JPS5914912B2 - Manufacturing method of semiconductor laser - Google Patents
Manufacturing method of semiconductor laserInfo
- Publication number
- JPS5914912B2 JPS5914912B2 JP54101572A JP10157279A JPS5914912B2 JP S5914912 B2 JPS5914912 B2 JP S5914912B2 JP 54101572 A JP54101572 A JP 54101572A JP 10157279 A JP10157279 A JP 10157279A JP S5914912 B2 JPS5914912 B2 JP S5914912B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- semiconductor laser
- inp
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
- H01S5/2275—Buried mesa structure ; Striped active layer mesa created by etching
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
- Weting (AREA)
Description
【発明の詳細な説明】
この発明は半導体レーザ、特に埋め込みヘテロ構造を有
する半導体レーザの製造方法に関するものでぁる。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor laser, particularly a semiconductor laser having a buried heterostructure.
従来から、低電流での発振が可能で・かつ光学的特性の
良い半導体レーザの構造に関しては種々の提案がなされ
てあーー、なかでも埋め込みヘテロ構造を有する半導体
レーザが原理的に特に優れている。Various proposals have been made for the structure of semiconductor lasers that can oscillate at low currents and have good optical properties, among which semiconductor lasers with buried heterostructures are particularly superior in principle. .
一方、最近は、石英ファイバを用いた光通信用の光源と
して、波長がlpTfL−−l、6μmで発振するIn
GaASP−InPのダブルヘテロ構造半5 導体レー
ザの要求が高まり、低しきい値でかつ光学的特性のよい
InGaASP−InP半導体レーザが必要となつてき
ている。しかし乍ら現在までのところ、この種の低しき
い値でかつ光学的特性のよいInGaASP−InP′
θ 半導体レーザは実現されておらず、また埋め込みヘ
テロ構造の半導体レーザについても有効な製造方法が見
出されていないために、低しきい値の半導体レーザは実
現されていない。On the other hand, recently, as a light source for optical communication using quartz fiber, In
Demand for GaASP-InP double heterostructure semiconductor lasers has increased, and InGaASP-InP semiconductor lasers with low threshold values and good optical characteristics have become necessary. However, so far, this type of InGaASP-InP' with low threshold and good optical properties has not been developed.
A θ semiconductor laser has not been realized, and no effective manufacturing method has been found for a buried heterostructure semiconductor laser, so a low threshold semiconductor laser has not been realized.
従つてこの発明の目的は、InGaASP−InPの1
5埋め込みヘテロ構造を有する半導体レーザの有効な製
造方法を提供することである。Therefore, the object of the present invention is to
An object of the present invention is to provide an effective method for manufacturing a semiconductor laser having a 5-buried heterostructure.
この種の埋め込みヘテロ構造を有する半導体レーザを第
1図に示してある。A semiconductor laser with a buried heterostructure of this type is shown in FIG.
この第1図は埋め込みヘテロ構造を有する半導体レーザ
を、レーザ光ノ0 の伝ばん方向に垂直な面で切断した
ものであり、この第1図において、1はn形の工nP基
板、2はn形あるいは不純物のドープされていないIn
GaASP層、3はP形のInP層、4はp形のInP
層、5はSiO2あるいはSi3N4などの絶縁層、6
およびク5Tは各々p側およびn側の電極を示している
。こゝでこの第1図に示した埋め込みヘテロ構造を有す
る半導体レーザにおいては、レーザ活性領域であるとこ
ろの、InGaASP層2がその全側面でキャリヤに対
する障壁を有しているために、ダ30ィオードに流れる
電流がこの層2に集中すると共に、注入された電子と正
孔が横方向に拡がることなくこの層2に閉じ込められて
、高い量子効率を得ることができ、またInGaASP
層2の全側面が、より低い屈折率を有する工np基板1
およびlnP層353、4でとり囲まれているために、
良好な光閉じ込めを行なうことができて、光学的および
電気的特性のよいものが得られるのである。しかしてこ
のような埋め込みヘテロ構造を有する半導体レーザは、
従来、第2図aないしdに示すようにして製作されてい
る。This figure 1 shows a semiconductor laser having a buried heterostructure cut along a plane perpendicular to the propagation direction of the laser beam. In this figure, 1 is an n-type engineered nP substrate, and 2 is an n-type or undoped In
GaASP layer, 3 is P-type InP layer, 4 is p-type InP
layer 5 is an insulating layer such as SiO2 or Si3N4, 6
and 5T indicate p-side and n-side electrodes, respectively. In the semiconductor laser having the buried heterostructure shown in FIG. 1, since the InGaASP layer 2, which is the laser active region, has barriers against carriers on all its sides, the diode 30 The current flowing through the InGaASP is concentrated in this layer 2, and the injected electrons and holes are confined in this layer 2 without spreading laterally, making it possible to obtain high quantum efficiency.
All sides of the layer 2 have a lower refractive index.
and is surrounded by the lnP layers 353 and 4,
Good optical confinement can be achieved and good optical and electrical properties can be obtained. However, a semiconductor laser with such a buried heterostructure
Conventionally, it has been manufactured as shown in FIGS. 2a to 2d.
すなわち、まず第2図aのように、n形1nP基板1の
一方の主面上に、通常の液相エピタキシヤル成長法によ
つて、n形あるいは不純物のドーブされていないInG
aASP層2づよびp形1nP層3を順次に成長させる
。That is, as shown in FIG. 2a, first, n-type or non-doped InG is grown on one main surface of an n-type 1nP substrate 1 by a normal liquid phase epitaxial growth method.
The aASP layer 2 and the p-type 1nP layer 3 are sequentially grown.
そして前記p形1nP層3上には、一旦、スパツタ法に
よりSiO2膜あるいはSi3N4膜などの絶縁膜を約
0.5μmの厚さに被着させ、かつこの膜は前記基板の
く110〉方向にのびる約5μm幅のストライブ部分を
除き、通常の写真製版技術によつて、前記p形1nP層
3の表面が露出するまで除去し、また残された膜をマス
クにしてこのp形1nP層3訃よびInGaASP層2
を、臭素一メタノール溶液あるいはHCノ:CH3CO
OH:H2O2=l:l:l組成のエツチング液などで
、前記n形1nP?板1が露出するまでメサエツチング
したのち、残された膜をHFなどにより除去して第2図
bとする。ついでこの第2図bのメサ構造を有する半導
体結晶の表面に、第2図cに示すように、通常の液相エ
ピタキシヤル成長法によつてp形1nP層4を成長させ
、さらに第2図DVCみられるように、このp形1nP
層4上にSiO2膜あるいはSi3N4膜などの絶縁層
5を形成したのち、そのメサ部分に相対している部分を
選択的に除去し、かつ最後に金属電極6訃よび7を真空
蒸着などにより形成するのである。Then, on the p-type 1nP layer 3, an insulating film such as a SiO2 film or a Si3N4 film is deposited to a thickness of about 0.5 μm by a sputtering method, and this film is applied in the 110> direction of the substrate. Excluding the extending stripe portion with a width of about 5 μm, the p-type 1nP layer 3 was removed by ordinary photolithography until the surface was exposed, and the p-type 1nP layer 3 was removed using the remaining film as a mask. Death and InGaASP layer 2
, bromine-methanol solution or HC:CH3CO
With an etching solution having a composition of OH:H2O2=l:l:l, the n-type 1nP? After mesa etching is performed until the plate 1 is exposed, the remaining film is removed using HF or the like, as shown in FIG. 2b. Next, as shown in FIG. 2c, a p-type 1nP layer 4 is grown on the surface of the semiconductor crystal having the mesa structure shown in FIG. As seen in the DVC, this p-type 1nP
After forming an insulating layer 5 such as a SiO2 film or a Si3N4 film on the layer 4, the part facing the mesa part is selectively removed, and finally metal electrodes 6 and 7 are formed by vacuum evaporation or the like. That's what I do.
従来の埋め込みヘテロ構造の半導体レーザはこのように
しで製造される力ζ特に第2図bのメサ構造を有する半
導体結晶の表面上に、液相エピタキシヤル成長法により
p形1nY44を直接成長させる工程に}いて次のよう
な不利を生ずる。Conventional buried heterostructure semiconductor lasers are manufactured in this way. In particular, a process of directly growing p-type 1nY44 by liquid phase epitaxial growth on the surface of a semiconductor crystal having a mesa structure as shown in FIG. 2b. This results in the following disadvantages:
すなわち、一般に大気中にさらした半導体表面には種種
の不純物が被着されて}り、前記のようにこの表面に直
接1np層を成長させると、これらの不純物が結晶中に
組み込まれて多くの欠陥を生ずることになる。そしてま
たInP結晶は特に熱的安定性に劣り、長時間に亘つて
高温下にさらされることでPが蒸発し、表面にはPの欠
乏した変成層が形成される性質を有しているのである力
ξ前記の液相エピタキシヤル成長に際しては、融液を結
晶表面にコンタクトさせ、成長開始までに長時間に亘り
高温下に保持するために、このような変成層が形成され
て、結晶表面と成長層との界面にも同様に種々の欠陥を
生じ、これらの欠陥は得られる半導体レーザの量子効率
を低くしてその寿命を短かくするものであつた。この発
明は従来のこのような欠点を改善するために〜前記メサ
構造を有する半導体結晶の表面上に、液相エピタキシヤ
ルによりp形1nP層を成長させる直前に、InP融液
によりメサ構造を大きく変形することなくメルトバツク
して、結晶表面の不純物とが変成層を除去するようにし
たものである。In other words, various types of impurities are generally deposited on the semiconductor surface exposed to the atmosphere, and when a 1np layer is grown directly on this surface as described above, these impurities are incorporated into the crystal and many types of impurities are deposited. This will result in defects. Furthermore, InP crystals have particularly poor thermal stability, and when exposed to high temperatures for long periods of time, P evaporates and a metamorphosed layer deficient in P is formed on the surface. A certain force ξDuring the above-mentioned liquid phase epitaxial growth, in order to bring the melt into contact with the crystal surface and hold it at a high temperature for a long time before the growth starts, such a metamorphic layer is formed and the crystal surface is Various defects also occur at the interface between the semiconductor laser and the grown layer, and these defects lower the quantum efficiency of the resulting semiconductor laser and shorten its lifetime. This invention aims to improve the above drawbacks of the conventional method. Immediately before growing a p-type 1nP layer by liquid phase epitaxy on the surface of the semiconductor crystal having a mesa structure, the mesa structure is enlarged using an InP melt. It melts back without deforming and removes impurities and metamorphosed layers on the crystal surface.
以下、この発明方法の一実施例につき、第3図aないし
dを参照して詳細に説明する。Hereinafter, one embodiment of the method of the present invention will be described in detail with reference to FIGS. 3a to 3d.
まず第3図aに示すように、n形1nP基板1の一方の
主面上に、通常の液相エビタキシヤル成長法によつて、
n形あるいは不純物のドーブされていないInGaAS
P層2、p形1nP層3}よびInGaASP層8を順
次に成長させる。First, as shown in FIG. 3a, on one main surface of the n-type 1nP substrate 1, by the usual liquid phase epitaxial growth method,
InGaAS not doped with n-type or impurities
P layer 2, p-type 1nP layer 3}, and InGaASP layer 8 are grown in sequence.
またこれに従来と同様にSiO2膜などの絶縁膜を用い
、第3図bのように、メサ構造の半導体結晶を得る。続
いて前記メサ構造の半導体結晶の表面上八液相エピタキ
シヤル成長法によつてp形1nP層4を成長させるので
あるが、この実施例では成長直前に630℃のIn融液
を約1秒間、半導体結晶上にコンタクトさせてメルトバ
ツクする。このメルトバツクによりNPは}\よそ3μ
mエツチバツクされ、同時にInGaASP層3もエツ
チバツクされる瓜このときIn融液中にGaが溶け込む
ために、InGaASP層8の下のInP層3はエツチ
バツクされにくいことが、発明者らの種々の実験によつ
て明らかになつた。そしてこの結果、第3図bの構成と
することで、In融液によるエツチバツクを行なつても
メサ構造を大きく変形することはなく、第3図cの構成
を容易に得られるのである。ついでこのように成長させ
たP形1訂帰4の表面上に絶縁層5を被着させて、かつ
これを選択的に除去した上で、金属電極6,7を形成し
て臂開し〜第3図Dの構造を従来と同様にして得るので
ある。な訃前記実施fl!&まn形1nP基板を用いた
場合であるが、p形1nP基板を用いた場合にも適用で
き、また埋め込み形の発光ダイオードにも有効であり、
さらに溶解度の異なる他の材料の組み合わせについても
実施可能である。Further, as in the conventional method, an insulating film such as an SiO2 film is used to obtain a mesa-structured semiconductor crystal as shown in FIG. 3b. Subsequently, a p-type 1nP layer 4 is grown on the surface of the mesa-structured semiconductor crystal by an eight-liquid phase epitaxial growth method. , it is brought into contact with a semiconductor crystal and melted back. With this meltback, NP is \ 3μ
The inventors have found through various experiments that the InP layer 3 under the InGaASP layer 8 is difficult to etch back because Ga dissolves into the In melt at this time when the InGaASP layer 3 is also etched back. It soon became clear. As a result, by adopting the structure shown in FIG. 3b, the mesa structure is not significantly deformed even when etching back with an In melt is performed, and the structure shown in FIG. 3c can be easily obtained. Next, an insulating layer 5 is deposited on the surface of the P-type 1 layer 4 grown in this way, and after this is selectively removed, metal electrodes 6 and 7 are formed and the arms are opened. The structure shown in FIG. 3D can be obtained in the same manner as in the prior art. The above implementation fl! Although this example uses an n-type 1nP substrate, it can also be applied to a p-type 1nP substrate, and is also effective for embedded light emitting diodes.
Furthermore, combinations of other materials having different solubility are also possible.
以上詳述したようにこの発明によれば、一方の導電形の
InP基板の一方の主面上に、一方の導電形あるいは不
純物のドーブされていないInGaASP層、他方の導
電形のInP訃よびInGaASP層を、液相エピタキ
シヤルにより順次に成長させrかつメサ構造を形成した
のち、表面に他方の導電形のInP層を液相エピタキシ
ヤル成長させる直前にメルトバツクしても、最上層がI
nGaASP層であるために、その下の活性領域を残す
ことができ、かつメルトバツクに引き続いて活性領域の
横方向閉じ込め層を成長させるから、欠陥の少ない埋め
込みヘテロ構造を得ることができ、さらにストライプ状
メサ構造の形成時に、ストライプに沿う細かい凹凸が形
成あれても、メルトバツクによつてこの凹凸がなくなり
、損失の少ない導波路とすることができ、これらによつ
て発振しきい値が低く、長寿命の半導体レーザを得られ
るものである。As detailed above, according to the present invention, an InGaASP layer of one conductivity type or not doped with impurities is formed on one main surface of an InP substrate of one conductivity type, an InP layer of the other conductivity type, and an InGaASP layer of the other conductivity type. Even if the layers are sequentially grown by liquid phase epitaxial method to form a mesa structure and then melted back immediately before the liquid phase epitaxial growth of the other conductivity type InP layer on the surface, the top layer is
Since it is an nGaASP layer, it is possible to leave the active region underneath, and since the lateral confinement layer of the active region is grown following the meltback, a buried heterostructure with fewer defects can be obtained, and furthermore, a striped structure can be formed. Even if fine irregularities are formed along the stripes during the formation of the mesa structure, these irregularities are eliminated by meltback, making it possible to create a waveguide with low loss, resulting in a low oscillation threshold and long life. It is possible to obtain a semiconductor laser of
第1図は埋め込みヘテロ構造の半導体レーザの概要を示
す断面図、第2図aないしdは従来の製造方法を工程順
に示す断面図、第3図aないしdはこの発明の製造方法
を工程順に示す断面図である。
1・・・・・・n形1nP基板、2,8・・・・・・I
nGaASP層、3,4・・・・・・p形1nP層、5
・・・・・・絶縁層、6,7・・・・・・金属電極。FIG. 1 is a cross-sectional view showing an outline of a buried heterostructure semiconductor laser, FIGS. 2 a to d are cross-sectional views showing the conventional manufacturing method in order of process, and FIGS. 3 a to d are cross-sectional views showing the manufacturing method of the present invention in order of process. FIG. 1...N-type 1nP substrate, 2,8...I
nGaASP layer, 3, 4... p-type 1nP layer, 5
...Insulating layer, 6,7...Metal electrode.
Claims (1)
の導電形あるいは不純物のドープされていないInGa
ASP層、他方の導電形のInP層およびInGaAS
P層を成長させる工程と、前記基板主面に達するまでメ
サエツチングして、レーザ光の伝ぱん方向に沿う両側面
を形成する工程と、ついでこれを表面からメルトバック
したのち、その表面に他方の導電形のInP層を成長さ
せる工程とを含むことを特徴とする半導体レーザの製造
方法。1 On one main surface of an InP substrate of one conductivity type, InGa of one conductivity type or not doped with impurities
ASP layer, InP layer of the other conductivity type and InGaAS
A step of growing a P layer, a step of mesa etching until it reaches the main surface of the substrate to form both side surfaces along the propagation direction of the laser beam, and then melting it back from the surface and then adding the other layer to the surface. A method for manufacturing a semiconductor laser, comprising the step of growing a conductive type InP layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54101572A JPS5914912B2 (en) | 1979-08-06 | 1979-08-06 | Manufacturing method of semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54101572A JPS5914912B2 (en) | 1979-08-06 | 1979-08-06 | Manufacturing method of semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5624995A JPS5624995A (en) | 1981-03-10 |
JPS5914912B2 true JPS5914912B2 (en) | 1984-04-06 |
Family
ID=14304109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54101572A Expired JPS5914912B2 (en) | 1979-08-06 | 1979-08-06 | Manufacturing method of semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5914912B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60123085A (en) * | 1983-12-08 | 1985-07-01 | Fujitsu Ltd | Semiconductor laser |
JPH0722146B2 (en) * | 1989-02-14 | 1995-03-08 | 松下電器産業株式会社 | Etching method |
-
1979
- 1979-08-06 JP JP54101572A patent/JPS5914912B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5624995A (en) | 1981-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4870468A (en) | Semiconductor light-emitting device and method of manufacturing the same | |
JPH0656906B2 (en) | Semiconductor laser device | |
JPS6220392A (en) | Semiconductor laser element | |
JPH02288288A (en) | Manufacture of buried hetero-structure laser diode | |
JPS5914912B2 (en) | Manufacturing method of semiconductor laser | |
JP3108183B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPS5925399B2 (en) | Manufacturing method of semiconductor laser | |
JPH06104527A (en) | Fabrication of semiconductor laser | |
JPS6248919B2 (en) | ||
JPS6124839B2 (en) | ||
JPH037153B2 (en) | ||
JP2973215B2 (en) | Semiconductor laser device | |
JP3084264B2 (en) | Semiconductor laser device | |
JPH0437598B2 (en) | ||
JP2708949B2 (en) | Method of manufacturing semiconductor laser device | |
JPS6347356B2 (en) | ||
JPH05226767A (en) | Buried semiconductor laser and its production | |
JPS6344311B2 (en) | ||
JP2814124B2 (en) | Embedded semiconductor light emitting device | |
JP3080643B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH0680868B2 (en) | Semiconductor laser device | |
JPH0983077A (en) | Semiconductor optical device | |
JPS61166087A (en) | Manufacture of semiconductor laser element | |
JPS622718B2 (en) | ||
JPH08316584A (en) | Semiconductor optical element and fabrication thereof |