JPS58131787A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS58131787A JPS58131787A JP1345482A JP1345482A JPS58131787A JP S58131787 A JPS58131787 A JP S58131787A JP 1345482 A JP1345482 A JP 1345482A JP 1345482 A JP1345482 A JP 1345482A JP S58131787 A JPS58131787 A JP S58131787A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- active layer
- semiconductor
- groove
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2237—Buried stripe structure with a non-planar active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/24—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は発振横モードの安定化された2Jlkへテロ構
造半導体レーザに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a 2Jlk heterostructure semiconductor laser whose oscillation transverse mode is stabilized.
光フアイバ通信の実用化が進み、その光源である半導体
レーザにおいて、横モードの安定化は必須の条件となっ
ている。発振横モードの安定化の丸め種々のレーザ構造
が提案、試作されておシ、そのひとつとして1980年
発行のエレクトロニクス・レターズ誌第17巻、第1号
、第17ページから第19ページに今井氏らによシ報告
され&8MLレーザがある。この半導体レーザはn−1
n)’基板上にn−1nPバッツ7層、lnGaAm)
’活性層p−1nPクラッド層、活性層と同じ発光波長
のn−n−1nGaA’#を積層させた後、電流注入部
をストライプ状にp−1n)’クラッド島までエツチン
グし、二度目のエピタキシャルg長で、tll、2(D
p −1nPクラッド層、p−1nGaAaP電極層を
順次積層させ九ものである。この半導体レーザにおいて
は、ストライプ部分以外でFilnGaAm)’活性層
とn−1nGaAsP層とかヘテ■接合に垂直な方向で
結合導波路となるため、ストライプ部と、それ以外の結
合導波路部分での光の伝播定数の違いによシ、ストライ
プ部のみに光を集中させることができ、したがって安定
な横基本モード発振を得ることができる。As the practical use of optical fiber communication progresses, stabilization of the transverse mode has become an essential condition for the semiconductor laser that is the light source. Rounding off the stabilization of the oscillation transverse mode Various laser structures have been proposed and prototyped, one of which is Mr. Imai's 1980 issue of Electronics Letters, Vol. 17, No. 1, pages 17 to 19. There is a &8ML laser reported by et al. This semiconductor laser is n-1
n)' 7 layers of n-1nP butts on the substrate, lnGaAm)
After laminating the active layer p-1nP cladding layer and n-n-1nGaA with the same emission wavelength as the active layer, the current injection part is etched in stripes up to the p-1n) cladding island, and the second With epitaxial g length, tll, 2(D
A p-1nP cladding layer and a p-1nGaAaP electrode layer are sequentially laminated. In this semiconductor laser, the FirnGaAm)' active layer and the n-1nGaAsP layer form a coupling waveguide in the direction perpendicular to the heterojunction in areas other than the stripe area, so light is transmitted between the stripe area and the other coupling waveguide areas. Due to the difference in the propagation constant, light can be concentrated only on the stripe portion, and therefore stable transverse fundamental mode oscillation can be obtained.
しかしながら、仁の例においては菓子の製作に2度のエ
ピタキシャル成長工程を必要としてお夛、しかも一層成
長させた活性層を2度目の結晶成長時に高温度雰囲気に
保持することから熱ダメージの影響を受けやすく、歩留
シの低下を招いていた0本発明の目的は上記の欠点を除
去すべく、発振横モードが安定化され、九だ一度のエピ
タキシャル成長工程で製作でき、製造歩留)の向上した
2重ヘテp構造半尋体レープを提供することにある。However, in Jin's case, two epitaxial growth steps were required to produce the confectionery, and the active layer, which had grown even further, was kept in a high-temperature atmosphere during the second crystal growth, making it susceptible to thermal damage. The object of the present invention is to eliminate the above-mentioned drawbacks, to stabilize the oscillation transverse mode, and to improve the manufacturing yield by making it possible to fabricate in a single epitaxial growth process. The object of the present invention is to provide a double hepatop structure half-fatty rape.
本発明による半導体レーザの構成は、2つの半導体ヘテ
四接合によってはさまれた活性層を有する2重ヘテ四構
造半導体レーザにおいて、1sl導電型半導体基板上に
#!2導電型半導体層が形成され、第2導電製半導体層
をつきぬけるエツチング溝が形成された半導体ウェファ
上にエツチング纒部分で高さが最賜低くなるように、活
性層よシもエネルギーギャップの大きくない第1導電型
半尋体層が積層され、その上に活性層よシもエネルギー
ギャップの大きな第1導電型半尋体り2ラド層が積層さ
れ、その上に活性層がエツチング擲上部で最も厚くなる
ように形成され、さらに活性層よシもエネルギーギャッ
プの大きな第2導電型牛纏体り2ラド層が順次形成され
てなることを%徴としている。The structure of the semiconductor laser according to the present invention is a double heterostructure semiconductor laser having an active layer sandwiched between two semiconductor heterojunctions, and #! A second conductivity type semiconductor layer is formed on a semiconductor wafer in which an etching groove is formed through the second conductivity semiconductor layer. A first conductivity type half-layer, which is not large, is laminated, and on top of that, a first conductivity type half-layer, which has a large energy gap than the active layer, is laminated, and the active layer is etched on top of it. It is characterized by the fact that two rad layers of the second conductivity type, which have a large energy gap, are successively formed in the active layer and the active layer.
以下実施例を示す図面を参照しつつ本発明を説明する。The present invention will be described below with reference to drawings showing embodiments.
第1図は本発明の実施例の断面図をあられす〇まず(1
00)n−1n)’基板101に1μm@度の深さまで
p形不純物であるZnを拡散し、Zn拡散層102を形
成する。これは1μm程度の厚さのp−1nP工ピタキ
シヤル成長層、あるいはイオン注入層部であってもよ<
、Zn拡散層に限ることはない。その半導体基板に通常
の7オ) IJソゲ2フィの手法によりストライプ状の
溝103を〈011〉方向に平行にZn拡散層102を
つきぬけるように約1,5μmの深さ、@2μmとなる
ように形成する。そのlk液相エピタキシャル成長法に
よシ、まず1.4μm発光波長組成のn−1nusGa
o14A@o、taPo、z@鳩104を平坦部の厚さ
が1μmとなるように、続いてn−1nPバッファ層1
05を平坦部で厚さ1μm、tll103の上部でわず
かに凹んだ形状となるように、さらに1.3μm発光波
長組成(D/7 −プlno、tsGio、xsA g
o、・*Po、s*活性層106をtll03の上部で
0.15Am、平坦部でα1jJmとなるように、また
p−1nPクラッド層107を54m0発光波長1.1
μm組成のp−1nossGao、uAsass)’へ
6711極層108をljlm、順次積層させて結晶成
長を終える。この際n−1no、asOao、si A
8o、y4)’ass層10層上04分で平坦部よシ
も厚く成長するが、全面にわたって平らにはならず、溝
部分のみで凹んだ形状となるように、また先に述べたよ
うにn−In)’バラフッ層105は溝上部でわずかに
凹んだ形状となるように成長させる。この半導体レーザ
のp側に正のバイアスをかけて電流を流すと、ストライ
プ状の$103以外ではZn拡散層102があるために
p−n−p−nm造となってお夛、溝部分のみに有効に
電流が流れる0注入電流を増していくと、活性層106
の発光領域はp−n接合に平行な方向に拡がろうとする
が、−擲の上部以外ではn−1nusGaasaAso
、t4Po、zs層104が近くに存在するためにパッ
クア層貴にしみたした光にとって損失とな少、横高次モ
ードが起つことができない。を九@2Qに示した様に1
nl−xGa XAI F )’ 1− y−I n)
’系DH−1.Dでは活性層の膜厚が0.15〜0.2
μmで発振しきい直置流密度が最小とt)、それよりも
薄く、特に0.1μm以下になるとす振しきい直置流密
度の上昇が着しく、同時に光活性層以外へのしみ出しも
大きくなるため、この光のとじ込め効果はさらに顕著に
なる。したがって注入電流を増していっても婢の上部の
2〜3μm&&の範囲で、横基本モードのみが安定に存
在することになる。このように活性層の結晶成長前にあ
らかじめ設けておいたZn拡散層(あるいはp−In)
’層)102をつきぬけるように形成され大幅の狭いス
トライブ状の擲をオリ用することによル、発振横モード
の安定化された半導体レーザが、ただ1回のエピタキシ
ャル成長工程によp、再現性よく得られ、製造歩留シも
大幅に向上し友。共振器長250μmに切ル出したこの
半導体レーザで室温での発振しきい麺電流49mA、微
分量子効率50係程度の素子が再現性よく祷られる。Figure 1 shows a cross-sectional view of an embodiment of the present invention.
00)n-1n)' Zn, which is a p-type impurity, is diffused into the substrate 101 to a depth of 1 μm to form a Zn diffusion layer 102. This may be a p-1nP epitaxial growth layer with a thickness of about 1 μm or an ion implantation layer.
, is not limited to a Zn diffusion layer. On the semiconductor substrate, a stripe-shaped groove 103 is formed in parallel to the <011> direction to a depth of approximately 1.5 μm and a depth of @2 μm, using a conventional method of IJ SOGE 2 FI to penetrate the Zn diffusion layer 102. Form it like this. By using the lk liquid phase epitaxial growth method, firstly, n-1 nusGa with an emission wavelength composition of 1.4 μm was grown.
o14A@o, taPo, z@ pigeon 104 is then coated with n-1nP buffer layer 1 so that the thickness of the flat part is 1 μm.
05 to have a thickness of 1 μm at the flat part and a slightly concave shape at the top of tll103, and further 1.3 μm of emission wavelength composition (D/7-plno, tsGio, xsA g
o, *Po, s* The active layer 106 is set to 0.15 Am at the top of tll03 and α1jJm at the flat part, and the p-1nP cladding layer 107 is set to 54 m0 with an emission wavelength of 1.1
The crystal growth is completed by sequentially laminating ljlm of 6711 pole layers 108 on p-1nossGao, uAsass)' having a μm composition. At this time, n-1no, asOao, si A
8o, y4)'Ass layer 10 layers are grown thickly even on the flat part in 04 minutes, but it is not flat over the entire surface, and only the groove part has a concave shape, and as mentioned earlier. The n-In)' loose fluorine layer 105 is grown so as to have a slightly concave shape above the groove. When a positive bias is applied to the p-side of this semiconductor laser and a current is passed through it, the parts other than the striped $103 have a p-n-p-nm structure because of the Zn diffusion layer 102, and only the groove portion is formed. When the injection current is increased, the current effectively flows through the active layer 106.
The light-emitting region of tries to expand in the direction parallel to the p-n junction, but in areas other than the top of the
, t4Po, and the zs layer 104 are present nearby, so there is some loss for the light that permeates the Pacqua layer, and transverse higher-order modes cannot occur. As shown in 9@2Q, 1
nl-xGa XAI F )' 1- y-I n)
'Series DH-1. In D, the active layer thickness is 0.15 to 0.2
The oscillation threshold direct flow density is the minimum at μm (t), but if the thickness is thinner than that, especially 0.1 μm or less, the threshold direct flow density will increase rapidly, and at the same time, it will seep into areas other than the photoactive layer. This light trapping effect becomes even more significant as the light becomes larger. Therefore, even if the injection current is increased, only the transverse fundamental mode will stably exist in the range of 2 to 3 .mu.m above the surface. In this way, before crystal growth of the active layer, the Zn diffusion layer (or p-In)
By using a very narrow stripe-like layer that penetrates through the layer 102, a semiconductor laser with a stabilized transverse mode of oscillation can be produced by a single epitaxial growth process. It can be obtained with good reproducibility and the manufacturing yield is greatly improved. With this semiconductor laser cut to a cavity length of 250 μm, a device with an oscillation threshold current of 49 mA at room temperature and a differential quantum efficiency of about 50 factors can be produced with good reproducibility.
なお本発明の実施例においては活性層の発光波長を1.
3μmとし、n−1nt−x(jazAiyPt−y層
1040発光波長組成として1.4μmのものを選んだ
が、コノような波長組成の1Ht−xGaxAsyPl
−y層に限ることなく、n−1ns−xGaxAsy)
’1−y層が活性層よりもエネルギーギャップが大きく
ない中等体材料であルさえずfLはよく、Zn拡散層1
02もエピタキシャル成長法、あるいはイオン注入法等
で形成し九p−In)’層、あるいはp −In t
−xGaxAay)’t−y層であっても差しつかえな
い。さらに用いる半導体材料もInt−xGaxAay
Pl−y/1nP系の半導体材料に限ることなく、他の
半導体材料に対しても有効である。In the examples of the present invention, the emission wavelength of the active layer is set to 1.
3 μm, n-1nt-x (jazAiyPt-y layer 1040, 1.4 μm was selected as the emission wavelength composition, but 1Ht-xGaxAsyPl with a wavelength composition like Kono
-not limited to the y layer, n-1ns-xGaxAsy)
'1-y layer is a mesomorphic material whose energy gap is not larger than that of the active layer, and the chirality fL is good, and the Zn diffusion layer 1
02 is also formed by an epitaxial growth method or an ion implantation method to form a p-In)' layer or a p-Int layer.
-xGaxAay)'ty layer may be used. Furthermore, the semiconductor material used is Int-xGaxAay.
It is effective not only for Pl-y/1nP-based semiconductor materials but also for other semiconductor materials.
本発明の特徴は、あらかじめ半導体基板上に形成された
zn拡散層(あるいはp−1nP層)をつきぬけるよう
に形成した幅の狭いストライプ状の溝を利用して、この
基板上に活性層よルもエネルギーギャップの大きくない
半導体層を溝部分で凹んだ形状とし、活性層を郷土で厚
く成長させることによシ、発振横モードを溝の上部のみ
に限足し九ととであや、発振横モードの安定化された半
導体レーザがただ1回のエピタキシャル成長工程によ)
、きわめて再現性よく、かつ高歩留pで得られた0A feature of the present invention is that the active layer and the like are formed on the semiconductor substrate by using narrow striped grooves that are formed so as to pass through the Zn diffusion layer (or p-1nP layer) previously formed on the semiconductor substrate. Also, by making the semiconductor layer with a small energy gap concave in the groove part and growing the active layer thickly locally, the oscillation transverse mode is limited only to the upper part of the groove. A mode-stabilized semiconductor laser is produced through a single epitaxial growth process)
, obtained with extremely good reproducibility and high yield p.
第1図は実施例の半導体レーザの断面図、第2図は波長
1.3μmの1ns−x(jaxAsy)’t−y/I
n)’ DHレーザの活性層膜厚と発振しきい直置流密
度との関係を示す図である。
図中、101 ”” n−1nP基板、102 ・−・
・−Zfl拡散層あるいはp−1nP層、103・・・
・・・スト2イブ状溝、104 ・・・・−n−1no
、s・Gao、m4AsataPo、***、105・
・・・・・n−In)’バラフッ層、106・・・・・
・In O,7mGa o、s sAs a・1po、
s*活性層、107・・・・・・p−1nPクラッド層
、10 B ・−・・・−p−1no、5sGaa1s
AaO,1lPO67電極層、109・・・・・・p形
オーミック性電極、110・・・・・・n形オーミック
性電極である0棒1 回Fig. 1 is a cross-sectional view of the semiconductor laser of the example, and Fig. 2 is a cross-sectional view of the semiconductor laser of the example.
n)' is a diagram showing the relationship between the active layer thickness and the oscillation threshold perpendicular current density of a DH laser. In the figure, 101 ``'' n-1nP substrate, 102...
-Zfl diffusion layer or p-1nP layer, 103...
...St2 rib-shaped groove, 104 ...-n-1no
,s・Gao,m4AsataPo,***,105・
...n-In)' Barafu layer, 106...
・In O, 7mGa o, ssAs a・1po,
s*active layer, 107...p-1nP cladding layer, 10B...-p-1no, 5sGaa1s
AaO, 1lPO67 electrode layer, 109...P-type ohmic electrode, 110...N-type ohmic electrode 0 bar once
Claims (2)
層を有する21ヘテロ榊造半専体レーザにおいて、第1
導電型半導体基板上にwjJ2導電型半導体層が形成さ
れ、前記#&2専電型千尋体層をつきぬけるエツチング
溝が形成された半導体ウェファ上に前記エツチング溝部
分で高さが最も低くなるように、前記活性層よルもエネ
ルギーギャップの大きくない第1導電型半尋体層が積層
され、その上に#記活性層よりもエネルギーギャップの
大きな第1導亀童半導体クラッド鳩が積層され、その上
に活性層が前記エツチング擲上部で最も厚くなるように
形成され、さらに前記活性層よりもエネルギーギャップ
の大きな第2尋電型半導体クラッド層が順次形成されて
なることを特徴とする半導体レーザ。(1) In a 21-hetero Sakaki semi-dedicated laser with an active layer sandwiched between two semiconductor heterojunctions, the first
A wjJ2 conductive type semiconductor layer is formed on a conductive type semiconductor substrate, and an etched groove is formed on the semiconductor wafer in which an etched groove passing through the #&2 exclusive electric type asymmetrical layer is formed so that the height is the lowest at the etched groove part. , the active layer is also laminated with a first conductivity type half-conductor layer having a small energy gap, and a first conductivity type semiconductor clad layer having a larger energy gap than the # active layer is laminated thereon; A semiconductor laser characterized in that an active layer is formed thereon so as to be thickest at the upper part of the etching layer, and further a second low voltage type semiconductor cladding layer having a larger energy gap than the active layer is successively formed.
lnPであり、前記活性層が1nl−xQixλIFP
I”F であシ、前記活性層の厚さが前記エツチング婢
上部で0.1〜α2μmであ)、平坦部分で0.1μm
以下であることを特徴とする特許請求の範囲第1項記載
の半導体レーザ。(2) The semiconductor substrate and the semiconductor cladding layer are lnP, and the active layer is lnl-xQixλIFP.
I"F, the thickness of the active layer is 0.1 to α2 μm on the etched surface, and 0.1 μm on the flat part.
A semiconductor laser according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1345482A JPS58131787A (en) | 1982-01-29 | 1982-01-29 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1345482A JPS58131787A (en) | 1982-01-29 | 1982-01-29 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58131787A true JPS58131787A (en) | 1983-08-05 |
Family
ID=11833588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1345482A Pending JPS58131787A (en) | 1982-01-29 | 1982-01-29 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58131787A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173913A (en) * | 1990-06-28 | 1992-12-22 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55108789A (en) * | 1979-01-18 | 1980-08-21 | Nec Corp | Semiconductor laser |
-
1982
- 1982-01-29 JP JP1345482A patent/JPS58131787A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55108789A (en) * | 1979-01-18 | 1980-08-21 | Nec Corp | Semiconductor laser |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173913A (en) * | 1990-06-28 | 1992-12-22 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61190993A (en) | Manufacture of semiconductor laser element | |
JPS6050983A (en) | Manufacture of semiconductor laser element | |
US4870468A (en) | Semiconductor light-emitting device and method of manufacturing the same | |
JP3108183B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPS58131787A (en) | Semiconductor laser | |
JP2869995B2 (en) | Method of manufacturing semiconductor laser with embedded high-resistance semiconductor layer | |
JPS6362292A (en) | Semiconductor laser device and manufacture thereof | |
JPS6237913B2 (en) | ||
JPS6318874B2 (en) | ||
JPS61242091A (en) | Semiconductor light-emitting element | |
JPS5925399B2 (en) | Manufacturing method of semiconductor laser | |
JPH0136276B2 (en) | ||
JP2550718B2 (en) | High-resistance embedded semiconductor laser and manufacturing method thereof | |
JPS61104687A (en) | Manufacture of buried semiconductor laser | |
JPS59127889A (en) | Semiconductor laser | |
JP3080643B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2814124B2 (en) | Embedded semiconductor light emitting device | |
JPS5972787A (en) | Semiconductor laser | |
JPH07120836B2 (en) | Semiconductor laser | |
JPS6237914B2 (en) | ||
JPS6241436B2 (en) | ||
JPS6241437B2 (en) | ||
JPS622720B2 (en) | ||
JPS5914912B2 (en) | Manufacturing method of semiconductor laser | |
JPH02199891A (en) | Manufacture of semiconductor laser |