JPS62199052A - Manufacture of mos type semiconductor device - Google Patents

Manufacture of mos type semiconductor device

Info

Publication number
JPS62199052A
JPS62199052A JP61040392A JP4039286A JPS62199052A JP S62199052 A JPS62199052 A JP S62199052A JP 61040392 A JP61040392 A JP 61040392A JP 4039286 A JP4039286 A JP 4039286A JP S62199052 A JPS62199052 A JP S62199052A
Authority
JP
Japan
Prior art keywords
oxide film
film
gate oxide
substrate
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61040392A
Other languages
Japanese (ja)
Inventor
Takashi Ono
隆 小野
Kazuhiro Anraku
安楽 一宏
Norio Murakami
則夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61040392A priority Critical patent/JPS62199052A/en
Publication of JPS62199052A publication Critical patent/JPS62199052A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto

Abstract

PURPOSE:To prevent external diffusion and to obtain a device having gate oxide films, whose defect occurring rate is decreased, by forming the first gate oxide film and a poly Si gate electrode having high impurity concentration, thereafter covering them with a non-added Si thin film, performing oxidation completely, and providing the second gate oxide film. CONSTITUTION:A P-type Si substrate 1 is isolated by SiO2 film 2. An SiO2 thin film 4 and poly Si 5, in which high concentration P is added, are overlapped. Patternings 4a and 5a are performed, and the surface is covered with non-added poly Si 6. Oxidation is performed completely, and SiO2 7 is obtained. The surface is covered with poly Si 8, and patternings 8a and 7a are performed. An N<+> diffused layer 10 is formed in an opening part. In this constitution, the second gate oxide film 7a is formed by the thermal oxidation of the non- added Si. Therefore, external diffusion of impurities from the lower poly Si gate electrode 5a to the active region in the substrate is suppressed. The specified value of the impurity concentration is kept especially at a region, where a channel region is formed. Highly stable characteristics are obtained with respect to a threshold voltage and the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2層ポリシリコンゲート電極構造を有するMO
S型半導体装置の製造方法に係り、特に1層目ポリシリ
コンゲート電極の不純物の基板へのオートドーピングを
防止したMOS型半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is directed to an MO having a two-layer polysilicon gate electrode structure.
The present invention relates to a method of manufacturing an S-type semiconductor device, and particularly to a method of manufacturing a MOS-type semiconductor device that prevents autodoping of impurities of a first layer polysilicon gate electrode into a substrate.

〔従来の技術〕[Conventional technology]

従来2服ポリシリコンゲート電極構造は、高集積化に極
めて有効である為、D−RAM等のMOS−LS Iで
幅広く用いられている。このMOS−LSIにおいて、
1層目あるいは2層目ポリシリコンゲート電極は、導電
性を持たせる必要上からリンP)等の不純物が高良度に
ドーピングされている。また基板のアクティブ領域上の
第1及び第2ゲート酸化膜は、基板に直接熱成長酸化処
理を施すことにより形成される。更にこれらゲート酸化
膜は、VLSI化に伴ない増々薄膜化されており、特に
D−RAMではα線によるンフトエラー防止等の理由に
よりセル容量を一定値以上に保つ必要があシ、この為よ
シ薄い酸化膜が要求されている。
The conventional two-layer polysilicon gate electrode structure is extremely effective for high integration, and is therefore widely used in MOS-LSIs such as D-RAMs. In this MOS-LSI,
The first layer or second layer polysilicon gate electrode is doped with a high degree of impurity such as phosphorus (P) to provide conductivity. Further, the first and second gate oxide films on the active region of the substrate are formed by directly performing thermal growth oxidation treatment on the substrate. Furthermore, these gate oxide films are becoming thinner and thinner with the advent of VLSI, and in D-RAM in particular, it is necessary to maintain cell capacitance above a certain value for reasons such as preventing phantom errors caused by alpha rays. A thin oxide film is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来の製法によるMOS−LS
 Iでは、熱成長酸化処理によ#)1層目ポリシリコン
ゲート電極及び基板のアクティブ領域上に第2ゲート酸
化膜を形成する際、1層目ポリシリコンゲート電極から
ドーピングされている不純物が基板のアクティブ領域ヘ
オートドープされる(外方拡散)。特にチャンネル形成
予定領域に外方拡散が生ずると、MOSトランジスタで
はしきい値電圧vTが負の方向に変動すると共にVTに
ばらつきが生じ特性の変動をきたすという問題がある。
However, the MOS-LS manufactured by the conventional manufacturing method described above
In I, when forming a second gate oxide film on the first layer polysilicon gate electrode and the active region of the substrate by thermal growth oxidation treatment, impurities doped from the first layer polysilicon gate electrode are removed from the substrate. is autodoped (out-diffused) into the active region of the active region. In particular, when out-diffusion occurs in a region where a channel is to be formed, there is a problem in that the threshold voltage vT of a MOS transistor fluctuates in the negative direction, and VT also varies, resulting in fluctuations in characteristics.

また上述したように、アクティブ色域上の各ゲート酸化
膜は、熱成長酸化処理により基板に直接形成される。こ
のような熱的酸化膜には、基板中の酸素、炭素等の含有
不純物に起因して酸化膜欠陥が含まれるので、一般に膜
質は低下する。この為、特に第2ゲート酸化膜がMOS
トランジスタのゲート酸化膜を構成する場合、絶縁耐圧
が低下するという問題が生ずる。この耐圧低下の問題は
、ゲート酸化膜が薄膜化されてくると電界強度の増加と
も相まって増々重大となってくる(沖電気研究開発第1
28号Vo1.52 N14 P、 65〜72 、第
29回応用物理関連講演予稿集1a−Q−2P。
Further, as described above, each gate oxide film on the active color gamut is formed directly on the substrate by a thermal growth oxidation process. Since such a thermal oxide film contains oxide film defects due to impurities such as oxygen and carbon in the substrate, the film quality generally deteriorates. For this reason, especially the second gate oxide film is
When forming a gate oxide film of a transistor, a problem arises in that the dielectric strength voltage decreases. This problem of reduced breakdown voltage becomes increasingly serious as the gate oxide film becomes thinner and the electric field strength increases (Oki Electric R&D No. 1
No. 28 Vo1.52 N14 P, 65-72, Proceedings of the 29th Applied Physics Related Lectures 1a-Q-2P.

596参照)。596).

従って、本発明は上記の点に鑑みてなされたもので、外
部拡散を防止し、欠陥発生率を低減して形成したゲート
酸化膜を有するMOS型半導体装置の製造方法を提供す
ることを目的とする。
Therefore, the present invention has been made in view of the above points, and an object of the present invention is to provide a method for manufacturing a MOS type semiconductor device having a gate oxide film formed while preventing external diffusion and reducing the defect occurrence rate. do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るMOS型半導体装置の製造方法は、第1の
酸化膜及び高濃度の不純物を含む1層目ポリシリコン膜
にノぞターニングを施して、第1ゲート酸化膜及び1層
目ポリシリコンゲート電極を形成した後、基板全面に不
純物を殆んど含まないノンドープシリコン膜を薄く形成
し、この後熱成長酸化処理により上記ノンドープシリコ
ン膜を完全に酸化して、第2ゲート酸化膜となる第2の
酸化膜に改質するよりにしたものである。
A method for manufacturing a MOS type semiconductor device according to the present invention includes groove turning a first oxide film and a first layer polysilicon film containing a high concentration of impurities, and forming a first gate oxide film and a first layer polysilicon film. After forming the gate electrode, a thin non-doped silicon film containing almost no impurities is formed on the entire surface of the substrate, and then the non-doped silicon film is completely oxidized by thermal growth oxidation treatment to become a second gate oxide film. This is done by modifying it to a second oxide film.

〔作 用〕[For production]

以上のように不発明によれば、第2ゲート酸化膜となる
第2の酸化膜は、ノンドープシリコン膜に熱成長酸化処
理を施して形成する為、下層の1層目ポリシリコンゲー
ト電極から基板のアクティブ領域への不純物の外方拡散
は抑制される。
As described above, according to the invention, since the second oxide film, which becomes the second gate oxide film, is formed by performing thermal growth oxidation treatment on a non-doped silicon film, it is possible to Out-diffusion of impurities into the active region is suppressed.

また、アクティブ領域上の第2の酸化膜は、不純物を殆
んど含まないノンドープシリコン膜を完全に改質して形
成する為、酸化膜欠陥の発生率は十分低減される。
Further, since the second oxide film on the active region is formed by completely modifying a non-doped silicon film containing almost no impurities, the rate of occurrence of oxide film defects is sufficiently reduced.

〔実施例〕〔Example〕

以下、第1図に基き本発明の一実施例を詳細に説明する
。まず同図(a)に示す如く、シリコン窒化膜(Si3
N4)をflit酸化性マスク(図示せず)として用い
る周知の選択酸化法により、P型のシングルシリコン基
板(以下、基板と略称する)1上に厚いフィールド酸化
膜(Si(h)2を形成して、基板1生面をアクティブ
領域3とフィールド領域3 aとに分離する。次に熱成
長酸化処理により、基板全面にシリコン酸化膜(Si2
0)から成る第1の酸化膜4を200〜500A程度形
成する。
Hereinafter, one embodiment of the present invention will be described in detail based on FIG. First, as shown in FIG. 2(a), a silicon nitride film (Si3
A thick field oxide film (Si(h)2 is formed on a P-type single silicon substrate (hereinafter referred to as substrate) 1 by a well-known selective oxidation method using N4) as a flit oxidation mask (not shown). Then, the raw surface of the substrate 1 is separated into an active region 3 and a field region 3a.Next, a silicon oxide film (Si2
0) is formed to a thickness of about 200 to 500A.

次いで同図(b)に示す如く、CVDプロセスにより全
面に1層目ポリシリコン膜5を3000〜5000A程
度堆積し、その後この1層目ポリシリコン膜5に導電性
をもたせる為に、2 X I Q”〜1.2×10 c
In 程度の高濃度のリンP)、ヒ素(A8)等の不純
物を熱拡散法またはイオン注入法を用いてドーピングす
る。そして同図(e)に示すように、周知のホ) IJ
ソグラフイ技術を用いて、まずプラズマドライエツチン
グにより上記1層目ポリシリコン膜5に選択エツチング
を施して1層目ポリシリコンゲート電極5aを形成し、
次に露出した第1の酸化膜4の個所をフッ酸系エツチン
グ液を用いて除去することにより、第1ゲート酸化膜4
aを形成する。
Next, as shown in FIG. 6(b), a first layer polysilicon film 5 of about 3000 to 5000A is deposited on the entire surface by a CVD process, and then, in order to make this first layer polysilicon film 5 conductive, 2×I Q”~1.2×10c
Impurities such as phosphorus (P) and arsenic (A8) at a high concentration such as In are doped using a thermal diffusion method or an ion implantation method. As shown in (e) of the same figure, the well-known IJ
First, the first layer polysilicon film 5 is selectively etched by plasma dry etching using a photolithography technique to form a first layer polysilicon gate electrode 5a.
Next, by removing the exposed portions of the first oxide film 4 using a hydrofluoric acid-based etching solution, the first gate oxide film 4 is removed.
form a.

次いで同図(d)に示すように、減圧CVD法を用いて
基板全面にノンドープポリシリコン膜から成るノンドー
プシリコン膜6を100〜300A程度形成す゛る。な
おこの際、1層目ボリシIIコンゲート電極5aにドー
プされている不純物が外方拡散し難い低温処理とする。
Next, as shown in FIG. 3D, a non-doped silicon film 6 made of a non-doped polysilicon film is formed to a thickness of about 100 to 300 Å over the entire surface of the substrate using a low pressure CVD method. Note that at this time, low-temperature processing is performed so that the impurity doped in the first-layer Volish II conjugate electrode 5a is difficult to diffuse outward.

例えば不純物がリンの場合、500〜600℃とする。For example, when the impurity is phosphorus, the temperature is 500 to 600°C.

またノンドープシリコン膜6の膜厚は、下達する酸化処
理で形成される第2の酸化膜7の膜厚の堤程度以下とす
る。
Further, the thickness of the non-doped silicon film 6 is set to be equal to or less than the thickness of the second oxide film 7 formed in the subsequent oxidation treatment.

この後向図←ンの如く、800〜1100℃程度のドラ
イでたけウェット酸素雰囲気中でlθ〜60分程度、熱
成長酸化処理を施すことにより、上記ノンドープシリコ
ン膜6を完全に酸化し、200〜600A程度の膜厚を
有するシリコン酸化膜(SiO2)から成る第2の酸化
膜7に改質する。
As shown in this backward view ←, the non-doped silicon film 6 is completely oxidized by performing thermal growth oxidation treatment for about 60 minutes in a dry and wet oxygen atmosphere at about 800 to 1100°C. The second oxide film 7 is modified to be a silicon oxide film (SiO2) having a thickness of about 600 Å.

そして同図(f)の如く、CVDプロセスにより全面に
2層目ポリシリコン膜8を3000〜5000A樺度堆
積し、次いで2 X 10 〜1.2X10 cm程度
のリン、ヒ素等の不純物をドーピングして導電性をもた
せる。
Then, as shown in FIG. 5(f), a second layer polysilicon film 8 is deposited on the entire surface with a density of 3000 to 5000 A by a CVD process, and then impurities such as phosphorus and arsenic are doped to a thickness of about 2 x 10 to 1.2 x 10 cm. to provide conductivity.

更に同図(2))に示すように、1ずプラズマドライエ
ツチングにより拡散層形成予定領域上を含む上記2層目
ポリシリコン膜8の個所を選択的に除去して2層目ポリ
シリコンゲート電極(または配線層)8aを形成し、次
に露出した第2の酸化膜7の個所をフッ酸系エツチング
液を用いて除去して、第2ゲート酸化膜(Si02)7
a、及び開口部9を形成する。しかる後同図伍)に示す
ように、上記開口部9に高濃度の不純物、例えばヒ素を
イオン注入することによ、9N型の拡散層lOを形成す
る。
Furthermore, as shown in FIG. 2(2), first, parts of the second layer polysilicon film 8 including the area where the diffusion layer is to be formed are selectively removed by plasma dry etching to form the second layer polysilicon gate electrode. (or wiring layer) 8a is formed, and then the exposed portions of the second oxide film 7 are removed using a hydrofluoric acid-based etching solution to form a second gate oxide film (Si02) 7a.
a, and an opening 9 are formed. Thereafter, as shown in FIG. 5), a 9N type diffusion layer IO is formed by ion-implanting a highly concentrated impurity, for example, arsenic, into the opening 9.

図中、11及び12は夫々トランジスタ領域及びキャノ
ぐシタ領域を示している。
In the figure, 11 and 12 indicate a transistor region and a canister region, respectively.

この後、周知の技術により中間絶縁膜、配線用金属ノぞ
ターン及びノぞツシペーション膜を形成し、MOS型半
導体装置を完成する。
Thereafter, an intermediate insulating film, a metal groove for wiring, and a groove are formed using well-known techniques to complete a MOS type semiconductor device.

なお上記実施例では、ノンドープシリコン膜6としてノ
ンドープポリシリコン膜を用いているが、この他アモル
ファスシリコン膜、あるいはエピタキシャル成長したシ
ングルシリコン膜等を用いることもできる。
In the above embodiment, a non-doped polysilicon film is used as the non-doped silicon film 6, but an amorphous silicon film, an epitaxially grown single silicon film, or the like may also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、第2ゲー
ト酸化膜となる第2の酸化膜はノンドープシリコン膜に
熱成長酸化処理を施し、これを酸化膜に改質して形成す
るようにしたので、この酸化処理においてはドーピング
されている下層の1層目ポリシリコンゲート電極から基
板のアクティブ領域への不純物の外方拡散が抑制される
。従ってアクティブ領域、特にチャネル形成予定領域に
おいて不純物濃度が所定値く維持される為、しきい値電
圧等について高安定の電気的特性が得られるという効果
がある5、 また上述のように、第2の酸化膜はノンドープシリコン
膜を酸化膜に改質して形成するようにしているので、従
来のような基板を直接酸化して形成される酸化膜と異な
り基板の含有不純物の影響を抑制できる。この為、酸化
膜欠陥を殆んど含まない第2ゲート酸化膜が得られるの
で、絶縁耐圧を向上できるという効果もある。第2図は
本発明と従来技術について、第2ゲート酸化膜の耐圧分
布の比較を示すヒストグラムである。同図から明らかな
ように、本発明の場合ばらつきが小さく且つ高耐圧の特
性が得られることがわかる。
As explained in detail above, according to the present invention, the second oxide film, which becomes the second gate oxide film, is formed by subjecting a non-doped silicon film to thermal growth oxidation treatment and modifying it into an oxide film. Therefore, in this oxidation treatment, outward diffusion of impurities from the doped lower first layer polysilicon gate electrode to the active region of the substrate is suppressed. Therefore, since the impurity concentration is maintained at a predetermined value in the active region, especially in the region where the channel is to be formed, highly stable electrical characteristics such as threshold voltage can be obtained5. Since the oxide film is formed by modifying a non-doped silicon film into an oxide film, it is possible to suppress the influence of impurities contained in the substrate, unlike conventional oxide films formed by directly oxidizing the substrate. Therefore, a second gate oxide film containing almost no oxide film defects can be obtained, which also has the effect of improving dielectric breakdown voltage. FIG. 2 is a histogram showing a comparison of the breakdown voltage distribution of the second gate oxide film between the present invention and the prior art. As is clear from the figure, it can be seen that in the case of the present invention, characteristics of small variations and high breakdown voltage can be obtained.

以上のように、′本発明はMOS型半導体装置の安定性
9歩留シ並びに信頼性の向上を実現するものであシ極め
て高い工業的利用価値を有する。
As described above, the present invention realizes an improvement in the stability and yield of MOS type semiconductor devices as well as reliability, and thus has extremely high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する工程断面図、第2
図は第2ゲート酸化膜の耐圧分布による本発明と従来例
との比較説明図である。 l・・・シングルシリコンto板< p型)、2・・・
フィールド酸化膜(SiO2)、3・・・アクティブ領
域、3a・・・フィールド領域、4・・・第1の酸化膜
(Si02)、4a・・・第1ゲート酸化膜、5・・・
1層目ポリシリコン膜、5a・・・1層目ポリシリコン
ゲート電極、6・・・ノンドープシリコン膜()、ンド
ープポリシリコン膜)、7・・・第2の酸化膜(SiO
z)、7a・・・第2ゲート酸化膜、8・・・2層目ポ
リシリコン膜、8a・・・2層目ポリシリコンゲート電
極、9・・・開口部、10・・・拡散層(N型)。 特許出願人 沖電気工業株式会社 第1図 8き唱の実記ダ・115すnすう工i遼即面2コ第1図 tjW ’j’!、ML (Mv7cm)’IJ−!’
AIL(MTI/cm) %rz’+’−km焚化馴J1主玉今争のヒ又トデフA
第2図
Fig. 1 is a process sectional view explaining one embodiment of the present invention;
The figure is a comparative explanatory diagram of the present invention and a conventional example based on the breakdown voltage distribution of the second gate oxide film. l...Single silicon to plate <p type), 2...
Field oxide film (SiO2), 3... Active region, 3a... Field region, 4... First oxide film (Si02), 4a... First gate oxide film, 5...
1st layer polysilicon film, 5a... 1st layer polysilicon gate electrode, 6... non-doped silicon film (), undoped polysilicon film), 7... second oxide film (SiO
z), 7a... Second gate oxide film, 8... Second layer polysilicon film, 8a... Second layer polysilicon gate electrode, 9... Opening, 10... Diffusion layer ( N type). Patent Applicant: Oki Electric Industry Co., Ltd. Figure 1 8 Actual Record of Singing Da・115 Sun Souk i Liao Immediate 2 Cos Figure 1 tjW 'j'! , ML (Mv7cm)'IJ-! '
AIL (MTI/cm) %rz'+'-km Himatato Def A in the current battle for the J1 main team
Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)2層ポリシリコンゲート電極構造を有するMOS
型半導体装置の製造方法において、 (a)フィールド領域により選択的に分離されたシング
ルシリコン基板の主面に第1の酸化膜を形成し、次に1
層目ポリシリコン膜を堆積し形成する工程、 (b)上記1層目ポリシリコン膜及び上記第1の酸化膜
に順次パターニングを施して、1層目ポリシリコンゲー
ト電極及び第1ゲート酸化膜を夫々形成する工程、 (c)この後基板全面にノンドープシリコン膜を積層す
る工程、 (d)上記ノンドープシリコン膜に熱成長酸化処理を施
し、全膜厚に渡つて第2の酸化膜に改質する工程、 (e)この後、基板全面に2層目ポリシリコン膜を堆積
して形成し、次いでこの2層目ポリシリコン膜及び上記
第2の酸化膜に順次パターニングを施すことにより、2
層目ポリシリコンゲート電極及び第2ゲート酸化膜を夫
々形成する工程 とを含む事を特徴とするMOS型半導体装置の製造方法
(1) MOS with two-layer polysilicon gate electrode structure
In a method for manufacturing a type semiconductor device, (a) a first oxide film is formed on the main surface of a single silicon substrate selectively separated by a field region;
a step of depositing and forming a first layer polysilicon film; (b) sequentially patterning the first layer polysilicon film and the first oxide film to form a first layer polysilicon gate electrode and a first gate oxide film; (c) After that, a step of laminating a non-doped silicon film over the entire surface of the substrate; (d) A thermal growth oxidation treatment is applied to the non-doped silicon film to modify it into a second oxide film over the entire film thickness. (e) After this, a second layer polysilicon film is deposited and formed on the entire surface of the substrate, and then this second layer polysilicon film and the second oxide film are sequentially patterned to form a second layer.
1. A method for manufacturing a MOS type semiconductor device, comprising the steps of forming a layered polysilicon gate electrode and a second gate oxide film, respectively.
JP61040392A 1986-02-27 1986-02-27 Manufacture of mos type semiconductor device Pending JPS62199052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040392A JPS62199052A (en) 1986-02-27 1986-02-27 Manufacture of mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040392A JPS62199052A (en) 1986-02-27 1986-02-27 Manufacture of mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPS62199052A true JPS62199052A (en) 1987-09-02

Family

ID=12579387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040392A Pending JPS62199052A (en) 1986-02-27 1986-02-27 Manufacture of mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS62199052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326576A (en) * 1991-04-26 1992-11-16 Nec Corp Manufacture of semiconductor device
JP2008198786A (en) * 2007-02-13 2008-08-28 Fujitsu Ltd Manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326576A (en) * 1991-04-26 1992-11-16 Nec Corp Manufacture of semiconductor device
JP2008198786A (en) * 2007-02-13 2008-08-28 Fujitsu Ltd Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US4497106A (en) Semiconductor device and a method of manufacturing the same
JPH03173480A (en) Manufacture of semiconductor device having multilayer conduction line lying on board
JPS58115859A (en) Manufacture of semiconductor device
JPH09102550A (en) Lddcmos formation
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
US4755863A (en) Semiconductor device having a semiconductor substrate with a high impurity concentration
JPS62199052A (en) Manufacture of mos type semiconductor device
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPS6237541B2 (en)
JP2546650B2 (en) Method of manufacturing bipolar transistor
JPH01260857A (en) Semiconductor device and manufacture thereof
JPH0582784A (en) Manufacture of mis-type semiconductor device
JPS6025272A (en) Insulated gate field-effect type transistor
JPS6018935A (en) Manufacture of semiconductor device
JPH0621059A (en) Semiconductor device and manufacture thereof
JPH02158172A (en) Thin film transistor
JPH02114537A (en) Manufacture of semiconductor integrated circuit device
JPH04137735A (en) Semiconductor device and manufacture thereof
JPH03153045A (en) Manufacture of semiconductor device
JPH06101519B2 (en) Method for forming both regions for separating semiconductor elements
JPH05129328A (en) Manufacture of semiconductor device
JPS6161464A (en) Manufacture of semiconductor device
JPS60103611A (en) Manufacture of semiconductor device
JP2000101083A (en) Fabrication of semiconductor device on semiconductor substrate and transistor