JPS58182267A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS58182267A
JPS58182267A JP57064326A JP6432682A JPS58182267A JP S58182267 A JPS58182267 A JP S58182267A JP 57064326 A JP57064326 A JP 57064326A JP 6432682 A JP6432682 A JP 6432682A JP S58182267 A JPS58182267 A JP S58182267A
Authority
JP
Japan
Prior art keywords
light
solid
wavelength
range
state image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57064326A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
一文 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57064326A priority Critical patent/JPS58182267A/en
Priority to US06/483,755 priority patent/US4577098A/en
Publication of JPS58182267A publication Critical patent/JPS58182267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/133Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements including elements passing panchromatic light, e.g. filters passing white light

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a device of high photosensitivity wherefrom color image bright even by a room light is obtained by a method wherein a fluorescent film which is transparent in the range of specific wavelengths, and emits a light in the range of said specific wavelengths by absorbing the light in the range of wavelengths different therefrom is provided on a photosensor of the picture element part of a solid-state image pickup element. CONSTITUTION:The crystalline fluorescent film 12 constituted of sulfides, silicates, phosphates, etc. is formed on the photo diode B corresponded to e.g. a blue filter on the solid-state image pickup element wherein the picture element part 2 consisting of a drive circuit 3, a transfer part, and a photo diode part are previously formed. Now, when Ag doped ZnS-CdS is used as the fluorescent film, wavelengths of emitting fluorescence can be controlled as the curve shown in the figure. When the density of CdS in the figure is 40%, the wavelength of emission becomes 0.55mum; when a ZnSe-Zn1-xCdxTe film is used as the photo diode, the wavelength can be made to coincide with the maximum range of wavelength 0.55mum, and the sensitivity becomes twice or more compared with the case when the blue light is used as it is. Besides, the same treatment is applied also to green and red.

Description

【発明の詳細な説明】 本発明は、固体撮像装置に関し、特に光感度を向上させ
、室内光でも色あざやかなカラー撮像を得ることができ
るカラー化固体撮像装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device, and in particular provides a color solid-state imaging device that can improve photosensitivity and obtain vivid color images even in indoor light.

例えば、一般にカラー化固体撮像装置は、第1図(、)
に上面図、同0))にそのx−x’断面図を示すように
、下地基板(以下基板という)1上の中央部には光学像
を感知するホトダイオードと、ホトダイオードにより変
換された電気信号を転送する電荷転送素子COD等より
なる画素部2を設け、この画素部2の周囲には、画素部
を駆動するシフトレジスタあるいはCOD等の駆動部3
が設けられている。なお、ここで4は駆動部間を接続す
る金属配線であり、6は、外部リードに接続する電極(
パッド)、6は絶倫膜である。
For example, in general, color solid-state imaging devices are shown in Figure 1 (,).
As shown in the top view and the x-x' cross-sectional view in 0)), in the center of the base substrate (hereinafter referred to as the substrate) 1 is a photodiode that senses an optical image, and an electrical signal converted by the photodiode. A pixel section 2 consisting of a charge transfer element COD or the like is provided, and around this pixel section 2 is a drive section 3 such as a shift register or COD that drives the pixel section.
is provided. Note that here, 4 is a metal wiring that connects between the driving parts, and 6 is an electrode that connects to an external lead (
pad), 6 is the Zetsun membrane.

一方、単板カラー化固体撮像素子を製造する為には、さ
らに、モザイク状あるいは、ストライプ状のカラーフィ
ルタ7をホトダイオード前面に装着する必要がある。第
1図(a)、(ロ)では、あらかじめ、ガラス板8上に
カラーフィルタ層9が形成されたものを、接着剤10を
介して接着した場合を図示しであるが、カラーフィルタ
層を直接形成しても良い。
On the other hand, in order to manufacture a single-plate color solid-state image sensor, it is necessary to further mount a mosaic or striped color filter 7 on the front surface of the photodiode. In FIGS. 1(a) and 1(b), a case is shown in which a color filter layer 9 is formed on a glass plate 8 in advance and is adhered via an adhesive 10. It may be formed directly.

ところが、これらのカラーフィルタ分光透過率は、例え
ば3色方式の場合、第2図に示す通りであり、実際にホ
トダイオードまで到達し、光電流として利用される光は
第2図中の斜線部のみである。つまりカラー化を行うと
、必然的に白黒の場合に比べて感度は大幅に劣化するこ
とになる。
However, the spectral transmittance of these color filters is as shown in Figure 2, for example in the case of a three-color system, and the light that actually reaches the photodiode and is used as photocurrent is only in the shaded area in Figure 2. It is. In other words, when converting to color, the sensitivity inevitably deteriorates significantly compared to when converting to black and white.

従って、光学感度を向上させるためには、ホトダイオー
ドの感度を向上させるか転送率の向上あるいは転送部や
駆動部のノイズを減少させて増幅率を上げる必要がある
つところが、転送率を向上させたり、転送部や駆動部の
ノイズを減少させることは、現状の半導体装置製造プロ
セス(固体撮像素子の製造プロセス)を用いている限り
限界があった。一方、ホトダイオードの青感度を向上さ
せる方法としては、シリコンホトダイオードの拡散深さ
を浅くするとか、シリコンホトダイオードの代りに、第
1図11に示すような、光導電膜μえば、Zn5e −
Zn1.、−ICd!To (= ユービコン膜)やア
モルファスシリコン等を用いる方法が提案されている。
Therefore, in order to improve the optical sensitivity, it is necessary to improve the sensitivity of the photodiode, increase the transfer rate, or reduce noise in the transfer section and drive section to increase the amplification factor. However, there is a limit to reducing the noise in the transfer section and the drive section as long as the current semiconductor device manufacturing process (solid-state image sensor manufacturing process) is used. On the other hand, methods for improving the blue sensitivity of a photodiode include reducing the diffusion depth of the silicon photodiode, and instead of using a silicon photodiode, a photoconductive film such as that shown in FIG.
Zn1. , -ICd! Methods using To (= ubicon film), amorphous silicon, etc. have been proposed.

しかしながら、これらの方法を用いても、第3図に示す
程度の分光感度を得るのが現状であり、固体撮像素子を
カラー化する場合に必要な青感度(400〜480 n
m領域)は、40〜60%が限界であった。つまり、実
際の色信号として取り出せる光電流は、青成分が非常に
少くなり、全体としての感度低下を来たしていた。
However, even if these methods are used, the spectral sensitivity shown in Figure 3 is currently obtained, and the blue sensitivity (400 to 480 n
m area), the limit was 40 to 60%. In other words, the photocurrent that can be extracted as an actual color signal has a very small blue component, resulting in a decrease in overall sensitivity.

以上のような欠点に鑑み、本発明は、青成分の光電流を
大きくでき、全体としての色信号バランスを改善するこ
とにより、カラー化固体撮像素子の光感度を向上するも
のである。すなわち本発明は、たとえば青色フィルタを
通過した光を螢光物質よりなる薄膜を用いてホトダイオ
ードの感度の良い長波長側にシストさせることにより、
青色光電流を大きくし、全体として、撮像素子の感度を
向上させたことを特徴とする傘申;棉固体撮像装置を提
供するものである。
In view of the above drawbacks, the present invention improves the photosensitivity of a color solid-state image sensor by increasing the photocurrent of the blue component and improving the overall color signal balance. That is, in the present invention, for example, the light that has passed through a blue filter is focused on the sensitive long wavelength side of the photodiode using a thin film made of a fluorescent material.
The present invention provides a solid-state imaging device characterized by increasing the blue light current and improving the overall sensitivity of the imaging device.

以下、実施例を用いて、本発明の詳細な説明すると、第
4図に示すように、あらかじめ、駆動回路3や転送部や
ホトダイオード部よりなる画素部2の形成された固体撮
像素子上の、例えば、青フィルタに対応するホトダイオ
ード(図中Bで示す)上に硫化物、ケイ酸塩、リン酸塩
等よりなる結晶性螢光体膜12を形成する。なお、第4
図において第1図と同一部分には同一番号を付している
Hereinafter, the present invention will be described in detail using Examples. As shown in FIG. For example, a crystalline phosphor film 12 made of sulfide, silicate, phosphate, etc. is formed on a photodiode (indicated by B in the figure) corresponding to a blue filter. In addition, the fourth
In the figure, the same parts as in FIG. 1 are given the same numbers.

lは光である。例えば、螢光体膜として銀をドープした
硫化亜鉛−硫化カドミウム等の螢光体を用いれば、螢光
放出波長は第5図のように制御できる。図中CdS濃度
を40%とすれば、放出波長は0.56μmとなり、ホ
トダイオードとしてニュービコン膜を用いておけば、ニ
ュービコン膜の感度の最も高い波長域(O,SSμm)
と一致させることが出来、青色光をその壕ま使用する場
合と比べて約2倍に感度を向上できる。また、ホトダイ
オードがシリコンダイオードの場合には、約3倍となる
。なお、このとき、変換できなかった光は、そのまま、
螢光膜を透過して、ホトダイオードに到達するのでむだ
になることはない0次に、モザイク状のカラーフィルタ
を直接形成するか、第4図のように接着して高感度カラ
ー化固体撮像素子とする。
l is light. For example, if a silver-doped phosphor such as zinc sulfide-cadmium sulfide is used as the phosphor film, the fluorescence emission wavelength can be controlled as shown in FIG. In the figure, if the CdS concentration is 40%, the emission wavelength is 0.56 μm, and if a New Bicon film is used as a photodiode, the wavelength range (O, SS μm) where the New Bicon film has the highest sensitivity
It is possible to improve the sensitivity by about twice as much as when using blue light. Furthermore, if the photodiode is a silicon diode, the amount will be approximately three times larger. Note that at this time, the light that could not be converted remains as it is.
A mosaic color filter can be directly formed on the 0th order, which passes through the fluorescent film and reaches the photodiode, so there is no waste, or it can be glued as shown in Figure 4 to create a highly sensitive color solid-state image sensor. shall be.

以上述べてきたように、本発明の構成とすることにより
、カラーフィルタを通過した光を、ホトダイオードの感
度の良い波長域に変換できるので大巾に感度の向上が計
れる。
As described above, with the configuration of the present invention, the light that has passed through the color filter can be converted into a wavelength range to which the photodiode is sensitive, so that the sensitivity can be greatly improved.

なお、上記実施例では、青色フィルタを通過した光を緑
色領域の波長へ変換して感度向上を計る場合について述
べたが、ホトダイオードかシリコンの場合等は、むしろ
青色光を青色領域の波長に変換した方が効率が良いこと
も明らかである。また、白黒の素子として使用する場合
でも、全面螢光体膜を形成して感度向上が計れることも
明らかである。例えば、ホトダイオードがシリコンの場
合で、螢光体としてcas(9o %)を用いれば、可
視光域の光を600 nmの波長の光へと変換でき、感
度は大幅に向上できる。
In addition, in the above embodiment, the case was described in which the light passing through the blue filter is converted to a wavelength in the green region to improve sensitivity, but in the case of a photodiode or silicon, it is more likely that the blue light is converted to a wavelength in the blue region. It is clear that it is more efficient to do so. It is also clear that even when used as a black and white device, sensitivity can be improved by forming a phosphor film over the entire surface. For example, if the photodiode is made of silicon and cas (9o%) is used as the phosphor, light in the visible light range can be converted to light with a wavelength of 600 nm, and the sensitivity can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)は従来のカラー化固体撮像素子の上面図、
同(ト))は(、)のx−x’線での断面図、第2図は
カラー化に用いるカラーフィルタの分光特性を示す図、
第3図は各種ホトセンサの分光感度特性を示す図、第4
図は本発明の一実施例にかかるカラー化固体撮像素子の
断面構造図、第6図は銀をドープしたCdSのCdS濃
度と変換波長の関係を示す図である。 2・・・・・・画素部、70・・・嗜カラーフィルタ、
8・・・・・・ガラス板、11・・・・・・光導電膜、
12・・・・・・螢光体膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ?   3 第2図 う次長(nrn) 第3図 ジ失長Cnrn) @ 5 図 dS 、r、s+cas xfoo (%J
Figure 1 (,) is a top view of a conventional color solid-state image sensor.
Figure 2 is a diagram showing the spectral characteristics of the color filter used for colorization.
Figure 3 is a diagram showing the spectral sensitivity characteristics of various photosensors, Figure 4
The figure is a cross-sectional structural diagram of a color solid-state imaging device according to an embodiment of the present invention, and FIG. 6 is a diagram showing the relationship between the CdS concentration of CdS doped with silver and the conversion wavelength. 2... Pixel section, 70... Color filter,
8...Glass plate, 11...Photoconductive film,
12... Fluorescent film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure? 3 Fig. 2 Deputy length (nrn) Fig. 3 Loss of length Cnrn) @ 5 Fig. dS, r, s + cas xfoo (%J

Claims (1)

【特許請求の範囲】[Claims] 固体撮像素子の画素部ホトセンサー上に、特定の波長域
で透明でかつ前記特定め波長域と異る他の波長域の光を
吸収して前記特定の波長域の光を放出する螢光膜を形成
したことを特徴とする固体撮像装置。
A phosphor film that is transparent in a specific wavelength range and absorbs light in another wavelength range different from the specific wavelength range and emits light in the specific wavelength range, on the photo sensor of the pixel part of the solid-state image sensor. A solid-state imaging device characterized by forming:
JP57064326A 1982-04-14 1982-04-16 Solid-state image pickup device Pending JPS58182267A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57064326A JPS58182267A (en) 1982-04-16 1982-04-16 Solid-state image pickup device
US06/483,755 US4577098A (en) 1982-04-14 1983-04-11 Solid-state image sensor with a phototropic or fluorescent layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57064326A JPS58182267A (en) 1982-04-16 1982-04-16 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS58182267A true JPS58182267A (en) 1983-10-25

Family

ID=13254993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57064326A Pending JPS58182267A (en) 1982-04-14 1982-04-16 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS58182267A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697352A1 (en) * 1992-10-26 1994-04-29 Physique Rayon Lumie Lab Electromagnetic energy concentrator with frequency shift - uses dopant that responds to electromagnetic excitation by emitting light at different frequency
EP1876648A1 (en) * 2006-07-05 2008-01-09 OmniVision Technologies, Inc. Method and apparatus for increasing light absorption in an image sensor using energy conversion layer
JP2015215624A (en) * 2009-10-28 2015-12-03 アレンティック マイクロサイエンス インコーポレイテッド Microscopy imaging method
US9989750B2 (en) 2013-06-26 2018-06-05 Alentic Microscience Inc. Sample processing improvements for microscopy
US10502666B2 (en) 2013-02-06 2019-12-10 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
US10620234B2 (en) 2009-10-28 2020-04-14 Alentic Microscience Inc. Microscopy imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169382A (en) * 1974-12-13 1976-06-15 Hitachi Ltd
JPS51120186A (en) * 1975-04-14 1976-10-21 Hitachi Ltd Radiation solid photographing device
JPS52150046A (en) * 1976-06-04 1977-12-13 Eastman Kodak Co Image forming device having improved blue response
JPS54116188A (en) * 1978-03-01 1979-09-10 Toshiba Corp Solidstate pick up device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169382A (en) * 1974-12-13 1976-06-15 Hitachi Ltd
JPS51120186A (en) * 1975-04-14 1976-10-21 Hitachi Ltd Radiation solid photographing device
JPS52150046A (en) * 1976-06-04 1977-12-13 Eastman Kodak Co Image forming device having improved blue response
JPS54116188A (en) * 1978-03-01 1979-09-10 Toshiba Corp Solidstate pick up device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697352A1 (en) * 1992-10-26 1994-04-29 Physique Rayon Lumie Lab Electromagnetic energy concentrator with frequency shift - uses dopant that responds to electromagnetic excitation by emitting light at different frequency
EP1876648A1 (en) * 2006-07-05 2008-01-09 OmniVision Technologies, Inc. Method and apparatus for increasing light absorption in an image sensor using energy conversion layer
US7541596B2 (en) 2006-07-05 2009-06-02 Omnivision Technologies, Inc. Method and apparatus for increasing light absorption in an image sensor using energy conversion layer
US10900999B2 (en) 2009-10-28 2021-01-26 Alentic Microscience Inc. Microscopy imaging
US11294160B2 (en) 2009-10-28 2022-04-05 Alentic Microscience Inc. Microscopy imaging
JP2018028683A (en) * 2009-10-28 2018-02-22 アレンティック マイクロサイエンス インコーポレイテッド Method for microscopic imaging
US11947096B2 (en) 2009-10-28 2024-04-02 Alentic Microscience Inc. Microscopy imaging
US10114203B2 (en) 2009-10-28 2018-10-30 Alentic Microscience Inc. Microscopy imaging
US10345564B2 (en) 2009-10-28 2019-07-09 Alentic Microscience Inc. Microscopy imaging
US11635447B2 (en) 2009-10-28 2023-04-25 Alentic Microscience Inc. Microscopy imaging
US9720217B2 (en) 2009-10-28 2017-08-01 Alentic Microscience Inc. Microscopy imaging
US10520711B2 (en) 2009-10-28 2019-12-31 Alentic Microscience Inc. Microscopy imaging
US10620234B2 (en) 2009-10-28 2020-04-14 Alentic Microscience Inc. Microscopy imaging
JP2015215624A (en) * 2009-10-28 2015-12-03 アレンティック マイクロサイエンス インコーポレイテッド Microscopy imaging method
JP2020129141A (en) * 2009-10-28 2020-08-27 アレンティック マイクロサイエンス インコーポレイテッド Method for microscopic imaging
US10866395B2 (en) 2009-10-28 2020-12-15 Alentic Microscience Inc. Microscopy imaging
US10768078B2 (en) 2013-02-06 2020-09-08 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
US10502666B2 (en) 2013-02-06 2019-12-10 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
US11598699B2 (en) 2013-02-06 2023-03-07 Alentic Microscience Inc. Sample processing improvements for quantitative microscopy
US10809512B2 (en) 2013-06-26 2020-10-20 Alentic Microscience Inc. Sample processing improvements for microscopy
US10746979B2 (en) 2013-06-26 2020-08-18 Alentic Microscience Inc. Sample processing improvements for microscopy
US10459213B2 (en) 2013-06-26 2019-10-29 Alentic Microscience Inc. Sample processing improvements for microscopy
US11874452B2 (en) 2013-06-26 2024-01-16 Alentic Microscience Inc. Sample processing improvements for microscopy
US9989750B2 (en) 2013-06-26 2018-06-05 Alentic Microscience Inc. Sample processing improvements for microscopy

Similar Documents

Publication Publication Date Title
CN106129077B (en) Imaging device and electronic equipment
JP4391497B2 (en) COLOR SENSOR, COLOR SENSOR MANUFACTURING METHOD, SENSOR, AND ELECTRONIC DEVICE
KR20070115995A (en) Color conversion substrate, method for manufacturing same and light-emitting device
CA1133614A (en) Color solid-state imager and method of making the same
US4577098A (en) Solid-state image sensor with a phototropic or fluorescent layer
JPS58182267A (en) Solid-state image pickup device
TW200514244A (en) A solid-state image sensor and a manufacturing method thereof
JP3289535B2 (en) Photoelectric conversion device
JPH0775408B2 (en) Imaging device
JPH01246505A (en) Solid state image pickup element
JPS63102361A (en) Contact type solid-state image pickup device
JPS5911085A (en) Solid-state image pickup device
KR830001454B1 (en) Solid-state Imaging Device for Color
JPH0612813B2 (en) Vision sensor
JPS6057711B2 (en) solid state imaging device
JPS59122193A (en) Solid-state image pickup device
JPH061828B2 (en) Vision sensor
JP2578466B2 (en) Solid-state imaging device
JPS59148372A (en) Photosensitive device
JPH01309370A (en) Solid-state image sensor
JPS5967791A (en) Solid-state image pickup device
CN101393923B (en) High tolerance liquid crystal display gating charge coupling device of photoelectric imaging system and preparation thereof
JPH0529592A (en) Manufacture of microlens
JPH01300572A (en) Optically driven semiconductor device
JPH0243350B2 (en)