JPS58177B2 - Manufacturing method for semiconductor devices - Google Patents

Manufacturing method for semiconductor devices

Info

Publication number
JPS58177B2
JPS58177B2 JP13148578A JP13148578A JPS58177B2 JP S58177 B2 JPS58177 B2 JP S58177B2 JP 13148578 A JP13148578 A JP 13148578A JP 13148578 A JP13148578 A JP 13148578A JP S58177 B2 JPS58177 B2 JP S58177B2
Authority
JP
Japan
Prior art keywords
photosensitive resin
silicon wafer
manufacturing
silicon
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13148578A
Other languages
Japanese (ja)
Other versions
JPS5558526A (en
Inventor
三沢豊
八野耕明
和久井陽行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13148578A priority Critical patent/JPS58177B2/en
Publication of JPS5558526A publication Critical patent/JPS5558526A/en
Publication of JPS58177B2 publication Critical patent/JPS58177B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は、半導体装置の製造法に係り、特に、感光性樹
脂を用いたリフトオフ電極形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming a lift-off electrode using a photosensitive resin.

従来、半導体装置の選択的電極形成法には、金属マスク
を用いる方法、感光性樹脂をマスクとして用いる方法が
ある。
Conventionally, methods for selectively forming electrodes in semiconductor devices include a method using a metal mask and a method using a photosensitive resin as a mask.

感光性樹脂をマスクとして選択的に電極を形成する方法
は、高精度なパターンの電極を形成できることから半導
体装置製造技術に多用されている。
The method of selectively forming electrodes using a photosensitive resin as a mask is frequently used in semiconductor device manufacturing technology because it allows formation of electrodes with highly accurate patterns.

感光性樹脂を用いて電極を形成せる方法には、感光性樹
脂をマスクとして電極金属をエツチングして選択的に形
成する方法、感光性樹脂を分解炭化して選択的に形成す
るリフトオフ法等がある。
Methods for forming electrodes using photosensitive resin include a method in which the electrode metal is selectively formed by etching the photosensitive resin as a mask, and a lift-off method in which the photosensitive resin is decomposed and carbonized to selectively form the electrode. be.

前者は、後者に比較して工程が複雑なる等の欠点がある
The former method has disadvantages such as a more complicated process than the latter method.

特に、リフトオフ法は半導体素子のPN接合がガラスで
パシベーションされている半導体素子に有効である。
In particular, the lift-off method is effective for semiconductor devices in which the PN junction of the semiconductor device is passivated with glass.

第1図は従来のリフトオフ法を示す。FIG. 1 shows a conventional lift-off method.

aはpn接合を有するシリコンウェハ1を示す。a shows a silicon wafer 1 having a pn junction.

ウェハの両面は酸化膜2が設けられている。An oxide film 2 is provided on both sides of the wafer.

bはシリコンウェハ1の一生表面に感光性樹脂3が塗布
された状態を示す。
b shows a state in which the photosensitive resin 3 is applied to the entire surface of the silicon wafer 1.

cは通常の半導体装置製造技術により、コンタクトの窓
穴4を形成した状態を示す。
3C shows a state in which a contact window hole 4 is formed using a normal semiconductor device manufacturing technique.

dは真空蒸着により金属蒸着膜5をシリコンウェハ1の
一生表面に形成した状態を示す。
d shows a state in which a metal vapor deposited film 5 is formed on the entire surface of the silicon wafer 1 by vacuum vapor deposition.

eは金属蒸着膜5とシリコンの合金温度以下の不活性ガ
ス中で加熱し、感光性樹脂3を分解炭化させ、この上の
金属蒸着膜5を除去し、シリコンウェハ1上に金属電極
6を選択的に形成したものを示す。
e, the photosensitive resin 3 is decomposed and carbonized by heating in an inert gas at a temperature below the alloy temperature of the metal vapor deposited film 5 and silicon, the metal vapor deposited film 5 thereon is removed, and the metal electrode 6 is placed on the silicon wafer 1. Shows selective formation.

この場合pn接合は酸化膜2でパシベーションされてい
る。
In this case, the pn junction is passivated with an oxide film 2.

しかし、この方法によると、感光性樹脂3は金属蒸着膜
5で密閉されている状態にあり、加熱した場合に感光性
樹脂3の分解飛散が困難になるため、酸化膜2上に感光
性樹脂3の分解物が残留される。
However, according to this method, the photosensitive resin 3 is sealed with the metal vapor deposited film 5, and it becomes difficult for the photosensitive resin 3 to decompose and scatter when heated. The decomposition products of No. 3 remain.

この分解物は通常の半導体製造技術の洗浄プロセスでは
除去困難であり、感光性樹脂3の分解物は半導体装置の
電気特性に悪影響を及ぼし、歩留の低下、信頼性の低下
などの問題があった。
These decomposed products are difficult to remove in the cleaning process of normal semiconductor manufacturing technology, and the decomposed products of the photosensitive resin 3 have an adverse effect on the electrical characteristics of semiconductor devices, leading to problems such as decreased yield and reliability. Ta.

本発明は上記した感光性樹脂の分解物を除去せしめ、信
頼性の高い半導体装置の製造法を提供することにある。
An object of the present invention is to provide a method for manufacturing a highly reliable semiconductor device by removing the decomposition products of the photosensitive resin described above.

本発明は、感光性樹脂を用いてリフトオフ法により電極
を形成した後、感光性樹脂の分解物を除去するため非酸
化性ガス中で熱処理を施すことを特徴とする。
The present invention is characterized in that after an electrode is formed by a lift-off method using a photosensitive resin, heat treatment is performed in a non-oxidizing gas to remove decomposition products of the photosensitive resin.

以下、本発明を実施例に基づき、第2図に従って説明す
る。
Hereinafter, the present invention will be explained based on examples and with reference to FIG.

aは本発明の実施例に用いた、プレーナサイリスタの不
純物拡散の終えたシリコンウェハ10を示す。
1A shows a silicon wafer 10 used in an example of the present invention, after impurity diffusion of a planar thyristor has been completed.

拡散は1枚のシリコンウェハから多数の半導体素子が得
られるように形成されている。
Diffusion is formed so that a large number of semiconductor devices can be obtained from one silicon wafer.

シリコンウェハ10の両面には酸化膜11が施されてい
る。
Oxide films 11 are formed on both sides of the silicon wafer 10.

bは酸化膜11の上面に感光性樹脂12、例えば0MR
83(商品名:東京応化(株)製)を形成し、所定のパ
ターンを通して一部を露光し、現像処理して、不要部を
溶解し、感光性樹脂の穴13を形成した状態を示す。
b is a photosensitive resin 12, for example 0MR, on the upper surface of the oxide film 11.
83 (trade name: manufactured by Tokyo Ohka Co., Ltd.) is formed, a portion is exposed to light through a predetermined pattern, developed, unnecessary portions are dissolved, and holes 13 of photosensitive resin are formed.

Cは弗酸系エツチング液を用いて、酸化膜11をエッチ
して所要とする部分の窓穴14を形成した状態を示す。
C shows a state in which the oxide film 11 is etched using a hydrofluoric acid-based etching solution to form a window hole 14 in a required portion.

dはシリコンウェハ10を真空蒸着装置に入れ、シリコ
ンウェハ10の上面にアルミニウム15を蒸着した状態
を示す。
d shows a state in which the silicon wafer 10 is placed in a vacuum deposition apparatus and aluminum 15 is deposited on the upper surface of the silicon wafer 10.

eは不活性ガス中で加熱して、感光性樹脂12を分解さ
せ、粘着テープ等を用いて酸化膜11上のアルミニウム
15を除去して、窓穴14にアルミニウム電極16を形
成した状態を示す。
e shows a state in which the photosensitive resin 12 is decomposed by heating in an inert gas, and the aluminum 15 on the oxide film 11 is removed using adhesive tape or the like to form an aluminum electrode 16 in the window hole 14. .

この時の加熱温度は、感光性樹脂12が分解炭化され、
粘着テープ等による不要電極材の除去が可能で、シリコ
ンと電極材料が電気的にオーミックコンタクトが得られ
る範囲での温度が選ばれる。
The heating temperature at this time is such that the photosensitive resin 12 is decomposed and carbonized.
The temperature is selected within a range where unnecessary electrode material can be removed using adhesive tape or the like and where electrical ohmic contact can be obtained between silicon and the electrode material.

通常、シリコンウェハにアルミニウム電極を形成する場
合、合金温度(577℃)以下が用いられている。
Usually, when forming an aluminum electrode on a silicon wafer, a temperature lower than the alloy temperature (577° C.) is used.

また0MR83は400℃前後で分解炭化される。Further, 0MR83 is decomposed and carbonized at around 400°C.

本発明では450℃で加熱して、感光性樹脂12を分解
炭化させアルミニウム電極16を形成した。
In the present invention, the photosensitive resin 12 was decomposed and carbonized by heating at 450° C. to form the aluminum electrode 16.

しかし、この場合感光性樹脂12はアルミニウム15で
全面が覆われているため、密閉された状態で分解が起る
However, in this case, since the entire surface of the photosensitive resin 12 is covered with aluminum 15, decomposition occurs in a sealed state.

このため、感光性樹脂12は十分な分解炭化が起らず、
分解物17が接合のパシベーションの役割を果している
、酸化膜11上に残存する。
For this reason, the photosensitive resin 12 is not sufficiently decomposed and carbonized,
The decomposed product 17 remains on the oxide film 11, which serves as passivation for the junction.

fは窒素ガス中で、450℃10分間加熱して、分解物
17を飛散させて除去した状態を示す。
f shows the state in which the decomposed product 17 was scattered and removed by heating at 450° C. for 10 minutes in nitrogen gas.

gはシリコンウェハ10の下面に電極16を形成し、切
断分離させた半導体素子を組立てたものを示す。
g shows an assembled semiconductor element in which an electrode 16 is formed on the lower surface of a silicon wafer 10 and cut and separated.

即ちペレット半導体素子18はステム19にマウントさ
れ、ゲート、カソードは金線20で熱圧着によって接線
され、樹脂21でモールドし、組立られる。
That is, the pellet semiconductor element 18 is mounted on the stem 19, the gate and cathode are tangentially connected with a gold wire 20 by thermocompression bonding, molded with a resin 21, and assembled.

第3図は、本発明のアルミニウム電極を形成した後、窒
素中での加熱温度と半導体素子の耐圧の歩留を示す。
FIG. 3 shows the heating temperature in nitrogen and the breakdown voltage yield of the semiconductor element after forming the aluminum electrode of the present invention.

400℃の加熱温度から歩留は向上してゆき500℃以
上になるとほとんど劣化品が見られなくなる。
The yield increases from a heating temperature of 400°C, and when the heating temperature reaches 500°C or higher, almost no deteriorated products are observed.

感光性樹脂は熱天秤を用いて分解温度を調べた結果、4
00℃以上で分解することがわかった。
As a result of examining the decomposition temperature of photosensitive resin using a thermobalance, it was found that 4
It was found that it decomposes at temperatures above 00°C.

第4図は本発明により製作したプレーナサイリスタ(4
00V級)の高温印加試験の結果である。
Figure 4 shows a planar thyristor (4
00V class) high temperature application test.

1000時間で安定な特性を示している。It shows stable characteristics after 1000 hours.

また、熱サイクル試験など全ての信頼性試験で全く問題
はなかった。
In addition, there were no problems at all in all reliability tests, including thermal cycle tests.

本発明の加熱温度は感光性樹脂が分解する温度以上が有
効であり、電気的にオーミックコンタクトが得られる温
度、すなわちシリコンと電極金属の合金温度以下が最適
である。
The heating temperature in the present invention is effective to be higher than the temperature at which the photosensitive resin decomposes, and optimally to be lower than the temperature at which electrical ohmic contact can be obtained, that is, the alloy temperature of silicon and electrode metal.

第5図は本発明を適用したモート型グラシベーションサ
イリスタの断面図である。
FIG. 5 is a sectional view of a moat type gracivation thyristor to which the present invention is applied.

ガラスでパシベーションされた半導体素子の電極形成は
感光性樹脂を用いたリフトオフ法が特に有効である。
A lift-off method using a photosensitive resin is particularly effective for forming electrodes of semiconductor elements passivated with glass.

通常の半導体装置製造技術を用い拡散を行いpn接合を
形成する。
Diffusion is performed using normal semiconductor device manufacturing techniques to form a pn junction.

モートエツチングをして、pn接合を露出させ、ガラス
パシベーション20を施し、前記した本発明を適用し電
極21,22を形成する。
Mort etching is performed to expose the pn junction, glass passivation 20 is applied, and electrodes 21 and 22 are formed by applying the above-described present invention.

その後、電極23を形成し個々のペレットに分離し組立
てる。
Thereafter, electrodes 23 are formed, separated into individual pellets, and assembled.

この素子に関しての高温印加試験は1000hで安定な
特性を示し全ての信頼性試験で全く問題はなかった。
A high temperature application test regarding this element showed stable characteristics for 1000 hours, and no problems were found in all reliability tests.

以上のように、感光性樹脂の分解温度以上で加熱するこ
とにより、半導体素子の特性に影響を及ぼす分解物、特
に影響の大きいパシベーション上の分解物を除去でき、
信頼性の高い半導体装置が得られた。
As described above, by heating above the decomposition temperature of the photosensitive resin, decomposition products that affect the characteristics of semiconductor elements, especially decomposition products on passivation that have a large effect, can be removed.
A highly reliable semiconductor device was obtained.

本発明では電極材料にアルミニウム、感光性樹脂に0M
R83を用いたが、他の電極材料、感光性樹脂において
も効果は同様である。
In the present invention, the electrode material is aluminum and the photosensitive resin is 0M.
Although R83 was used, the same effect can be obtained with other electrode materials and photosensitive resins.

以上のように、本発明によれば、電極形成後、感光性樹
脂の分解物を非酸化性ガス中で加熱し除去できるため、
信頼性の高い半導体装置が歩留よく得られる。
As described above, according to the present invention, after electrode formation, the decomposition products of the photosensitive resin can be removed by heating in a non-oxidizing gas.
Highly reliable semiconductor devices can be obtained at a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電極形成法を示す断面図、第2図は本発
明を説明するシリコン半導体装置の製作工程、第3図は
本発明の耐圧歩留加熱温度の関係を示す図、第4図は本
発明のシリコン半導体装置の高温印加試験結果を示す図
、第5図は本発明を適用したモート型グラシベーション
サイリスタの断面図である。 1.10・・・・・・シリコンウェハ、3,12・・・
・・・感光性樹脂、16,21〜23・・・・・・電極
、17・・・・・・分解物、20・・・・・・ガラスパ
シベーション。
FIG. 1 is a sectional view showing a conventional electrode forming method, FIG. 2 is a manufacturing process of a silicon semiconductor device explaining the present invention, FIG. 3 is a diagram showing the relationship between breakdown voltage yield and heating temperature of the present invention, and FIG. The figure shows the results of a high-temperature application test of the silicon semiconductor device of the present invention, and FIG. 5 is a cross-sectional view of a moat type gracivation thyristor to which the present invention is applied. 1.10...Silicon wafer, 3,12...
... Photosensitive resin, 16,21-23 ... Electrode, 17 ... Decomposition product, 20 ... Glass passivation.

Claims (1)

【特許請求の範囲】 1 シリコンウェハ上に感光性樹脂を部分的に形成し、
シリコンウェハ上の所要部を露呈し、前記感光性樹脂を
マスクとして電極材料を蒸着し、加熱し前記感光性樹脂
を分解炭化せしめる、然る後感光性樹脂上の電極材料を
除去し、シリコンウェハ上の所要部に電極を形成する方
法において、上記の電極形成後に、さらにシリコンウェ
ハを非酸化性ガス中で加熱することを特徴とする半導体
装置の製造法。 2、特許請求の範囲第1項において、非酸化性ガス中の
加熱温度はシリコンと電極材料の合金温度以下、感光性
樹脂の分解温度以上とすることを特徴とするシリコン半
導体装置の製造法。 3 特許請求の範囲第1項においがシリコンのpn接合
がガラスまた酸化膜でパシベーションされていることを
特徴とする半導体装置の製造法。
[Claims] 1. Partially forming a photosensitive resin on a silicon wafer,
A desired part on the silicon wafer is exposed, an electrode material is deposited using the photosensitive resin as a mask, and the photosensitive resin is decomposed and carbonized by heating. After that, the electrode material on the photosensitive resin is removed and the silicon wafer is removed. A method for manufacturing a semiconductor device, which comprises further heating the silicon wafer in a non-oxidizing gas after forming the electrodes in the above method. 2. A method for manufacturing a silicon semiconductor device according to claim 1, characterized in that the heating temperature in the non-oxidizing gas is below the alloy temperature of silicon and electrode material and above the decomposition temperature of the photosensitive resin. 3. A method for manufacturing a semiconductor device according to claim 1, characterized in that a pn junction of silicon is passivated with glass or an oxide film.
JP13148578A 1978-10-27 1978-10-27 Manufacturing method for semiconductor devices Expired JPS58177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13148578A JPS58177B2 (en) 1978-10-27 1978-10-27 Manufacturing method for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13148578A JPS58177B2 (en) 1978-10-27 1978-10-27 Manufacturing method for semiconductor devices

Publications (2)

Publication Number Publication Date
JPS5558526A JPS5558526A (en) 1980-05-01
JPS58177B2 true JPS58177B2 (en) 1983-01-05

Family

ID=15059076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13148578A Expired JPS58177B2 (en) 1978-10-27 1978-10-27 Manufacturing method for semiconductor devices

Country Status (1)

Country Link
JP (1) JPS58177B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191890A (en) * 1985-02-21 1986-08-26 Matsushita Electric Ind Co Ltd Heat exchanger
JPH0457066U (en) * 1990-09-13 1992-05-15

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293227A (en) * 1991-03-22 1992-10-16 Komatsu Electron Metals Co Ltd Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61191890A (en) * 1985-02-21 1986-08-26 Matsushita Electric Ind Co Ltd Heat exchanger
JPH0457066U (en) * 1990-09-13 1992-05-15

Also Published As

Publication number Publication date
JPS5558526A (en) 1980-05-01

Similar Documents

Publication Publication Date Title
US3978578A (en) Method for packaging semiconductor devices
JP4841021B2 (en) Manufacturing method of semiconductor chip having mesa structure
US4179794A (en) Process of manufacturing semiconductor devices
JPS60201666A (en) Semiconductor device
US3913217A (en) Method of producing a semiconductor device
JPS58177B2 (en) Manufacturing method for semiconductor devices
JPS6364057B2 (en)
US4067100A (en) Method of making a semiconductor device
US3956820A (en) Method of manufacturing a semiconductor device having a lead bonded to a surface thereof
JPS583377B2 (en) How to use hand tools
JPS58178B2 (en) Manufacturing method of semiconductor device
JPS6156617B2 (en)
JP2589393B2 (en) GaAs Hall element
JPH03233350A (en) Production of gas sensor
JP3489325B2 (en) Schottky barrier diode and method of manufacturing the same
JP3146543B2 (en) Method for manufacturing heterojunction bipolar transistor
JPH0342505B2 (en)
JP3217182B2 (en) Semiconductor device manufacturing method, semiconductor product, and diode
JPS6059742B2 (en) Semiconductor device and its manufacturing method
JP2686818B2 (en) Method for manufacturing semiconductor device
JPS59100563A (en) Manufacture of mesa type semiconductor device
JPH01108726A (en) Manufacture of semiconductor device
JPS6252962A (en) Semiconductor device
JPH0228252B2 (en)
JPS60257182A (en) Manufacture of semiconductor device