め込みへテロ構造半導体レーザ(BH−LD)は低い
発振しまい値電流、安定化された発振横モード、高光出
力動作、高温動作可能などの優れた特性を有しており、
光フアイバ通信用光源として注目を集めている。ところ
で通常のBH−LDでは高速でパルス変調した場合波長
が単一でなくなり、また直流で使用しても温度変動や、
注入電流の変化によって波長が不連続に跳ぶ。BH−L
Dを高速変調して、そのレーザ光を光ファイバの一方の
端に入射すると、光ファイバの出力端から出る光は光フ
ァイバの材料分散により、波形がくずれてしまう。これ
に対して数百メガビット/秒で高速変調しても単一の発
振波長を示す半導体レーザとして、ある適当なピッチの
回折格子を設けた分布帰還型半導体レーザ(DFB−T
、D)が提案されている。
Buried heterostructure semiconductor lasers (BH-LDs) have excellent properties such as low oscillation end value current, stabilized oscillation transverse mode, high optical output operation, and high temperature operation.
It is attracting attention as a light source for optical fiber communications. By the way, in a normal BH-LD, when pulse modulated at high speed, the wavelength is no longer single, and even when used with direct current, temperature fluctuations,
The wavelength jumps discontinuously due to changes in the injected current. BH-L
When D is modulated at high speed and the laser light is input to one end of an optical fiber, the waveform of the light emitted from the output end of the optical fiber is distorted due to material dispersion of the optical fiber. On the other hand, a distributed feedback semiconductor laser (DFB-T
,D) has been proposed.

通常のB H−L I)ではファブリ・ベロー共振器構
造をもっており、活性層に閉じ込められた光をLDチッ
プの両端の共振器ミラー面を使って共振させ、レーザ発
振させるのに対し、′DFB−LDでは活性層の付近に
回折格子を設けており、その回折格子の中を光波が往復
して共振する。最近そのようなりFB−LD とBH−
LDとを組み合わせた構造をもつ半導体レーザが種々開
発され、500Mb目/s e cで高速パルス変調し
ても単一波長で発振するという結果が得られている。と
ころでDFB−LDにおいてはレーザ・ウェファから個
々のレーザ・ベレッ)K切り出す際にへき開によるレー
ザ共振器面が形成されてしまっては、回折格子による単
一軸モード発振が得られない。すなわちファプリ・ペロ
ーモードの抑制が重要である。従来この目的のために一
方のレーザ端面を斜めにエツチングして共振器を形成す
るのを妨げたり、あるいは最終電極層をn型として一部
分だけp形不純物の拡散を行なったり、あるいは8i0
2、Si3N4 などの絶縁膜を形成して、その一部の
みとり除いて電極形成するなどの方法がとらえていた。
A normal BH-L I) has a Fabry-Bello resonator structure, and the light confined in the active layer is resonated using the resonator mirror surfaces at both ends of the LD chip, causing laser oscillation. - In the LD, a diffraction grating is provided near the active layer, and light waves reciprocate within the diffraction grating and resonate. It's been like that recently with FB-LD and BH-
Various semiconductor lasers having a structure combining an LD have been developed, and results have been obtained that oscillate at a single wavelength even when subjected to high-speed pulse modulation at 500 Mb/sec. However, in a DFB-LD, if a laser resonator surface is formed by cleavage when cutting out individual laser beams from a laser wafer, single-axis mode oscillation by the diffraction grating cannot be obtained. In other words, it is important to suppress the Fapry-Perot mode. Conventionally, for this purpose, one laser end face was obliquely etched to prevent the formation of a resonator, or the final electrode layer was made n-type and p-type impurities were diffused in only a portion, or 8i0
2. A method of forming an insulating film such as Si3N4 and removing a portion of it to form an electrode has been considered.

すなわち大きく分けて、片方のレーザ端面を斜めに形成
する方法と、レーザ端面はへき開によって結晶面を出し
たまま電極形成に際しレーザストライプの一部分を非注
入領域にするという方法がとられていた。しかしながら
、例えば前者の場合Br メタノール等の混合エツチン
グ液を用いても活性層付近で必ずしも完全に斜めなエツ
チング面が得られるわけではない。ごくわずかの部分で
他端の結晶へき開面と共にレーザ共振器を形成してしま
い、その結果1本の中心波長モードの付近に小さな軸モ
ードが発振してしまうという欠点があった。また後者の
場合、絶縁膜のわずかなピンホール等によりレーザ発振
に寄与しない無効電流の増加をもたらしてレーザ発振し
きい値の上昇を招いたり、また絶縁膜を付けたまま電極
の熱処理を行なうと絶縁膜のふちでアロイスパイクを生
じたりして半導体レーザの信頼性に悪影響を与えるとい
うことがある。
Broadly speaking, two methods have been used: one in which one laser end face is formed obliquely, and the other in which the laser end face is cleaved to expose the crystal plane and a portion of the laser stripe is made into a non-injected region during electrode formation. However, in the former case, for example, even if a mixed etching solution such as Br 2 methanol is used, a completely oblique etched surface cannot always be obtained in the vicinity of the active layer. A disadvantage is that a very small portion forms a laser resonator together with the crystal cleavage plane at the other end, and as a result, a small axial mode oscillates near one central wavelength mode. In the latter case, slight pinholes in the insulating film may cause an increase in reactive current that does not contribute to laser oscillation, leading to a rise in the laser oscillation threshold, or heat treatment of the electrode with the insulating film attached may cause an increase in reactive current that does not contribute to laser oscillation. Alloy spikes may occur at the edge of the insulating film, which may adversely affect the reliability of the semiconductor laser.

部分的に不純物を拡散する場合も同様に拡散マスクに存
在するピンホールや拡散エッヂ等が問題となシ、再現性
、製造歩留りが悪いという欠点がある。
Similarly, when impurities are partially diffused, there are problems such as pinholes and diffusion edges existing in the diffusion mask, and there are drawbacks such as poor reproducibility and manufacturing yield.

そこであらかじめ結晶成長の段階で非注入の領域を形成
すれば上述の問題がなくなる。
Therefore, if a non-implanted region is formed in advance at the stage of crystal growth, the above-mentioned problem can be eliminated.

本発明の目的は上述の問題点を除き、結晶成長の段階で
非注入領域が形成でき、特性の再現性、製造の歩留りが
大幅に向上した分布帰還型埋め込み構造半導体レーザを
提供することにある。
An object of the present invention is to eliminate the above-mentioned problems and provide a distributed feedback buried structure semiconductor laser in which a non-implanted region can be formed at the stage of crystal growth, and the reproducibility of characteristics and manufacturing yield are greatly improved. .

本発明による半導体レーザの構成は、少くとも活性層を
含む多層膜構造半導体ウェファに、前記活性層よりも深
くエツチングしてメサストライプを形成した後埋め込み
成長してなる埋め込みへテロ構造半導体レーザにおいて
、前記メサストライプがレーザ共振軸方向で高さの異な
る部分を有し、前記メサストライプの高さの低い部分に
電流ブロック層が形成されていることを特徴とする。
The structure of the semiconductor laser according to the present invention is a buried heterostructure semiconductor laser in which a multilayer structure semiconductor wafer including at least an active layer is etched deeper than the active layer to form a mesa stripe, and then buried and grown. The mesa stripe has portions with different heights in the laser resonance axis direction, and a current blocking layer is formed in the lower height portion of the mesa stripe.

以下実施例を示す図面を用いて本発明を説明する。The present invention will be explained below using drawings showing examples.

第1図は本発明の一実施例である。FIG. 1 shows an embodiment of the present invention.

DFB−BHLDの狸め込み成長前の半導体ダブル・ヘ
テロ(DH)ウェファの平面図である。第2図は第1図
で示したDHウェファに埋め込み成長を行なって作製し
たDFB−BHLDにおいて第1図中人−X部分の断面
図、すなわちメサストライプ部分を含むレーザ共振軸方
向の断面図である。同様に第3図(a)は作製したDF
’B−BHLDの第1同断面図である。主に第3図(a
c、fb+の断面図を用いて以下製作過程を説明する。
FIG. 2 is a plan view of a semiconductor double hetero (DH) wafer before in-depth growth of DFB-BHLD. Fig. 2 is a cross-sectional view of the section taken at the center line X in Fig. 1, that is, a cross-sectional view in the direction of the laser resonance axis including the mesa stripe portion, of the DFB-BHLD fabricated by performing buried growth on the DH wafer shown in Fig. 1. be. Similarly, FIG. 3(a) shows the prepared DF
It is the 1st sectional view of 'B-BHLD. Mainly in Figure 3 (a
The manufacturing process will be explained below using cross-sectional views of c and fb+.

まず(100) n−InP基板基板例えばHe−Cd
レーザのレーザ干渉法を  。
First, a (100) n-InP substrate such as He-Cd
Laser interferometry.

用いてピッチ0.23μmの回折格子2を形成する。A diffraction grating 2 with a pitch of 0.23 μm is formed using the above.

これは(011>方向のレーザ共振軸方向にくり返すも
のであり、レーザ共振軸方向の断面を示す第2図がわか
りやすい。このような回折格子を形成したn−InP基
板1上に発光波長1.1amに相当するn−1nOaA
sP    光ガイド層0.85    0.15  
  0.33   0.673を厚さ0.3am、発光
波長1.55μmに相当するノンドープInO,59G
aO,41AsO,90PO,10活性層4を厚さ0.
1μm1発光波長1.3μmに相当するp”0.72 
”0.28 AaO,61PO,39メ、A= ) /
(ツル防止層5を厚さ0.155m、さらにp−1nP
クラッド層6を厚さlnm順次積層させる。なおここで
、1ooo X程−の深さの回折格子がメルトバックし
ないように、”  ”O,R5”0.15 ”0.33
 PO,67光ガイド層3は過飽和度を△T−10’C
程度にとったスーパークーリング溶液を用いて、また続
く   ′■nO,59Ga0.41 ”0.90 P
O,10活性層4は膜厚制御が容易でヘテロ界面の状態
が良好なオーバーシード法を用いて結晶成長を行なうと
よい。このようにして得たDHウェファに通常の7オト
レジスト技術と化学エツチング技術によ)、第1図、第
3図に示すように<011>方向に平行に1発光再結合
する活性層を含むメサストライプ9、およびそれをLさ
む2本の平行なエツチング溝7.8を形成する。この際
メサストライプ90幅は活性層付近で1.5I1mとな
るようにし、エツチングの際にサイドエツチングを利用
して、垂直なエツチング側面を形成すると続く埋め込み
成長に際しても再現性は非常によくなる。エツチング溝
7.8はいずれも深さ2.5am、幅10μm程度とす
ればよい。
This is repeated in the direction of the laser resonance axis in the (011> direction, and it is easy to understand in Figure 2, which shows a cross section in the direction of the laser resonance axis.On the n-InP substrate 1 on which such a diffraction grating is formed, n-1nOaA corresponding to .1am
sP light guide layer 0.85 0.15
0.33 0.673 is a non-doped InO, 59G with a thickness of 0.3 am and an emission wavelength of 1.55 μm.
aO, 41AsO, 90PO, 10 active layer 4 with a thickness of 0.
p"0.72 corresponding to 1 μm 1 emission wavelength 1.3 μm
”0.28 AaO, 61PO, 39me, A= ) /
(The anti-slip layer 5 has a thickness of 0.155 m, and further p-1nP
The cladding layer 6 is sequentially laminated to a thickness of 1 nm. Note that in order to prevent the diffraction grating at a depth of about 1ooo X from melting back,
PO, 67 light guide layer 3 has supersaturation degree △T-10'C
Using a supercooling solution with a moderate temperature, continue to
The crystal growth of the O,10 active layer 4 is preferably performed using the overseeding method, which allows easy control of the film thickness and provides a good heterointerface. The DH wafer thus obtained is etched with a mesa containing an active layer that recombines one light in parallel to the <011> direction, as shown in FIGS. A stripe 9 and two parallel etching grooves 7.8 sandwiching the stripe L are formed. At this time, the width of the mesa stripe 90 is set to 1.5I1m near the active layer, and by using side etching during etching to form vertical etched sides, the reproducibility will be very good during the subsequent buried growth. The etching grooves 7.8 may each have a depth of 2.5 am and a width of about 10 μm.

このようにメサエッチングを行なってメサスト2゛イグ
9および2本のエツチング溝7.8を形成しり後、今度
は(011>方向に平行に7オトレジスト膜を形成して
メサストライプ9に段差をつけるエツチングを行なう。
After mesa etching is performed in this way to form the mesa stripe 9 and the two etching grooves 7 and 8, an etching resist film 7 is formed parallel to the (011> direction to form a step in the mesa stripe 9. Perform etching.

これは水と塩酸との混合エツチング液を用いることによ
り再現性よく行なうことができる。この場合露出したI
np面がすべてエツチングされるわけだが、幅わずか1
.5Iam程度の突起したメサストライプ9のエツチン
グ速度が他の部分と比べて特に速くエツチングされる。
This can be done with good reproducibility by using a mixed etching solution of water and hydrochloric acid. In this case the exposed I
The entire np surface is etched, but the width is only 1
.. The etching rate of the protruding mesa stripe 9 of about 5 Iam is particularly high compared to other parts.

実際には塩酸対純水を4:1の体積比で混合したエツチ
ング液を用い、3°Cで10秒間エツチングを行なうこ
とにより、メサストライプ9上のp−InP層旦 クラッド層6を0.6Im、平趙部のp−InP層オヨ
びエツチング溝7.8の内部のInP層をいずれも0.
1〜015μmエツチングした1以上のようにしてレー
ザ共娠軸方向に段差のつい九メサスト2イブ9.2よび
それをはさむエツチング溝7.8を形成したDHウェフ
ァに埋め込み成長を行なう。まずp−InP電流プ0ツ
ク層”、rllnP電流ブロック層11をいずれもメサ
ストライプの^さの高い部分の上面のみを除いて、さら
にp−InP埋め込み層12、発光波長1.3am相当
のp−In07□”0.28 AsO,6I Po、3
9*極層13をいずれも全面にわたって積層させる。p
−4nP電流ブロック層10、およびn −I n P
電流プロ2ク層11をいずれも上述のように部分的に積
層しないようにするのは通常の2相溶液を用いた液相成
長法によシ再現性よく、かつ容易にできる。これは液相
成長における成長状態を利用したものであシ、幅が狭く
かつ高さの^いメサストライプ部分では、メサ側面での
結晶成長速度が高いためにメサ上面で成長溶液中の少数
格子原子、この場合にはIn溶液中のP原子が減少する
ために、メサ上面のみできわめて結晶成長しにくくなる
ためである。実際の素子作製においては、2相成長溶液
の成長開始温度、クーリングレート、および成長時間を
コントロールすることによってメサストライプ9の高さ
の高い部分にのみ積層させないようにすることが容易に
できる。メサ高さの低い部分では、メサ上面で溶液中の
少数格子原子が減少する度合いがメサ高さの高い部分よ
シもわずかであるのでメサストライプ9の^さの低い部
分では2つの電流ブロック層を積層させ、同時に茜さの
高い部分の上面には積層させないようにすることが容易
にできるわけである。この実施例にi・いてはう30°
Cでンークいクーリングレー) 0.7”C/’m1n
Xp−InP E流ブロック層10の成長開始温度62
0Cで90秒間成長を行ない、続りてn−(nP電電流
ブロク2層1160秒間成長することによって上述のよ
うな結晶成長が容易にかつP>現性よく行なえた。I&
後に電極形成ケ行なって所望のDFB−BHI、Dを得
た。
Actually, by etching at 3°C for 10 seconds using an etching solution containing a mixture of hydrochloric acid and pure water at a volume ratio of 4:1, the p-InP layer on the mesa stripe 9 and the cladding layer 6 are etched at 0.0000. 6Im, the p-InP layer in the flat part and the InP layer inside the etching groove 7.8 are both 0.6Im.
Embedded growth is performed on a DH wafer which has been etched by 1 to 015 .mu.m to form a nine-metast two-wavelength groove 9.2 with a step in the direction of the laser beam axis and an etched groove 7.8 sandwiching it. First, the p-InP current blocking layer 11 and the rllnP current blocking layer 11 are removed by removing only the upper surface of the high part of the mesa stripe, and then the p-InP buried layer 12 and the -In07□”0.28 AsO,6I Po,3
9* Pole layers 13 are laminated over the entire surface. p
−4nP current blocking layer 10 and n −I nP
Preventing the current process layer 11 from being partially laminated as described above can be done easily and with good reproducibility by a liquid phase growth method using an ordinary two-phase solution. This takes advantage of the growth conditions in liquid phase growth, and in the narrow and tall mesa stripe part, the crystal growth rate on the mesa sides is high, so the minority lattice in the growth solution grows on the mesa top surface. This is because atoms, in this case P atoms in the In solution, decrease, making it extremely difficult for crystal growth to occur only on the upper surface of the mesa. In actual device fabrication, by controlling the growth start temperature, cooling rate, and growth time of the two-phase growth solution, it is easy to avoid stacking only on the high height portions of the mesa stripes 9. In the low height part of the mesa, the degree of decrease of the minority lattice atoms in the solution on the top surface of the mesa is smaller than in the high mesa height part. Therefore, in the low part of the mesa stripe 9, there are two current blocking layers. This means that it is easy to layer the layers and at the same time avoid layering on the top surface of the areas with high redness. In this example, it is 30°
Cooling gray with C) 0.7”C/'m1n
Growth start temperature 62 of Xp-InP E flow blocking layer 10
By growing at 0 C for 90 seconds, and then growing two layers of n-(nP current blocks for 1160 seconds), the crystal growth described above was easily performed and with good P>Facility.I&
Afterwards, electrode formation was carried out to obtain the desired DFB-BHI, D.

低抵抗オーミック電極形成のだめの不純物拡散本素子全
面に行なうことができ、従来例の場合のような不純物拡
散の拡散エッヂや金輌との合金化熱処理におけるアロイ
スパイク発生等の問題は全くない。
The impurity diffusion for forming the low resistance ohmic electrode can be carried out over the entire surface of the device, and there are no problems such as the diffusion edges of the impurity diffusion or the occurrence of alloy spikes during alloying heat treatment with gold as in the conventional example.

上述のように本発明の実施例である波長1.55amで
単一軸モード発振するInGaAsP/InPD F 
B −B HT、 Dにおいて、ファブリ・ペローモー
ド抑制のための非を流σ、入領領域結晶成長の段階で容
易にかつきわめて内税性よく形成できた。発光再結合す
る活性層を含むメサストライプ9がレーザ共損軸方向に
高さの異なる部分を有し、メサ高さの高い部分の上面の
みを除いて電流ブロック層を形成することによシ、上述
の非電流注入領域が容易に形成され、従来例の場合と比
べて特性上の再現性、製造歩留シが大幅に向上した。こ
のようにして作製したDFB−BHLDにおいて電流注
入領域の長さ300+m 、非注入領域の長さ200μ
mとし、室温でのcw光発振きい値電流30 mAXI
 c w発振時の波長の温度変化がo、5X70c、5
00Mbits/seeの高速パルス変調時にも単一の
DFB軸モードでレーザ弗素するものが再現性よく得ら
れた。
As mentioned above, InGaAsP/InPD F which oscillates in a single axis mode at a wavelength of 1.55 am, which is an embodiment of the present invention,
In B-B HT and D, the flow σ for suppressing the Fabry-Perot mode could be easily formed at the stage of crystal growth and with extremely high efficiency. The mesa stripe 9 including the active layer that undergoes radiative recombination has portions with different heights in the laser colossal axis direction, and a current blocking layer is formed except for only the top surface of the portion with a high mesa height. The above-mentioned non-current injection region was easily formed, and the reproducibility of characteristics and manufacturing yield were significantly improved compared to the conventional example. In the DFB-BHLD manufactured in this way, the length of the current injection region is 300+m, and the length of the non-injection region is 200μ.
m, and the cw optical oscillation threshold current at room temperature is 30 mAXI
The temperature change in the wavelength during c w oscillation is o, 5X70c, 5
Even during high-speed pulse modulation of 00 Mbits/see, laser fluorine in a single DFB axis mode was obtained with good reproducibility.

なお本発明の実施例においては、InPを基板とし、■
n1..−xGaxASy Pl−yを活性層、および
光ガイド層とする発振波長1nm  帯の光デバイスを
示したが、本発明はもちろんこの材料系に限ることなく
、可視光領域から遠赤外領域までの波長範凹をカバーす
べく、他の半導体材料であっても何ら差しつかえない。
In the embodiment of the present invention, InP is used as the substrate, and
n1. .. -xGaxASy Although an optical device with an oscillation wavelength of 1 nm using Pl-y as an active layer and a light guide layer has been shown, the present invention is of course not limited to this material system, and can be applied to wavelengths from the visible light region to the far infrared region. There is no problem in using other semiconductor materials to cover the range concavity.

DFB−BHLDに用いる回折格子も1.55j1mの
レーザ発振光に対してピッチ0.23amの回折格子を
示したが、これに限ることなく 、0.46+5y11
等、活性層中の発振波長の1/2の整数倍のピッチをも
つ回折格子であればよい。
The diffraction grating used in the DFB-BHLD also showed a diffraction grating with a pitch of 0.23 am for the laser oscillation light of 1.55j1m, but it is not limited to this, and may be 0.46+5y11.
Any diffraction grating may be used as long as it has a pitch that is an integral multiple of 1/2 of the oscillation wavelength in the active layer.

BH−LDの横モード制御に対する構造も実施例におい
ては2本のエツチング溝によってメサストライプがはさ
まれた構造のものを示したが、本発明はもちろんこれに
限定するものでなく、発光再結合する活性層が、他の半
導体材料によっておおわれているBH−LDならば全て
含むものである。さらに電流ブロック層構造についても
PNPN接合によるブロックノー構造を示したが、これ
に限ることなく例えば半絶縁性半導体層を電流ブロック
ノーとしても何ら差しつかえない。
The structure for controlling the transverse mode of the BH-LD is shown in the example as a structure in which a mesa stripe is sandwiched between two etching grooves, but the present invention is of course not limited to this. This includes all BH-LDs whose active layer is covered with another semiconductor material. Further, regarding the current blocking layer structure, although a blocking structure using a PNPN junction has been shown, the present invention is not limited to this, and there is no problem in using a semi-insulating semiconductor layer as a current blocking layer, for example.

本発明の特徴は、Dr’B−BHLDにおいて、発光再
結合する活性層を含むメサストライプがレーザ共振軸方
向に高さの異なる部分を有し、メサ高さの高い部分のみ
を除いて電流ブロック層を形成したことである。これに
よって結晶成長の段階で非注入領域が容易に形成でき、
その再現性もきわめてよい。したがってレーザ共振器端
面を斜めにエツチングする方法や、絶縁膜あるいは不純
物拡散によって非注入領域を形成する従来の方法と比べ
て、DFBLDにおける特性の再現性、製造歩留り、信
頼性が大幅に向上した。
The feature of the present invention is that in the Dr'B-BHLD, the mesa stripe including the active layer that emits light and recombines has portions with different heights in the direction of the laser resonance axis, and current is blocked except for the portion with the high mesa height. This is due to the formation of layers. This allows a non-implanted region to be easily formed during the crystal growth stage.
Its reproducibility is also extremely good. Therefore, compared to the conventional method of etching the laser resonator end face obliquely or forming a non-implanted region by using an insulating film or impurity diffusion, the reproducibility of characteristics, manufacturing yield, and reliability of DFBLD have been significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例であるDFB−BHLDのDH
ウェファの埋め込み成長前の平面図、第2図は第1図で
示したDHウェファに埋め込み成長を行なって作製した
素子の第1図中A−A’部分の断面図、同様に第3図(
a)はB−B’部分、第3図(b)はC−C部分の断面
図である。図中1はn−InP基板、2は回折格子、3
は”  ”0.85 ”0.15”0.33 PO,6
7光ガイド層−4は”0.59 GaO,41As0.
90PO11o  活性層、5はp”0.72 GaO
,28”0.61 PO439メルトバック防止層、6
はp−InPクラッド層、7.8はエツチング層、9は
メサストライプ、10はp−InP電流ブロック層、1
1はn−4nP電流ブロック層、12はp−InP埋め
込み層、13はp  Ino、72 GaO,28As
O,61PO,39a埠 46 千 1 図 竿 3 図 乙!! 0
FIG. 1 shows the DH of a DFB-BHLD which is an embodiment of the present invention.
FIG. 2 is a plan view of the wafer before buried growth; FIG. 2 is a cross-sectional view taken along the line A-A' in FIG.
3(b) is a sectional view taken along the line C-C. In the figure, 1 is an n-InP substrate, 2 is a diffraction grating, and 3
” ”0.85 ”0.15”0.33 PO,6
7 Optical guide layer-4 is made of "0.59 GaO, 41As0.
90PO11o active layer, 5 is p"0.72 GaO
,28"0.61 PO439 Meltback Prevention Layer, 6
is a p-InP cladding layer, 7.8 is an etching layer, 9 is a mesa stripe, 10 is a p-InP current blocking layer, 1
1 is an n-4nP current blocking layer, 12 is a p-InP buried layer, 13 is p Ino, 72 GaO, 28As
O, 61 PO, 39a Pier 46 1,000 1 Zuo 3 Zu Otsu! ! 0

Claims (1)

【特許請求の範囲】[Claims] 少くとも活性層を含む多層膜構造半導体ウェファに、前
記活性層よシも深くエツチングしてメサストライプを形
成した後、埋め込み成長してなる埋め込みへテロ構造半
導体レーザにおいて、前記メチストライプがレーザ共振
軸方向で高さの異なる部分を有し、前記メサストラブの
高さの低い部分に電流ブロック層が形成されてなること
を特徴とする半導体レーザ。
In a buried heterostructure semiconductor laser formed by forming a mesa stripe on a multilayer semiconductor wafer including at least an active layer by etching it deeper than the active layer, and then growing the mesa stripe, the mesa stripe is aligned with the laser resonance axis. 1. A semiconductor laser comprising portions having different heights in different directions, and a current blocking layer being formed in a lower height portion of the mesa slab.
JP267483A 1983-01-11 1983-01-11 Semiconductor laser Pending JPS59127889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP267483A JPS59127889A (en) 1983-01-11 1983-01-11 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP267483A JPS59127889A (en) 1983-01-11 1983-01-11 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59127889A true JPS59127889A (en) 1984-07-23

Family

ID=11535854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP267483A Pending JPS59127889A (en) 1983-01-11 1983-01-11 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59127889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259489A (en) * 1986-05-06 1987-11-11 Hitachi Ltd Semiconductor laser and light amplifier
JP4773022B2 (en) * 1999-12-21 2011-09-14 クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング 2-stage piston compressor with low vibration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259489A (en) * 1986-05-06 1987-11-11 Hitachi Ltd Semiconductor laser and light amplifier
JP4773022B2 (en) * 1999-12-21 2011-09-14 クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング 2-stage piston compressor with low vibration

Similar Documents

Publication Publication Date Title
JPH0656906B2 (en) Semiconductor laser device
JPS5940592A (en) Semiconductor laser element
JP4111549B2 (en) Method for fabricating a semiconductor device
JPS59127889A (en) Semiconductor laser
US6707835B2 (en) Process for producing semiconductor laser element including S-ARROW structure formed by etching through mask having pair of parallel openings
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS5972787A (en) Semiconductor laser
JP2542570B2 (en) Method for manufacturing optical integrated device
JPH037153B2 (en)
JPS59198786A (en) Distributed feedback type semiconductor laser
JPS59197182A (en) Distribution feedback type semiconductor laser
JPS595689A (en) Distributed feedback type semiconductor laser
JP2973215B2 (en) Semiconductor laser device
JPS60164380A (en) Manufacture of semiconductor laser
JPS596588A (en) Semiconductor laser
JPH0136276B2 (en)
JPS59222984A (en) Semiconductor laser device
JPS6344311B2 (en)
JP2810518B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6234473Y2 (en)
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS6037793A (en) Single axial mode semiconductor laser
JPS63305582A (en) Semiconductor laser
JPS58131787A (en) Semiconductor laser