JPS58178551A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS58178551A
JPS58178551A JP57060874A JP6087482A JPS58178551A JP S58178551 A JPS58178551 A JP S58178551A JP 57060874 A JP57060874 A JP 57060874A JP 6087482 A JP6087482 A JP 6087482A JP S58178551 A JPS58178551 A JP S58178551A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor device
resistance
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57060874A
Other languages
Japanese (ja)
Inventor
Kenji Nishi
謙二 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP57060874A priority Critical patent/JPS58178551A/en
Publication of JPS58178551A publication Critical patent/JPS58178551A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0772Vertical bipolar transistor in combination with resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an IC which operates at a high speed in a high density by forming a resistance layer in a semiconductor device made of a bipolar IC with N or P type polycrystalline Si while forming it vertically to the surface of a substrate in long shape in a longitudinal direction when forming the layer. CONSTITUTION:An N type buried collector layer 3 is formed while enclosing with a P type buried layer 2 on a P type Si substrate 1, an N type layer 4 is epitaxially grown on the layer 3, a P type base layer 5 is formed on the surface, and an N type emitter domain 6 is diffused in the layer 5. Then, the layers 4, 5 are surrounded by an insulating film 9, a window is opened, and base and emitter electrodes 11, 10 are respectively mounted on the domain 5, 6. Thereafter, a resistance layer 22 made of N or P type polycrystalline Si which is vertical and intruded into the layer 3 is buried in the film 9 through another window, and a resistance electrode 21 is covered on the layer 22. In this manner, the area which is occupied with the layer 22 is approx. 1/10 of normal value, thereby increasing the density of the semiconductor device.

Description

【発明の詳細な説明】 本発明は半導体装置詳しくは高密鹿島速度表バイポーラ
IC及びその製造方法に関するものでるる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and more particularly, to a high-density Kashima velocity table bipolar IC and a method for manufacturing the same.

81図は従来のバイポーラICのひとつであるT’rL
の標準回路を示し、第2図は第1図の前記標準回路の中
のトランジスタT3及び抵抗R3で、従来の製造方法で
実現した場合の構造断面を示す。
Figure 81 shows T'rL, one of the conventional bipolar ICs.
FIG. 2 shows a cross section of the structure of the transistor T3 and resistor R3 in the standard circuit of FIG. 1 when realized by a conventional manufacturing method.

第2図において、1はp型基板、2はpm!m込層、3
は11込コレクタ層、4はn型エピタキシー’r ルl
 、5 u p fJ拡散層でトランジスタのペース、
6は11!II拡散層でトランジスタのエミッタ、7は
ディープコレクタ拡散層、8はp型紙抗層、9は絶縁膜
、10,11.12はそれぞれエミッタ電極、ペース電
極、コレクタ電極、13.14は抵抗の電極である。な
お、コレクタ電極12は抵抗電極13.14とは図示し
ない配線金属によって電気的に接続されている。
In Figure 2, 1 is a p-type substrate, 2 is pm! m layer, 3
is the collector layer including 11, and 4 is the n-type epitaxy.
, 5 up fJ diffusion layer and transistor pace,
6 is 11! II diffusion layer is the emitter of the transistor, 7 is a deep collector diffusion layer, 8 is a p-type paper layer, 9 is an insulating film, 10, 11.12 are emitter electrodes, space electrodes, collector electrodes, and 13.14 are resistor electrodes. It is. Note that the collector electrode 12 is electrically connected to the resistance electrodes 13 and 14 by metal wiring (not shown).

以上の構成において、従来のバイポーラICは抵抗領域
、すなわちp層抵抗層8を主体とする領域を横方向に設
けた構造のため、高密度化の妨げとなってい友。例えば
、抵抗の平面寸法で長さ/41!比を10/l とすれ
ば、411iをフォトリソグラフィより決まる5μms
度としても長さが50μmとなシ、面積は5X50J−
となる。まえ、抵抗領域はn型領域とpn接合を形成し
ておシ、接合容量も大きく、高速化の妨げとなった。更
に、従来の上述の如き構造ではコレクタ電極を取出す必
要があり、一般的には50μ♂程度の面積が少なくとも
必要で、やはシ高密度化の妨げとなっていた。
In the above configuration, the conventional bipolar IC has a structure in which a resistance region, that is, a region mainly consisting of the p-layer resistance layer 8, is provided in the horizontal direction, which hinders high density. For example, the planar dimension of the resistor is length/41! If the ratio is 10/l, 411i is 5μms determined by photolithography.
The length is 50μm and the area is 5X50J-
becomes. Previously, the resistance region formed a pn junction with the n-type region, and the junction capacitance was large, which hindered speeding up. Furthermore, in the conventional structure as described above, it is necessary to take out the collector electrode, which generally requires an area of at least about 50 .mu.♂, which hinders high density.

本発明の目的はこれらの欠点を除去するため、n型ポリ
シリコン層またUp型ポリシリコン層を縦方向に抵抗層
として用いたもので以下詳細に説明する。
An object of the present invention is to eliminate these drawbacks by using an n-type polysilicon layer or an up-type polysilicon layer as a resistance layer in the vertical direction, and will be described in detail below.

以下、本発明の二実施例を第3図、第4図と共に説明す
る。
Two embodiments of the present invention will be described below with reference to FIGS. 3 and 4.

第3図は本発明の第1の実施例を示し、上述の第1図に
示すトランジスタT3と抵抗R3を実現したもので、図
中、第2図と同一符号は同一部分、又は相当部分を示し
、21はペース電極、22は前記ペース電極21の下部
に接触したn型ポリシリコン層で、p型シリコン基板1
の面に垂直な縦方向に長く形成され、かつn型埋込コレ
クタ層3と電気的に接続されて成る。
FIG. 3 shows a first embodiment of the present invention, which implements the transistor T3 and resistor R3 shown in FIG. 1 above. In the figure, the same reference numerals as in FIG. 21 is a pace electrode, 22 is an n-type polysilicon layer in contact with the lower part of the pace electrode 21, and the p-type silicon substrate 1
It is formed to be long in the vertical direction perpendicular to the plane of the n-type buried collector layer 3 and is electrically connected to the n-type buried collector layer 3.

以上の構成において、本発明の一実施例によればパイポ
ー2のひとつであるTTLに備えたトランジスタT3及
び抵抗R3の構造を得て% ngポリシリコン層22は
第1図の上述の従来例におけるp!i抵抗層8の作用を
釆比すと同時に、n型埋込コレクタ層3と電気的に接続
されてディープコレクタ拡散層7の作用を果たすことが
できる。
In the above configuration, according to one embodiment of the present invention, the structure of the transistor T3 and the resistor R3 provided in the TTL, which is one of the PIPs 2, is obtained. p! At the same time, it can perform the function of the deep collector diffusion layer 7 by being electrically connected to the n-type buried collector layer 3.

以上a明したように第1の実施例では上述の従来例にシ
けるディープコレクタ拡散層7、pWi抵抗層8、コレ
クタ電極12、及び抵抗電極13.14を取)除いて、
代9に抵抗電極21及びn型ポリシリコ7層22t−構
成したので次の利点がある。
As explained above, in the first embodiment, the deep collector diffusion layer 7, the pWi resistance layer 8, the collector electrode 12, and the resistance electrodes 13 and 14 are removed from the conventional example described above.
Since the resistor electrode 21 and the n-type polysilicone 7 layer 22t are constructed in the ninth embodiment, there are the following advantages.

(1,)抵抗層を縦方向に用いるため、すなわち基板l
の面に喬直な方向に用いるため、抵抗面積が5×5μ−
以下で構成することができ従来の5×50μ−以下、す
なわちl/10程度になる。
(1,) Because the resistive layer is used vertically, i.e. the substrate l
Since it is used in a direction perpendicular to the plane of
It can be configured as follows, and is less than the conventional 5×50μ, that is, about 1/10.

(2)コレクタ電極12を設ける必要がな、い。(2) There is no need to provide the collector electrode 12.

(3)抵抗層22の四方が絶縁膜9に充分に囲まれてお
勢ヲかもその割には容量が小さくて済む。
(3) The resistance layer 22 is sufficiently surrounded by the insulating film 9 on all sides, so that the capacitance is relatively small.

(4)ペース拡散層5のl11rTiがすべて絶縁膜9
と接している丸め、ペース・コレクタ接合容量が小さく
なる。
(4) All of the l11rTi of the pace diffusion layer 5 is the insulating film 9
Rounding in contact with , the pace-collector junction capacitance becomes smaller.

従って、第1の実施例は大幅な高密度化、高速度化がで
きるという大なる効果を有する。
Therefore, the first embodiment has the great effect of significantly increasing density and speed.

第1の実施例は抵抗の一端がコレクタのみと接続されて
いる場合であったが、第4図に示す構造にすれば、第2
の実施例として抵抗であるn型ポリシリコ7層22の一
端がn型埋込コレクタ層3及び図示しない他のトランジ
スタのペースと接線゛させることもできる。この場合に
は第2図と同様にディープコレクタ拡散層7を設け、コ
レクタ電極12を取プ出す必要はあるが、n型ポリシリ
コ7層22を縦方向に形成したことにより第1の実施例
と同様に高密度化、高速度化の効果を有するもので、第
4図に示す第2の実施例は、第1図の標準回路でいえば
抵抗R2及びトランジスタT2を実現したものであり、
抵抗電極22は電源Vccに、コレクタ電極12はトラ
ンジスタT3のペースと電気的に接続されて作用する。
In the first embodiment, one end of the resistor was connected only to the collector, but if the structure shown in FIG.
As an example, one end of the n-type polysilicon 7 layer 22, which is a resistor, can be made tangential to the n-type buried collector layer 3 and the paste of another transistor (not shown). In this case, it is necessary to provide the deep collector diffusion layer 7 and take out the collector electrode 12 as in FIG. Similarly, the second embodiment shown in FIG. 4 has the effect of increasing density and speed, and in the standard circuit of FIG. 1, the resistor R2 and transistor T2 are realized.
The resistive electrode 22 is electrically connected to the power supply Vcc, and the collector electrode 12 is electrically connected to the pace of the transistor T3.

なお、上述の二実施例はn型ポリシリコ7層22を抵抗
としたが、抵抗と接続するトランジスタがpnp型であ
れば、当然のことながらこの抵抗はp型ポリシリコン層
にし、上述の二実施例においてn型ポリシリコン層の代
りIICp型ポリシリコン層にする。
In the above two embodiments, the n-type polysilicon 7 layer 22 is used as a resistor, but if the transistor connected to the resistor is a pnp type, this resistor is of course a p-type polysilicon layer, and the above two embodiments In this example, an IIC p-type polysilicon layer is used instead of an n-type polysilicon layer.

次に、本発明の二実施例の製造方法を説明する。Next, manufacturing methods of two embodiments of the present invention will be explained.

本発明の製造方法は通常の・ンイボーラ製造工程でエピ
タキシャル成長前、ポリシリコンを成長させたい部分に
、例えば第3図の第1の実施例でいえばこれから形成す
る電型ポリシリコン層の底部に最初に薄くポリシリコン
をデボノットする。次のエピタキシャル成長時には前記
のデボゾションされたポリシリコン上部にはそのままポ
リシリコン層22が成長する。その後、ペース拡散また
はエミッタ拡散後に前記ポリシリコン層22へのn型拡
散を行なう。このポリシリコン層22内部では拡散速度
が速く低温処理が今参半可能で、トランジスタ特性の変
動も最小限に押えることができる。このようにすれば容
易に抵抗であるn型ポリシリコ7層22を縦方向に、か
つn型埋込コレクタ層3と一部が接続して成る高密度、
高速度な・9イボーラICを製造することができる。
The manufacturing method of the present invention is carried out in the normal Nybora manufacturing process, and before the epitaxial growth, the polysilicon is first grown on the part where it is desired to grow, for example, in the first embodiment shown in FIG. Debo-knot a thin layer of polysilicon. During the next epitaxial growth, a polysilicon layer 22 is grown directly on top of the debossed polysilicon. Thereafter, n-type diffusion into the polysilicon layer 22 is performed after pace diffusion or emitter diffusion. Inside this polysilicon layer 22, the diffusion rate is fast, and low-temperature treatment is now possible, and fluctuations in transistor characteristics can be suppressed to a minimum. In this way, it is easy to form a high-density structure in which the n-type polysilicon 7 layer 22, which is a resistor, is vertically connected and partially connected to the n-type buried collector layer 3.
It is possible to manufacture high-speed ・9 Ibora ICs.

本発明は以上説明したとおシ、バイポーラICにおいて
、抵抗層としてn型ポリシリコン層またはp型ポリシリ
コン層を基板面に垂直に縦構造とし、しかもこの抵抗の
一端が埋込コレクタ層と接続するようにしたことにより
高密度化、高速度化を達成することができ、かつこの製
造方法はエビタキシャル工程を採用するすべてのバイポ
ーラICに応用することができるという性能、製法両面
において融着な効果を有するものである。
As described above, the present invention provides a bipolar IC in which an n-type polysilicon layer or a p-type polysilicon layer is formed as a resistor layer in a vertical structure perpendicular to the substrate surface, and one end of this resistor is connected to a buried collector layer. By doing this, it is possible to achieve high density and high speed, and this manufacturing method can be applied to all bipolar ICs that adopt the epitaxial process.It has a unique effect in terms of both performance and manufacturing method. It has the following.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTTLの基本回路図、第2図は従来のバイポー
ラデバイスの構造断面図、第3図は本発明の第1の実施
例を示す第2図相当図、第4図は本発明の第2の実施例
を示す第2図相当図である。 1・・・p型シリコン基板、2・・・p型埋込層、3・
・・n型埋込コレクタ層、4・・・n型エピタキシャル
層、5・・・p型ベース層、6・・・n型エイツタ層、
7・・・ディープコレクタ拡散層、8・・・p型紙抗層
、9・・・絶縁膜、10・・・エミッタ電極、11・・
・ペース電極、12・・・コレクタ電極、13.14・
・・抵抗電極、21・・・抵抗電極、22・・・n型ポ
リシリコン層。 特詐出願人 沖電気工業株式会社 ? 1 図 才2図 第3図 第4図 手続補正書 昭和57年9月−3日 特許庁長官″tI41+和夫 殿 1、事件の表示 昭和81年 轡 許 願第 60874  号2、 @
@t)4称 苧導体装置及びそO劇造方繊 3、補正をする者 事件との関係      畳 許 出願人(029)沖
電気工業株式金社 4、代理人 5、補正命令の日付  昭和  年  月  日 (幽
@)6、補正の対象 @−書(D r@@0Wla*説明J 0IIIA。 (1)  明細書2頁12行〜13行の「抵抗電極13
゜14とは図示しない」を「抵抗電極13と、図示しな
い」と訂正する。 (2)同書3頁16行及び17行の「ペース電極」t−
「抵抗電極」と訂正する。 (3)  同書4頁19行の「しかもその割には」を削
除する。 (4)同書5頁16行の[抵抗電極zzJt−1抵抗電
極21」と訂正する。 以上
Fig. 1 is a basic circuit diagram of TTL, Fig. 2 is a structural sectional view of a conventional bipolar device, Fig. 3 is a diagram corresponding to Fig. 2 showing the first embodiment of the present invention, and Fig. 4 is a diagram of the structure of a conventional bipolar device. FIG. 2 is a diagram corresponding to FIG. 2 showing a second embodiment. 1...p-type silicon substrate, 2...p-type buried layer, 3...
... n-type buried collector layer, 4... n-type epitaxial layer, 5... p-type base layer, 6... n-type epitaxial layer,
7... Deep collector diffusion layer, 8... P-type paper layer, 9... Insulating film, 10... Emitter electrode, 11...
・Pace electrode, 12...Collector electrode, 13.14・
. . . Resistance electrode, 21 . . . Resistance electrode, 22 . . . N-type polysilicon layer. Special fraud applicant Oki Electric Industry Co., Ltd.? 1 Figure 2 Figure 3 Figure 4 Procedural Amendment September-3, 1980 Director General of the Patent Office ``tI41 + Kazuo 1, Indication of the Case 1981 Request No. 60874 2, @
@t) 4th person conductor device and its conductor device 3, relationship with the case of the person making the amendment Hiroshi Tatami Applicant (029) Oki Electric Industry Co., Ltd. Kinsha 4, Agent 5, Date of amendment order Showa year Month Day (Yu@) 6, Subject of correction@-book (D r@@0Wla*Explanation J 0IIIA. (1) "Resistive electrode 13" on page 2, lines 12-13 of the specification
"14 is not shown" is corrected to "resistance electrode 13 is not shown." (2) “Pace electrode” on page 3, lines 16 and 17 of the same book t-
Correct it to "resistance electrode." (3) Delete "And for what it's worth" on page 4, line 19 of the same book. (4) Corrected "Resistance electrode zzJt-1 resistance electrode 21" on page 5, line 16 of the same book. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)バイポーラICよ構成る半導体装置において、抵
抗層としてn型ポリシリコン層またはp型ポリシリコン
層を用いて基板面に垂直な縦方向に長く配置して成るこ
とを%徴とする半導体装置。
(1) A semiconductor device composed of a bipolar IC, which is characterized by using an n-type polysilicon layer or a p-type polysilicon layer as a resistance layer and disposing it long in the vertical direction perpendicular to the substrate surface. .
(2)通常のバイポーラ製造工程を有する半導体装置の
製造方法において、エピタキシャル成長前にポリシリコ
ンを成長させたい部分に薄くポリシリコンをデボジット
し、次のエピタキシャル成長時にポリシリコン層を形成
し、その後、ペース拡散またはエミッタ拡散後に前記ポ
リシリコン層へのn型拡散を行うことを特徴とする半導
体装置の製造方法。
(2) In a semiconductor device manufacturing method using a normal bipolar manufacturing process, a thin layer of polysilicon is deposited in the area where polysilicon is desired to be grown before epitaxial growth, a polysilicon layer is formed during the next epitaxial growth, and then paced diffusion is performed. Alternatively, a method for manufacturing a semiconductor device, characterized in that n-type diffusion into the polysilicon layer is performed after emitter diffusion.
JP57060874A 1982-04-14 1982-04-14 Semiconductor device and manufacture thereof Pending JPS58178551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060874A JPS58178551A (en) 1982-04-14 1982-04-14 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060874A JPS58178551A (en) 1982-04-14 1982-04-14 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58178551A true JPS58178551A (en) 1983-10-19

Family

ID=13154957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060874A Pending JPS58178551A (en) 1982-04-14 1982-04-14 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58178551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250652A (en) * 2006-03-14 2007-09-27 Sharp Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933434A (en) * 1972-07-20 1974-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933434A (en) * 1972-07-20 1974-03-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250652A (en) * 2006-03-14 2007-09-27 Sharp Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPS6322070B2 (en)
GB1073551A (en) Integrated circuit comprising a diode and method of making the same
JPS58178551A (en) Semiconductor device and manufacture thereof
JPS6048111B2 (en) Non-volatile semiconductor memory device
JPS6081864A (en) Lateral type transistor
GB1494149A (en) Integrated circuits
JPS6133261B2 (en)
JPS5596675A (en) Semiconductor device
GB1482298A (en) Monolithically integrated circuit
GB1325082A (en) Semiconductor devices
JPS56142661A (en) Semiconductor integrated circuit and manufacture thereof
JPS61134036A (en) Manufacture of semiconductor ic
GB1429696A (en)
JPS5787170A (en) Semiconductor device
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPS63202965A (en) Semiconductor device
JPS6140062A (en) Semiconductor device
JPS5522893A (en) Semiconductor integrated circuit device and its manufacturing method
JPS5527682A (en) Semiconductor device
JPH0345549B2 (en)
JPS5533007A (en) Semiconductor intergated circuit
GB1414066A (en) Junction transistors
JPS5541787A (en) Semiconductor device
Barbee et al. 4400715 Thin film semiconductor device and method for manufacture
JPS55143046A (en) Semiconductor device