JPS58191472A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58191472A
JPS58191472A JP7489082A JP7489082A JPS58191472A JP S58191472 A JPS58191472 A JP S58191472A JP 7489082 A JP7489082 A JP 7489082A JP 7489082 A JP7489082 A JP 7489082A JP S58191472 A JPS58191472 A JP S58191472A
Authority
JP
Japan
Prior art keywords
film
magnesia
insulating film
transistor
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7489082A
Other languages
Japanese (ja)
Other versions
JPH05867B2 (en
Inventor
Yasuaki Hokari
穂苅 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7489082A priority Critical patent/JPS58191472A/en
Publication of JPS58191472A publication Critical patent/JPS58191472A/en
Publication of JPH05867B2 publication Critical patent/JPH05867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To improve the characteristics of an MIS transistor by a method wherein an SiO2 film is provided between a magnesia spinnel film and a semiconductor substrate. CONSTITUTION:The magnesia spinnel film 2 is epitaxially grown on the surface of a silicon substrate 1, an SiO2 film 4 is formed, and then an SiO2 film 45 is provided by performing a heat treatment in an oxidized atmosphere. A polycrystalline silicon film 5 is provided, N type impurities 6 are ion-implated, and an N type impurity region 61 is formed by performing a heat treatment. The MIS transistor is formed by providing an insulation material 47, contact hole 7 and a metal film 8. The SiO2 film 45 may be formed exceeding 100Angstrom in thickness, but as it is desirable that the gate insulating film has a large capacitance from the viewpoint of improvement in characteristics of the transistor, it is necessary that the magnesia spinner film of a high dielectric constant is thickly formed.

Description

【発明の詳細な説明】 本発明はMIg型半導体装置の構造に関し、特に単結晶
絶縁膜をゲート絶縁膜に用いた新規構造の装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an MIg type semiconductor device, and particularly to a device with a novel structure using a single crystal insulating film as a gate insulating film.

近年シリコン単結晶基板上にマグネシアスピネル(Mg
O・AA20. )の単結晶絶縁膜が形成可能となった
。かかるマグネシアスピネルは比誘電率が8i0□の3
.9に対し、8〜9と約2倍であることから、MIa型
半導体装置のケ゛−ト絶縁膜に利用すれば容量の増加が
計れることから、トランジスタの伝達コンダクタンス9
rnが増加でき、またダイナミックメモリの蓄積電荷量
が増加できる利点を有する。
In recent years, magnesia spinel (Mg
O・AA20. ) single-crystal insulating films can now be formed. Such magnesia spinel has a dielectric constant of 8i0□3
.. 9, it is approximately twice as large as 8 to 9, so if it is used for the gate insulating film of an MIa type semiconductor device, the capacitance can be increased.
This has the advantage that rn can be increased and the amount of charge stored in the dynamic memory can be increased.

しかし、マグネシアスピネル膜とシリコン基板との界面
には、電子捕獲準位NsmがIQ”cIL−2程度存在
するため良好なデバイス特性が得られない。
However, at the interface between the magnesia spinel film and the silicon substrate, there is an electron capture level Nsm of approximately IQ''cIL-2, so that good device characteristics cannot be obtained.

これは、マグネシアスピネルの格子定数が802λ、シ
リコンでは5.431であり、各々の2倍、3倍の格子
長でマツチングが合うため単結晶絶縁膜が実現されてい
るが、これら接合界面には共有結合に関与しない手が多
数存在するからである。
This is because the lattice constant of magnesia spinel is 802λ and that of silicon is 5.431, and single-crystal insulating films are realized because the lattice constants are matched at double and triple lattice lengths, respectively. This is because there are many possibilities that do not involve covalent bonding.

本発明は、かかる欠点を改善した新規な構造のMIa型
トランジスタを提供することにあシ、その要旨はマグネ
シアスピネル膜と半導体基板との関4C8t O2膜を
設けることにある。
It is an object of the present invention to provide an MIa type transistor with a novel structure that improves the above drawbacks, and the gist thereof is to provide a 4C8tO2 film between the magnesia spinel film and the semiconductor substrate.

以下、本発明をMIS型トランジスタに適用した場合を
例にとり詳細に説明する。
Hereinafter, a case in which the present invention is applied to a MIS type transistor will be explained in detail, taking as an example.

第1図はMIa型トランジスタの構造を説明する断面図
であり、図において1は半導体基板、2は単結晶絶縁膜
、3は耐酸化マスクとなる絶縁膜、4.41.42.4
5.47Fi絶縁膜、5は第1の電極、6はイオンの飛
来方向、61は不純物領域、7はコンタクトホール、8
は第2の電極をそれぞれ示す。
FIG. 1 is a cross-sectional view illustrating the structure of an MIa type transistor. In the figure, 1 is a semiconductor substrate, 2 is a single crystal insulating film, 3 is an insulating film serving as an oxidation-resistant mask, and 4.41.42.4
5.47Fi insulating film, 5 is the first electrode, 6 is the ion flying direction, 61 is the impurity region, 7 is the contact hole, 8
respectively indicate the second electrodes.

半導体基板1jCP型の導電性を有するシリコンを、単
結晶絶縁膜2にマグネシアスピネルを用い、Nチャンネ
ルMIS )ランジスタを作ることとし、製造工程を順
を追って説明する。
The semiconductor substrate 1j is made of silicon having CP type conductivity, and the single crystal insulating film 2 is made of magnesia spinel to form an N-channel MIS transistor, and the manufacturing process will be explained step by step.

まず、シリコン基板10表面にマグネシアスピネル膜2
がエピタキシャル成長される(第1図a)。
First, a magnesia spinel film 2 is formed on the surface of a silicon substrate 10.
is epitaxially grown (FIG. 1a).

当該膜はケ゛−ト絶縁瞑として用いることから、通常の
MIS )ランジスタで用いられる100〜1000A
程度の厚さの範囲で所望の膜厚に形成する。当該エピタ
キシャル成長は、 H2,HCl、 CO□ガスを用い
1Mg、kLを塩化物として輸送することにより行うこ
とができる。
Since the film is used as a cathode insulation film, it is rated at 100 to 1000 A, which is used in ordinary MIS transistors.
The film is formed to a desired thickness within a certain range of thickness. The epitaxial growth can be performed by transporting 1 Mg, kL as chloride using H2, HCl, CO□ gas.

次ニ、マグネシアスピネル膜2の表面ICBin。Second, the surface ICBin of the magnesia spinel film 2.

膜41を、続いて窒化膜3および8102膜42を順次
設けた後、まずS10.膜42を通常のフォトエツチン
グ処理により選択除去しパターンを形成し、次いで当該
StO,膜パターンをマスクとして窒化膜3.8i0□
@41.およびマグネシアスピネル膜2が順次選択除去
される(第1図b)。SiO□膜41.42の膜厚は1
00〜500X程度が、窒化膜3の膜厚は500〜xo
ooK程度が好ましい。
After sequentially providing the film 41, followed by the nitride film 3 and the 8102 film 42, S10. The film 42 is selectively removed by a normal photoetching process to form a pattern, and then a nitride film 3.8i0□ is formed using the StO film pattern as a mask.
@41. Then, the magnesia spinel film 2 is sequentially selectively removed (FIG. 1b). The thickness of the SiO□ film 41 and 42 is 1
The thickness of the nitride film 3 is about 500 to 500X.
ooK level is preferable.

8i0□膜41を設ける手段としては、気相成長法又は
スパッタ蒸着法が好ましい。
As a means for providing the 8i0□ film 41, a vapor phase growth method or a sputter deposition method is preferable.

次に、#素雰囲気中での熱処理により8102膜4が形
成される(第1図C)。当該5tO2膜4は、素子分離
に用いる必要上0.5〜1ミクロン程度の膜厚が好まし
い。
Next, the 8102 film 4 is formed by heat treatment in an elementary atmosphere (FIG. 1C). The 5tO2 film 4 preferably has a thickness of about 0.5 to 1 micron because it is necessary for device isolation.

次に、 8i0□M42%窒化膜3、sto、膜41が
順次除去された後、酸化雰囲気中での熱処理により8i
0□膜45が設けられる(第1図d)。8i0゜膜42
.41を除去する際StO□膜4の表面も多少除去され
るが膜厚が厚いので減少量は無視できる。窒化膜3の除
去は加熱されたリン酸溶液を用いるが、当該液はマグネ
シアスピネルをエツチングする能力があり、8i02膜
41はこれを防止する役割りを有している。8 * 0
2膜45は、マグネシアスピネル膜2の中を酸素が拡散
し、シリコン基板1表面で非晶質な8102膜となる結
果形成されるものである。当該8101膜45は、マグ
ネシアスピネル膜2とシリコン基板1との界面の電子捕
獲単位を低減するために設けられるものであり、膜厚は
数10〜100λ程度あれば充分である。当該8 * 
02膜45をxooX以上にするのは自由であるが、ト
ランジスタ特性を向上する上でゲート絶縁膜の容量は大
きいことが望ましく、このためには比誘6電率の大きな
マグネシアスピネル膜の膜厚が厚いことが必要である。
Next, after the 8i0□M42% nitride film 3, sto, and film 41 are sequentially removed, the 8i
A 0□ film 45 is provided (FIG. 1d). 8i0゜membrane 42
.. When removing 41, the surface of the StO□ film 4 is also removed to some extent, but since the film is thick, the amount of reduction can be ignored. A heated phosphoric acid solution is used to remove the nitride film 3, but this solution has the ability to etch magnesia spinel, and the 8i02 film 41 has the role of preventing this. 8*0
The 2 film 45 is formed as a result of oxygen diffusing in the magnesia spinel film 2 and becoming an amorphous 8102 film on the surface of the silicon substrate 1. The 8101 film 45 is provided to reduce the number of electron capture units at the interface between the magnesia spinel film 2 and the silicon substrate 1, and a film thickness of several tens to 100 λ is sufficient. 8 *
02 film 45 can be made to be more than It is necessary that the material be thick.

次に、多結晶シリコン膜5が設けられた後1通常のフォ
トエツチング処理により所望のパターンが形成される(
第1図・)、当該多結晶シリコン膜5は電極として用い
るため不純物を含ませる必要があり、かかる不純物の導
入は膜形成時に雰囲気中に含ませつも良く%また。膜形
成後に熱拡散又はイオン打込み等の手段で行っても良く
、選択は自由である。
Next, after the polycrystalline silicon film 5 is provided, a desired pattern is formed by a normal photoetching process (1).
1), since the polycrystalline silicon film 5 is used as an electrode, it is necessary to contain impurities, and it is preferable to introduce such impurities by including them in the atmosphere at the time of film formation. After the film is formed, thermal diffusion or ion implantation may be used, and the selection is free.

次に、りん、ひ素等のN型不純物6がイオン打込みされ
、続いて熱処理を行うことによりシリコン基板10麦 る(第1図f)。
Next, N-type impurities 6 such as phosphorus and arsenic are ion-implanted, followed by heat treatment to form the silicon substrate 10 (FIG. 1f).

次に,絶縁膜47が設けられた後、通常のフォトエツチ
ング処理によりコンタクトホール7が形成される(第1
図g)。
Next, after the insulating film 47 is provided, a contact hole 7 is formed by a normal photoetching process (the first
Figure g).

次に、アルミニウム等の金属膜8が設けられた後、フォ
トエッング処理によシ選択除去されMI8トランジスタ
が形成される(第1図b)。
Next, after a metal film 8 such as aluminum is provided, it is selectively removed by photo-etching to form an MI8 transistor (FIG. 1b).

w42図は本発明を用いてMI8 )ランジスタを形成
する他の実施例を説明する図である。図において!1図
と同記号は同機能を有する物質を示しており,43.4
4は絶縁膜である。
Figure w42 is a diagram illustrating another embodiment of forming an MI8) transistor using the present invention. In the figure! The same symbols as in Figure 1 indicate substances with the same function, and 43.4
4 is an insulating film.

半導体基板IKシリコンを,単結晶絶縁膜2にマグネシ
アスピネルを用い,Nチャンネルトランジスタを作るこ
ととし、製造工程を順を追って説明する。
A semiconductor substrate IK silicon is used, and a single crystal insulating film 2 made of magnesia spinel is used to fabricate an N-channel transistor, and the manufacturing process will be explained step by step.

まず、シリコン基板1の表面[810□膜43を。First, the surface of the silicon substrate 1 [810□ film 43].

続いて窒化膜3,8i0□膜44を順次設ける(第2図
a)。
Subsequently, nitride films 3 and 8i0□ films 44 are sequentially provided (FIG. 2a).

次に1通常のフォトエツチング処理により5tO2膜4
4が選択除去され、所望のパターンが形成され、続いて
当該パターンをマスクとして窒化膜3およびS10.膜
43が順次選択除去される(第2図b)。
Next, a 5tO2 film 4 is formed by a normal photoetching process.
4 is selectively removed to form a desired pattern, and then using the pattern as a mask, the nitride films 3 and S10. The film 43 is sequentially selectively removed (FIG. 2b).

次に、酸化雰囲気中での熱処理により素子分離のための
厚い8jO,膜4が形成される(第2図C)。
Next, a thick 8JO film 4 for element isolation is formed by heat treatment in an oxidizing atmosphere (FIG. 2C).

次に、8i0.膜44が、続いて窒化膜3 、8i0゜
膜43が順次除去され、シリコン基板1表面の一部が露
出された後、マグネシアスピネル膜2がエピタキシャル
成長される(第2図d)。
Next, 8i0. After the film 44, the nitride film 3, and the 8i0° film 43 are sequentially removed to expose a part of the surface of the silicon substrate 1, the magnesia spinel film 2 is epitaxially grown (FIG. 2d).

当ttエピタキシャル成長は、シリコン基板1の表面が
露出された部分に行われるが、 StO,膜4の表面に
は多結晶膜であっても形成されない。これはエピタキシ
ャル成長雰囲気中のHCtガスの作用により810 z
上のマグネシアスピネルがエツチングされるためと本発
明者は考えている。
This tt epitaxial growth is performed on the exposed surface of the silicon substrate 1, but no polycrystalline film is formed on the surface of the StO film 4. This is due to the action of HCt gas in the epitaxial growth atmosphere.
The inventor believes that this is because the magnesia spinel above is etched.

当該構造が形成された後、酸化雰囲気中での熱処理によ
り第1図dと同じ構造となり、以下第1図に示したと同
じ方法でMI8 トランジスタが形成される。
After the structure is formed, a heat treatment in an oxidizing atmosphere results in the same structure as shown in FIG. 1d, and an MI8 transistor is then formed in the same manner as shown in FIG.

本発明によれば、界面準位Fiゲート絶縁膜にSlO□
を用いた従来のMI8  )ランジスタとほとんど同根
FjLKできる上に、ゲート容量を大きく出来るため、
MI8)ランジスタ特性を向上できることは明らかであ
る。
According to the present invention, the interface state Fi gate insulating film has SlO□
It is possible to use a conventional MI8) transistor with almost the same root FjLK, and the gate capacitance can be increased.
MI8) It is clear that transistor characteristics can be improved.

また、ダイナミックメモリのMI8容量に本発明を用い
れば蓄積される電荷密度が増加できるため、α線による
ノットエラーが低減でき、またパターン寸法を小さくし
集積密度が向上できる。
Further, if the present invention is applied to the MI8 capacitor of a dynamic memory, the accumulated charge density can be increased, so knot errors due to α rays can be reduced, and the pattern size can be reduced to improve the integration density.

なお、上記説明ではシリコン基板上にマグネシアスピネ
ルを気相成長したが、サファイアを気相成長した場合に
も本発明は適用できる。
In the above description, magnesia spinel is grown in a vapor phase on a silicon substrate, but the present invention can also be applied to a case in which sapphire is grown in a vapor phase.

【図面の簡単な説明】[Brief explanation of the drawing]

における半導体装置の断面を示す。図においてlは半導
体基板、2は単結晶絶縁膜、3は絶縁膜、4.41.4
2.43.44.45.47は絶縁膜、5は電極、6は
イオンの飛乗方向、61は不純物領域、7はコンタクト
ホール、8ti電極をそれぞれ示す。 3 第1図 (ぬ          (−A/) (1) −318=
1 shows a cross section of a semiconductor device in FIG. In the figure, l is a semiconductor substrate, 2 is a single crystal insulating film, 3 is an insulating film, 4.41.4
2, 43, 44, 45, 47 are insulating films, 5 are electrodes, 6 are ion jumping directions, 61 are impurity regions, 7 are contact holes, and 8ti electrodes. 3 Figure 1 (nu (-A/) (1) -318=

Claims (1)

【特許請求の範囲】 1、半導体基板と、該半導体基板の表面に設けられた絶
縁膜と、該絶縁膜上に設けられた単結晶絶縁膜と、該単
結晶絶縁膜上に設けられた電極とから構成されたMI8
構造を含むことを特徴とした半導体装置。 2、半導体基板がシリコン、絶縁膜が8102.単結晶
絶縁膜がマグネシアスピネル又はサファイアであること
を特徴とした第1項記載の半導体装置。
[Claims] 1. A semiconductor substrate, an insulating film provided on the surface of the semiconductor substrate, a single crystal insulating film provided on the insulating film, and an electrode provided on the single crystal insulating film. MI8 composed of
A semiconductor device characterized by including a structure. 2. The semiconductor substrate is silicon and the insulating film is 8102. 2. The semiconductor device according to claim 1, wherein the single crystal insulating film is made of magnesia spinel or sapphire.
JP7489082A 1982-05-04 1982-05-04 Semiconductor device Granted JPS58191472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7489082A JPS58191472A (en) 1982-05-04 1982-05-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7489082A JPS58191472A (en) 1982-05-04 1982-05-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58191472A true JPS58191472A (en) 1983-11-08
JPH05867B2 JPH05867B2 (en) 1993-01-06

Family

ID=13560413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7489082A Granted JPS58191472A (en) 1982-05-04 1982-05-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58191472A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211267A (en) * 1981-06-22 1982-12-25 Toshiba Corp Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211267A (en) * 1981-06-22 1982-12-25 Toshiba Corp Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JPH05867B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
JPS583380B2 (en) Semiconductor device and its manufacturing method
JPH08139278A (en) Manufacture of semiconductor device
JPH06163532A (en) Method for isolation of semiconductor element
JPH0712058B2 (en) Semiconductor device and manufacturing method thereof
JPS58191472A (en) Semiconductor device
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPS58121682A (en) Manufacture of double gate semiconductor element
JP3196373B2 (en) Method for manufacturing semiconductor device
JPH01260857A (en) Semiconductor device and manufacture thereof
JPH05866B2 (en)
JPH05198524A (en) Semiconductor device
JPH0613543A (en) Manufacture of semiconductor device
JP2546650B2 (en) Method of manufacturing bipolar transistor
JPH0794578A (en) Fabrication of semiconductor device
JPS62199052A (en) Manufacture of mos type semiconductor device
JPS6018935A (en) Manufacture of semiconductor device
JPS628029B2 (en)
JPS5895868A (en) Manufacture of semiconductor device
JPH08162546A (en) Nonvolatile semiconductor memory and its manufacture
JPH0555204A (en) Manufacture of semiconductor device
JPH04206866A (en) Manufacture of semiconductor device
JPH0243340B2 (en)
JPH04242935A (en) Manufacture of insulating film
JPH05343698A (en) Manufacture of semiconductor device
JPH0621059A (en) Semiconductor device and manufacture thereof