JPH03233350A - Production of gas sensor - Google Patents

Production of gas sensor

Info

Publication number
JPH03233350A
JPH03233350A JP2166294A JP16629490A JPH03233350A JP H03233350 A JPH03233350 A JP H03233350A JP 2166294 A JP2166294 A JP 2166294A JP 16629490 A JP16629490 A JP 16629490A JP H03233350 A JPH03233350 A JP H03233350A
Authority
JP
Japan
Prior art keywords
insulating layer
layer
silicon substrate
gas
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2166294A
Other languages
Japanese (ja)
Other versions
JP3033143B2 (en
Inventor
Takeshige Ichimura
市村 剛重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2166294A priority Critical patent/JP3033143B2/en
Publication of JPH03233350A publication Critical patent/JPH03233350A/en
Application granted granted Critical
Publication of JP3033143B2 publication Critical patent/JP3033143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a miniature gas sensor little in electric power consumption by imparting improvement to the preparing method for the projected part of an insulating layer by a specified stage. CONSTITUTION:In the first stage, a second silicon substrate 12 with an insulating layer 22 formed thereon is melt-stuck to a first silicon substrate 11 with a notched part 50 provided thereto. A projected part consisting of the first insulating layer 22 is formed by removing the silicon layer of the second silicon substrate 12. In the second stage, a heater layer 13 is formed at a prescribed pattern on the projected part. In the third stage, a second insulating layer 24 is formed by coating the heater layer 13. In the fourth stage, a pair of metallic electrodes 31, 32 are formed on the second insulating layer 24. In the fifth stage, a gas sensitive layer 40 is selectively formed on a pair of electrodes and on the second insulating layer 24. In such a way, the projected part of the insulating layer is formed by removing the whole face of the silicon layer. Therefore a time wherein the insulating layer is brought into contact with an etching soln. is shortened. Damage of the projected part in the insulating layer is prevented. Thereby manufacture of a miniature sensor which is little in electric power consumption is made easy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はLPガスや都市ガス等のガスもれ警報器等に
使用されるガスセンサの製造方法に係り、特に消費電力
の少ないガスセンサの容易な製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method for manufacturing a gas sensor used in a gas leak alarm for LP gas, city gas, etc. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

酸化スズ、酸化亜鉛等のn型金属酸化物半導体は、大気
中で300〜500℃の温度に加熱されると粒子表面に
大気中の酸素が活性化吸着して高抵抗化しているが、可
燃性ガスが接触すると吸着酸素と可燃性ガスとが反応し
て吸着酸素が除去され抵抗値が減少する。このような性
質を利用して、酸化スズを用いたガスセンサがLPガス
、都市ガス等のガス漏れ警報器に広く用いられている。
When n-type metal oxide semiconductors such as tin oxide and zinc oxide are heated to a temperature of 300 to 500°C in the atmosphere, atmospheric oxygen is activated and adsorbed onto the particle surface, resulting in a high resistance, but they are not flammable. When a flammable gas comes into contact with the adsorbed oxygen, the adsorbed oxygen reacts with the combustible gas, the adsorbed oxygen is removed, and the resistance value decreases. Taking advantage of these properties, gas sensors using tin oxide are widely used in gas leak alarms for LP gas, city gas, and the like.

従来のガスセンサは例えば第9図に示すように基板l、
電極5,6、感ガス層2A、酸化層3^、ヒータ4等か
ら構成されたものが用いられる。
For example, as shown in FIG. 9, a conventional gas sensor has a substrate l,
A device composed of electrodes 5, 6, a gas-sensitive layer 2A, an oxide layer 3^, a heater 4, etc. is used.

このような従来のガスセンサは、熱容量が大きくて消費
電力が数100−  であり、また立上がり時間が長く
熱平衡に達するのに時間がかかりパルス駆動ができない
といった問題があり、システム機器内蔵型のガス警報器
、プロセスモニタを構成する上で大きな障害があった。
Conventional gas sensors like this have a large heat capacity and power consumption of several 100 mm, and also have problems such as a long rise time and a long time to reach thermal equilibrium, making pulse drive impossible. There were major obstacles in configuring equipment and process monitors.

この問題を解決するために特開昭59−143946号
公報に開示されているように、シリコンチップに5lo
z絶縁層の張出部を設け、この張出部にヒータ。
In order to solve this problem, as disclosed in Japanese Patent Application Laid-Open No. 59-143946, 5lo
zProvide an overhang of the insulating layer, and install a heater on this overhang.

電極、感ガス層を積層した超小型のガスセンサが知られ
るに至った。このガスセンサは半導体技術を用いて製造
されるが特に絶縁層の侵出部の製造にシリコンの異方性
エツチングを応用して絶縁層の下側に存在するシリコン
基板のアンダカットが行われる。このアンダカントに際
しては絶縁層がマスクとして用いられる。
Ultra-compact gas sensors that have laminated electrodes and gas-sensitive layers have come to be known. This gas sensor is manufactured using semiconductor technology, and in particular, anisotropic etching of silicon is applied to manufacture the protruding portion of the insulating layer to undercut the silicon substrate existing under the insulating layer. The insulating layer is used as a mask during this undercanting.

〔発明が解決しようとするI’ll) しかしながら上述のようなアンダカットにおいてはマス
クである絶縁層がシリコン基板のエツチングの間、常時
エンチング溶液にさらされ、少ないながらもエツチング
されそのために損傷を受けやすく良好な張出部が形成さ
れないという問題があった。 Sin、絶縁層は膜厚が
薄いからである。
[To be solved by the invention] However, in the above-mentioned undercut, the insulating layer serving as a mask is constantly exposed to the etching solution during etching of the silicon substrate, and is etched and damaged as a result, albeit to a small extent. There was a problem in that a good overhang was not easily formed. This is because the film thickness of the Sin insulating layer is thin.

この発明は上述の点に鑑みてなされ、その目的は絶縁層
張出部の調製法に改良を加えることにより、消費電力の
少ない小型のガスセンサの容易な製造方法を提供するこ
とにある。
The present invention has been made in view of the above-mentioned points, and its purpose is to provide an easy manufacturing method for a small gas sensor with low power consumption by improving the method for preparing the insulating layer overhang.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的はこの発明によれば、第1工程により切欠部
50,50Aるを設けた第1のシリコン基板11と絶縁
層22を形成した第2のシリコン基板12を融着させ、
第2のシリコン基板のシリコン層を除去して第1の絶縁
層22からなる張出部を形成し、第2工程により前記張
出部の上に所定のパターンでヒータ層13.13Aを形
成し、第3工程により、前記ヒータ層を被覆して第2の
絶縁層24を形成し、第4工程により1対の金属電極3
1.32を前記第2の絶縁層の上に形成し、第5工程に
より感ガス層40を前記1対の電極上および前記第2の
絶縁層の上に選択的に形成することにより達成される。
According to the present invention, the above-mentioned purpose is to fuse the first silicon substrate 11 provided with the notches 50, 50A and the second silicon substrate 12 provided with the insulating layer 22 in a first step;
The silicon layer of the second silicon substrate is removed to form an overhang made of the first insulating layer 22, and a heater layer 13.13A is formed in a predetermined pattern on the overhang in a second step. , a second insulating layer 24 is formed by covering the heater layer in a third step, and a pair of metal electrodes 3 is formed in a fourth step.
1.32 is formed on the second insulating layer, and in a fifth step, a gas-sensitive layer 40 is selectively formed on the pair of electrodes and on the second insulating layer. Ru.

〔作用〕[Effect]

シリコン層は選択的に除去されるのでなく、エンチング
で全面除去されののでシリコン除去後にエンチング溶液
が絶縁層と接触することとなり絶縁層とエツチング溶液
との接触時間が短くなる。
Since the silicon layer is not selectively removed but is completely removed by etching, the etching solution comes into contact with the insulating layer after the silicon is removed, thereby shortening the contact time between the insulating layer and the etching solution.

〔実施例〕〔Example〕

次にこの発明の実施例を図面に基いて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図はこの発明の実施例に係るガスセンサの平面図、
第2図はこの発明の実施例に係るガスセンサにつき、感
ガス層近傍の要部拡大平面図、第3図はこの発明の実施
例に係るガスセンサにつき、感ガス層近傍の要部拡大A
−A矢視断面図である。
FIG. 1 is a plan view of a gas sensor according to an embodiment of the present invention;
FIG. 2 is an enlarged plan view of the main part near the gas-sensitive layer of the gas sensor according to the embodiment of the present invention, and FIG. 3 is an enlarged plan view of the main part near the gas-sensitive layer of the gas sensor according to the embodiment of the invention.
-A cross-sectional view.

シリコン基板11は貫通孔50を有し、Singである
第1の絶縁層22がシリコン基板11の主面が形成され
貫通孔50に張出す、ポリシリコン層13が第1の絶縁
層の上に選択的に形成され、その上に第2の絶縁層24
がバンド35.36のための窓を形成してシリコン基板
の全面に設けられる。第2の絶縁層24の上にはパッド
35.36と金属電極31.32とが設けられ、さらに
感ガス層40が円形に形成される。金属電極31.32
 、感ガス層40は、シリコン基板11の貫通孔50に
張出した円形の第1の絶縁層22の中心部分に位置する
。 21は酸化膜絶縁層である。ポリシリコン層13は
ヒータであり、感ガス層40のうちのヒータ直上の部分
を有効に加熱する。金属電極31゜32は感ガス層40
の抵抗を検知する。ポリシリコン層13はバンド35.
36の形成される部分を除いて、第1および第2の絶縁
層によってサンドウィンチされる。第1および第2の絶
縁層はSingであり、熱の不良導体で基板11への熱
の伝導を防ぐ、バンド35.36と金属電極31.32
の所定部にリード線(図示せず)が接続される。主要部
の寸法は第1および第2の絶縁層22.24が厚さ約1
n、ポリシリコン層13は厚さ0.541111%最狭
部の幅20−1金属電極31.32はPtまたはAuか
らなり厚さ0.1〜0.3−1最狭部の幅20aである
。感ガス層40はSnO□Zn0x等を主成分とする酸
化物半導体であり、厚さ0.1〜IImである。シリコ
ン基板の貫通孔50は直径150〜250μである。
The silicon substrate 11 has a through hole 50, and a polysilicon layer 13 is formed on the first insulating layer 22 on which the main surface of the silicon substrate 11 is formed and extends into the through hole 50. A second insulating layer 24 is selectively formed thereon.
are provided over the entire surface of the silicon substrate forming windows for bands 35,36. Pads 35, 36 and metal electrodes 31, 32 are provided on the second insulating layer 24, and a gas-sensitive layer 40 is also formed in a circular shape. Metal electrode 31.32
The gas-sensitive layer 40 is located at the center of the circular first insulating layer 22 extending into the through hole 50 of the silicon substrate 11 . 21 is an oxide film insulating layer. The polysilicon layer 13 is a heater, and effectively heats the portion of the gas-sensitive layer 40 directly above the heater. The metal electrodes 31 and 32 are gas sensitive layers 40
Detects the resistance of Polysilicon layer 13 forms band 35.
The first and second insulating layers are sandwiched together, except where 36 is formed. The first and second insulating layers are a band 35.36 and a metal electrode 31.32, which are poor conductors of heat and prevent heat conduction to the substrate 11.
A lead wire (not shown) is connected to a predetermined portion of. The dimensions of the main part are such that the first and second insulating layers 22, 24 have a thickness of approximately 1 mm.
n, the polysilicon layer 13 has a thickness of 0.541111%, the width at the narrowest part 20-1, the metal electrode 31.32 is made of Pt or Au, and the thickness is 0.1 to 0.3-1, the width at the narrowest part 20a. be. The gas-sensitive layer 40 is an oxide semiconductor mainly composed of SnO□Zn0x and has a thickness of 0.1 to IIm. The through hole 50 in the silicon substrate has a diameter of 150 to 250 μm.

このようなガスセンサは以下の方法で製造することがで
きる。
Such a gas sensor can be manufactured by the following method.

第4図はこの発明の実施例に係るガスセンサの製造手順
を示す工程図である。厚さ0.1〜0.8鶴のシリコン
基板11にYAGレーザを用いて貫通孔50が設けられ
る。同様なシリコン基板12と前記貫通孔を有するシリ
コン基板11は水蒸気酸化法で絶縁層21,22.23
を形成する。水蒸気酸化は1100℃で行われ、時間に
より膜厚が制御される。酸化処理されたシリコン1F1
.11.12は第4図(alに示すように重合され、9
00℃で1h加熱し融着される。つづいて、酸化膜23
をフン酸を用いてエンチング除去し、シリコンウェハ1
2の部分もHP : HNOi : [0−1:1:1
の溶液を用いてエツチング除去される (第4図中)参
照)。
FIG. 4 is a process diagram showing the manufacturing procedure of a gas sensor according to an embodiment of the present invention. A through hole 50 is provided in a silicon substrate 11 having a thickness of 0.1 to 0.8 mm using a YAG laser. A similar silicon substrate 12 and the silicon substrate 11 having the through holes are formed using a steam oxidation method to form insulating layers 21, 22, and 23.
form. Steam oxidation is performed at 1100°C, and the film thickness is controlled by time. Oxidized silicon 1F1
.. 11.12 was polymerized as shown in Figure 4 (al) and 9
It is heated and fused at 00°C for 1 hour. Next, the oxide film 23
was removed by etching using hydrochloric acid, and silicon wafer 1
Part 2 is also HP: HNOi: [0-1:1:1
(See Figure 4).

第1の絶縁層22の上にポリシリコン層13が減圧CV
D法で形成される。ポリシリコン層13にはイオンイン
プランチーシランによりBが10目〜1010l9a’
濃度に打ちこまれ、所定抵抗値を示すヒータが得られる
。このあとホトエンチングにより、所定のパターンに加
工される (第4図(Q)参照)。
A polysilicon layer 13 is formed on the first insulating layer 22 by applying low pressure CVD.
Formed by method D. In the polysilicon layer 13, B is added at 10 to 1010l9a' by ion implantation silane.
A heater having a predetermined resistance value is obtained. Thereafter, it is processed into a predetermined pattern by photo-etching (see Figure 4 (Q)).

ポリシリコン層13の上には第2の絶縁層であるSiO
gwA縁層24がプラズマCVD法で形成される(第4
図fd)参照) 第2の絶縁層24の上にptあるいはAuが電子ビーム
蒸着され、続いてホトリソグラフィーにより金属電極3
1.32 、バンド35.36が形成される (第4図
(111参照)。
On the polysilicon layer 13 is a second insulating layer of SiO.
gwA edge layer 24 is formed by plasma CVD method (fourth
(See Figure fd)) PT or Au is electron beam-deposited on the second insulating layer 24, and then the metal electrode 3 is formed by photolithography.
1.32, bands 35 and 36 are formed (Fig. 4 (see 111)).

感ガス層40がSnJを用いて電子ビーム蒸着法により
成膜される。感ガス層は選択マスクを用いて直接的に形
成される。
A gas-sensitive layer 40 is formed using SnJ by electron beam evaporation. The gas-sensitive layer is formed directly using a selective mask.

このようにして3朝角のシリコン基板を有するガスセン
サが得られる。消費電力10m−で感ガス層の温度が4
00℃に達する。この発明によれば小型センサが容易に
得られ、製造歩留りは90%に達する。またこの発明の
製造方法によるときは、特定の結晶方位のシリコン基板
を必要とせず、また絶縁層の張出部の形成に特定のマス
クを必要とせず、製造コストが安価になるという効果も
得られる。
In this way, a gas sensor having a three-sided silicon substrate is obtained. The temperature of the gas-sensitive layer is 4 when the power consumption is 10m-
It reaches 00℃. According to this invention, a small sensor can be easily obtained, and the manufacturing yield reaches 90%. Furthermore, when using the manufacturing method of the present invention, a silicon substrate with a specific crystal orientation is not required, and a specific mask is not required for forming the overhanging portion of the insulating layer, resulting in lower manufacturing costs. It will be done.

第5図ないし第8図は本発明の異なる実施例を示し、第
5図はガスセンサの平面図、第6図は感ガス層近傍の要
部拡大平面図、第7図は感ガス層近傍の要部拡大A−A
矢視断面図である。
5 to 8 show different embodiments of the present invention, FIG. 5 is a plan view of the gas sensor, FIG. 6 is an enlarged plan view of the main part near the gas-sensitive layer, and FIG. 7 is a plan view of the main part near the gas-sensitive layer. Main part enlarged A-A
It is an arrow sectional view.

シリコン基板11は溝部50Aを有し、SiJである1
の絶縁層22がシリコン基板11の主面が形成され溝部
50Aに張出す、ヒータ層13Aが第1の絶縁層の上に
選択的に形成され、その上に第2の絶縁層24がバンド
35.36のための窓を形成してシリコン基板の全面に
設けられる。第2の絶縁層24の上にはパッド35.3
6と金属電極31.32とが設けられ、さらに感ガス層
40が円形に形成される。金属電極31.32 、感ガ
ス層40は、シリコン基板11の溝部50Aに張出した
円形の第1の絶縁層22の中心部分に位置する。21は
酸化膜絶縁層である。ヒータ層13^は、感ガス層40
のうちのヒータ直上の部分を有効に加熱する。金属電極
31.32は感ガス層40の抵抗を検知する。ヒータ層
13Aはパッド35 、36の形成される部分を除いて
、第1および第2の絶縁層によってサンドウィッチされ
る。第1および第2の絶縁層はSingであり、熱の不
良導体で基板11への熱の伝導を防ぐ、パッド35.3
6と金属電極31.32の所定部にリードm(図示せず
)が接続される。
The silicon substrate 11 has a groove 50A and is made of SiJ.
An insulating layer 22 is formed on the main surface of the silicon substrate 11 and extends into the groove 50A. A heater layer 13A is selectively formed on the first insulating layer, and a second insulating layer 24 is formed on the first insulating layer 24. .36 is formed on the entire surface of the silicon substrate. On the second insulating layer 24 is a pad 35.3.
6 and metal electrodes 31, 32 are provided, and further a gas sensitive layer 40 is formed in a circular shape. The metal electrodes 31, 32 and the gas-sensitive layer 40 are located at the center of the circular first insulating layer 22 extending into the groove 50A of the silicon substrate 11. 21 is an oxide film insulating layer. The heater layer 13^ is the gas sensitive layer 40
Effectively heats the part directly above the heater. Metal electrodes 31 , 32 sense the resistance of gas sensitive layer 40 . The heater layer 13A is sandwiched between the first and second insulating layers except for the portions where the pads 35 and 36 are formed. The first and second insulating layers are pads 35.3, which are poor conductors of heat and prevent heat conduction to the substrate 11.
A lead m (not shown) is connected to a predetermined portion of the metal electrode 6 and the metal electrode 31, 32.

主要部の寸法は第1および第2の絶縁層22.24が厚
さ約1n1ヒータ層13Aは厚さ0.2−1最狭部の幅
10μ、金属電極31.32はptまたはAuからなり
厚さ0.1〜0.3μ、最狭部の幅10μである。感ガ
ス層40はSnug、 Zn0g等を主成分とする酸化
物半導体であり、厚さ0.1〜1μである。シリコン基
板の溝部50^の溝幅は150〜250−で、深さは5
0μである。
The dimensions of the main parts are that the first and second insulating layers 22, 24 have a thickness of about 1n1, the heater layer 13A has a thickness of 0.2-1, the width at the narrowest part is 10μ, and the metal electrodes 31, 32 are made of PT or Au. The thickness is 0.1 to 0.3μ, and the width at the narrowest part is 10μ. The gas-sensitive layer 40 is an oxide semiconductor mainly composed of Snug, Zn0g, etc., and has a thickness of 0.1 to 1 μm. The groove width of the groove 50^ of the silicon substrate is 150 to 250 -, and the depth is 5
It is 0μ.

このようなガスセンサは以下の方法で製造することがで
きる。
Such a gas sensor can be manufactured by the following method.

第8図はこの発明の異なる実施例に係るガスセンサの製
造手順を示す工程図である。厚さ0.3〜0.8 mの
シリコン基板11に選択エツチング技術を用いて溝部5
0Aが設けられる。同様なシリコン基板12と前記溝部
 を有するシリコン基板11は水蒸気酸化法で絶縁層2
1.22.23を形成する。水蒸気酸化は1100℃で
行われ、時間により膜厚が制御される。酸化処理された
シリコン基板11.12は第8図(a)に示すように重
ね合され、900℃で1h加熱し融着される。つづいて
、酸化膜23をフン酸を用いてエツチング除去し、シリ
コンウェハ12の部分もIP : HNO3: HtO
社1:1:1の溶液を用いてエツチング除去される (
第8図中)参照)。
FIG. 8 is a process diagram showing the manufacturing procedure of a gas sensor according to a different embodiment of the present invention. Grooves 5 are formed in a silicon substrate 11 with a thickness of 0.3 to 0.8 m using a selective etching technique.
0A is provided. A similar silicon substrate 12 and a silicon substrate 11 having the grooves are formed into an insulating layer 2 by steam oxidation.
Form 1.22.23. Steam oxidation is performed at 1100°C, and the film thickness is controlled by time. The oxidized silicon substrates 11 and 12 are stacked on top of each other as shown in FIG. 8(a), and heated and fused at 900° C. for 1 hour. Subsequently, the oxide film 23 is removed by etching using hydronic acid, and the silicon wafer 12 is also subjected to IP: HNO3: HtO.
Etched away using a 1:1:1 solution (
(See Figure 8).

第1の絶縁層22の上にヒータ層13Aが形成される。A heater layer 13A is formed on the first insulating layer 22.

ヒータ層は、蒸着法あるいはスパッタリング法により、
PtあるいはNiの薄膜を形成し、このあと、ホトエン
チング技術を用いてパターン加工して所定の抵抗値をも
つヒータが得られる (第8図FC+参照)。
The heater layer is formed by vapor deposition or sputtering.
A thin film of Pt or Ni is formed and then patterned using photo-etching technology to obtain a heater with a predetermined resistance value (see FIG. 8, FC+).

ヒータ層13Aの上には第2の絶縁層であるSiJ絶縁
層24がプラズマCVD法で形成される (第8図fd
+参照〉。
A SiJ insulating layer 24, which is a second insulating layer, is formed on the heater layer 13A by a plasma CVD method (FIG. 8 fd
+Reference>.

第2の絶縁層24の上にptあるいはAuが電子ビーム
蒸着され、続いてホトリソグラフィーにより金属電極3
1,32 、パッド35.36が形成される (第8図
(Q)参照)。
PT or Au is electron beam evaporated onto the second insulating layer 24, and then the metal electrode 3 is formed by photolithography.
1, 32, and pads 35 and 36 are formed (see FIG. 8(Q)).

感ガス層40がSnOオを用いて電子ビーム蒸着法によ
りtc膜される。感ガス層は選択マスクを用いて直接的
に形成される。
The gas-sensitive layer 40 is formed into a TC film using SnO by electron beam evaporation. The gas-sensitive layer is formed directly using a selective mask.

このようにして3鵡角のシリコン基板を有するガスセン
サが得られる。消費電力10mWで感ガス層の温度が4
00℃に達する。この発明によれば小型センサが容易に
得られ、製造歩留りは90%に達する。またこの発明の
製造方法によるときは、特定の結晶方位のシリコン基板
を必要とせず、また絶縁層の張出部の形成に特定のマス
クを必要とせず、製造コストが安価になるという効果も
得られる。
In this way, a gas sensor having a 3-square silicon substrate is obtained. The temperature of the gas-sensitive layer is 4 with power consumption of 10 mW.
It reaches 00℃. According to this invention, a small sensor can be easily obtained, and the manufacturing yield reaches 90%. Furthermore, when using the manufacturing method of the present invention, a silicon substrate with a specific crystal orientation is not required, and a specific mask is not required for forming the overhanging portion of the insulating layer, resulting in lower manufacturing costs. It will be done.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、第1工程により切欠部を設けた第1
のシリコン基板と絶縁層を形成したIn2のシリコン基
板を融着させ、第2のシリコン基板のシリコン層を除去
して第1の絶縁層からなる張出部を形成し、第2工程に
より前記張出部の上に所定のパターンでヒータ層を形成
し、第3工程により、前記ヒータ層を被覆して第2の絶
縁層を形成し、第4工程により1対の金属電極を前記第
2の絶縁層の上に形成し、第5工程により感ガス層40
を前記1対の電極上および前記第2の絶縁層の上に選択
的に形成するのでシリコン層の全面除去により絶縁層の
張出部が形成されることとなりそのために絶縁層がエツ
チング溶液と接触する時間が短く絶縁層張出部の損傷が
なくなって消費電力の少ない小型センサの製造が容易に
なる。
According to this invention, the first
A silicon substrate made of In2 and an In2 silicon substrate on which an insulating layer has been formed are fused together, the silicon layer of the second silicon substrate is removed to form an overhang made of the first insulating layer, and a second step A heater layer is formed in a predetermined pattern on the protruding portion, a second insulating layer is formed by covering the heater layer in a third step, and a pair of metal electrodes are attached to the second insulating layer in a fourth step. A gas-sensitive layer 40 is formed on the insulating layer in a fifth step.
is selectively formed on the pair of electrodes and the second insulating layer, so that an overhang of the insulating layer is formed by removing the entire silicon layer, so that the insulating layer comes into contact with the etching solution. This reduces the time it takes to do this, eliminates damage to the insulating layer overhang, and facilitates the manufacture of small sensors with low power consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例に係るガスセンサを示す平面
図、第2図はこの発明の実施例に係るガスセンサの要部
拡大平面図、第3図はこの発明の実施例に係るガスセン
サの要部拡大A−A矢視断面図、第4図fal〜(8)
はそれぞれこの発明の実施例に係るガスセンサの製造手
順を示す工程図、第5図ないし第8図はそれぞれ本発明
の異なる実施例を示し、第5図はガスセンサを示す平面
図、第6図はガスセンサの要部拡大平面図、第7図はガ
スセンサの要部拡大A−A矢視断面図、第8図(at〜
(elはそれぞれガスセンサの製造手順を示す工程図、
第9図は従来のガスセンサを示す断面図である。
FIG. 1 is a plan view showing a gas sensor according to an embodiment of the invention, FIG. 2 is an enlarged plan view of main parts of a gas sensor according to an embodiment of the invention, and FIG. 3 is a main part of a gas sensor according to an embodiment of the invention. Enlarged section A-A cross-sectional view, Figure 4 fal ~ (8)
5 to 8 each show different embodiments of the invention, FIG. 5 is a plan view showing the gas sensor, and FIG. FIG. 7 is an enlarged plan view of the main part of the gas sensor, and FIG.
(el is a process diagram showing the manufacturing procedure of the gas sensor,
FIG. 9 is a sectional view showing a conventional gas sensor.

Claims (1)

【特許請求の範囲】[Claims] 1)切欠部を設けた第1のシリコン基板と絶縁層を形成
した第2のシリコン基板を融着させ、第2のシリコン基
板のシリコン層を除去して第1の絶縁層からなる張出部
を形成する第1工程と、前記張出部の上に所定のパター
ンでヒータ層を形成する第2工程と、前記ヒータ層を被
覆して第2の絶縁層を形成する第3工程と、1対の金属
電極を前記第2の絶縁層の上に形成する第4工程と、感
ガス層を前記1対の電極上および前記第2の絶縁層の上
に選択的に形成する第5工程からなることを特徴とする
ガスセンサの製造方法。
1) A first silicon substrate with a cutout and a second silicon substrate with an insulating layer formed thereon are fused together, and the silicon layer of the second silicon substrate is removed to form an overhang made of the first insulating layer. a second step of forming a heater layer in a predetermined pattern on the overhang, and a third step of forming a second insulating layer by covering the heater layer; a fourth step of forming a pair of metal electrodes on the second insulating layer; and a fifth step of selectively forming a gas-sensitive layer on the pair of electrodes and the second insulating layer; A method for manufacturing a gas sensor, characterized in that:
JP2166294A 1989-12-28 1990-06-25 Gas sensor manufacturing method Expired - Fee Related JP3033143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2166294A JP3033143B2 (en) 1989-12-28 1990-06-25 Gas sensor manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34350389 1989-12-28
JP1-343503 1989-12-28
JP2166294A JP3033143B2 (en) 1989-12-28 1990-06-25 Gas sensor manufacturing method

Publications (2)

Publication Number Publication Date
JPH03233350A true JPH03233350A (en) 1991-10-17
JP3033143B2 JP3033143B2 (en) 2000-04-17

Family

ID=26490723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2166294A Expired - Fee Related JP3033143B2 (en) 1989-12-28 1990-06-25 Gas sensor manufacturing method

Country Status (1)

Country Link
JP (1) JP3033143B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684604A (en) * 1991-09-19 1994-03-25 Mitsuteru Kimura Microheater
JP2002323467A (en) * 2001-04-25 2002-11-08 Denso Corp Thin-film gas sensor and method of manufacturing the same
JP2006024937A (en) * 1995-11-30 2006-01-26 Freescale Semiconductor Inc Semiconductor heater and its manufacturing method
JP2014173947A (en) * 2013-03-07 2014-09-22 Fuji Electric Co Ltd Porous structure, method for producing porous structure, and gas sensor
JP2014173946A (en) * 2013-03-07 2014-09-22 Fuji Electric Co Ltd Gas sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684604A (en) * 1991-09-19 1994-03-25 Mitsuteru Kimura Microheater
JP2006024937A (en) * 1995-11-30 2006-01-26 Freescale Semiconductor Inc Semiconductor heater and its manufacturing method
JP2002323467A (en) * 2001-04-25 2002-11-08 Denso Corp Thin-film gas sensor and method of manufacturing the same
JP2014173947A (en) * 2013-03-07 2014-09-22 Fuji Electric Co Ltd Porous structure, method for producing porous structure, and gas sensor
JP2014173946A (en) * 2013-03-07 2014-09-22 Fuji Electric Co Ltd Gas sensor

Also Published As

Publication number Publication date
JP3033143B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP4590764B2 (en) Gas sensor and manufacturing method thereof
KR100332742B1 (en) Method for manufacturing gas sensor
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JPH03233350A (en) Production of gas sensor
JPH03293553A (en) Gas sensor and manufacture thereof
JPS5914889B2 (en) Manufacturing method of semiconductor device
JPH06163953A (en) Photovoltaic element and its manufacture
JPS62140451A (en) Manufacture of polycrystalline silicon resistor and wiring
JPH029450B2 (en)
JPH0482054B2 (en)
JPS63202035A (en) Manufacture of semiconductor device
JP3269199B2 (en) Pyroelectric infrared detector
JP3461242B2 (en) Pyroelectric infrared thin film element and method of manufacturing the same
JPH05267663A (en) Manufacture of semiconductor device
JPH0287623A (en) Manufacture of semiconductor device
JPS5810855B2 (en) Tasou High Senkou Zou no Seihou
JPH0546708B2 (en)
JPS59107769A (en) Formation of area for preventing solder flow
JPS60226160A (en) Manufacture for thin film resistance device
JP2001033307A (en) Infrared radiation detecting element and its manufacture
JPH05308068A (en) Manufacture of semiconductor device
JPS5826659B2 (en) Electrode formation method for semiconductor devices
JPH03155130A (en) Manufacture of semiconductor device
JPH01297620A (en) Formation of transparent electrode
JPS58115834A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees