JPH0546708B2 - - Google Patents

Info

Publication number
JPH0546708B2
JPH0546708B2 JP59186831A JP18683184A JPH0546708B2 JP H0546708 B2 JPH0546708 B2 JP H0546708B2 JP 59186831 A JP59186831 A JP 59186831A JP 18683184 A JP18683184 A JP 18683184A JP H0546708 B2 JPH0546708 B2 JP H0546708B2
Authority
JP
Japan
Prior art keywords
conductor
hgcdte
crystal
electrode
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59186831A
Other languages
Japanese (ja)
Other versions
JPS6164173A (en
Inventor
Toshio Yamagata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59186831A priority Critical patent/JPS6164173A/en
Publication of JPS6164173A publication Critical patent/JPS6164173A/en
Publication of JPH0546708B2 publication Critical patent/JPH0546708B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はHgCdTeを用いた赤外線検出素子の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an infrared detection element using HgCdTe.

(従来の技術) HgCdTeは高感度赤外線素子に最適の材料とし
て知られており、これを用いた赤外線検出素子は
基本的には厚さ10μm程度のHgCdTe結晶に電極
端子を形成し、その間の抵抗変化を検出するよう
構成されたものである。こうした赤外線検出素子
の従来の製造方法を示すと、その主要工程は以下
のようなものである。すなわち、第3図aに示す
ように絶縁基板1上にHgCdTe結晶2を接着して
これを研磨し、続いてこのHgCdTe結晶を所定の
厚さ、通常は10μm程度にエツチングすると共
に、その端部3をなだらかにする。次に、第3図
bに示すようにHgCdTe結晶2の感光部とする領
域4以外の部分、すなわち電極接続部及び電極端
子を形成する部分5及び6にいわゆるリフトオフ
法によつて導電体7を形成する。更に、第3図c
及びdに示すようにHgCdTe結晶2と導電体7と
を一括して感光部8及び電極接続部9及び電極端
子10の形状にエツチング加工することにより製
造されていた。ここで導電体7をリフトオフ法に
よつて形成するのは導電体7の材料とHgCdTe結
晶とが直接触れないようにして感光部8の特性劣
化を防ぐためである。
(Prior technology) HgCdTe is known as the most suitable material for high-sensitivity infrared elements, and infrared detection elements using it basically form electrode terminals on HgCdTe crystals with a thickness of about 10 μm, and resist resistance between them. The device is configured to detect changes. The main steps of the conventional manufacturing method of such an infrared detection element are as follows. That is, as shown in FIG. 3a, an HgCdTe crystal 2 is bonded onto an insulating substrate 1 and polished, and then this HgCdTe crystal is etched to a predetermined thickness, usually about 10 μm, and its edges are etched. Make 3 gentle. Next, as shown in FIG. 3b, a conductor 7 is applied to the portions of the HgCdTe crystal 2 other than the area 4 that will be the photosensitive area, that is, the portions 5 and 6 that will form the electrode connection portions and electrode terminals, by a so-called lift-off method. Form. Furthermore, Figure 3c
As shown in FIGS. and d, the HgCdTe crystal 2 and the conductor 7 were collectively etched into the shapes of the photosensitive portion 8, the electrode connection portion 9, and the electrode terminal 10. The reason why the conductor 7 is formed by the lift-off method is to prevent the material of the conductor 7 from coming into direct contact with the HgCdTe crystal, thereby preventing deterioration of the characteristics of the photosensitive portion 8.

図中14はレジストパターンを示している。 In the figure, 14 indicates a resist pattern.

(発明が解決しようとする問題点) ところで、この導電体7の形成の際、接着剤層
11の端の段差部12をまたいで導電体が形成さ
れ、かつ電気的接続が保たれねばならない。しか
し、接着剤層11は一般に数μmの厚さであり、
段差部12は高さ数μmの殆んど垂直な段差とな
つているため、いわゆる段差切れが生じ易く、電
気的接続はどうしても不十分とならざるを得な
い。こうした段差切れは通常はバイアススパツタ
リングや斜め蒸着等の成膜法により改善が可能で
あるが、逆にリフトオフを困難にしてしまう。こ
うして従来の製造方法では段差切れの改善とリフ
トオフとの両立は非常に困難となつており、製造
歩留りの低下のみならず、素子動作中に導通不良
を生じる等により信頼性の低下を招いていた。
(Problems to be Solved by the Invention) When forming the conductor 7, the conductor must be formed across the stepped portion 12 at the end of the adhesive layer 11, and electrical connection must be maintained. However, the adhesive layer 11 is generally several μm thick,
Since the stepped portion 12 is an almost vertical step with a height of several micrometers, so-called step breakage is likely to occur, and the electrical connection inevitably becomes insufficient. Such step breakage can usually be improved by film forming methods such as bias sputtering or oblique evaporation, but it makes lift-off difficult. In this way, with conventional manufacturing methods, it has become extremely difficult to simultaneously improve step breakage and lift-off, which not only reduces manufacturing yield but also reduces reliability due to poor conduction during device operation. .

本発明の目的は上記の欠点をなくし、製造歩留
りが良く、また信頼性の高い赤外線検出素子の製
造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an infrared detection element that eliminates the above-mentioned drawbacks, has a high manufacturing yield, and is highly reliable.

(問題点を解決するための手段) 本発明は絶縁基板上にHgCdTe結晶を接着して
これを研磨する工程と、該HgCdTeを感光部と電
極接続部を形成する領域の寸法に整形すると共
に、接着剤層を一部露出させる工程と、前記
HgCdTe結晶を所定の厚さまでエツチング除去す
ると共にその端部をなだらかにする工程と、前記
露出した接着剤層及び電極端子を形成する領域に
第1の導電体を形成する工程と、前記HgCdTe結
晶の電極接続部とする領域から前記第1の導電体
にかけて第2の導電体をリフトオフ法によつて形
成する工程と、前記HgCdTe結晶及び前記第1と
第2の導電体とを一括して感光部及び電極接続部
及び電極端子の形状にエツチング加工する工程と
を行うことを特徴とする赤外線検出素子の製造方
法である。
(Means for Solving the Problems) The present invention includes a process of bonding an HgCdTe crystal onto an insulating substrate and polishing it, shaping the HgCdTe to the dimensions of a region where a photosensitive part and an electrode connection part are to be formed, and a step of partially exposing the adhesive layer;
a step of etching and removing the HgCdTe crystal to a predetermined thickness and smoothing its edges; a step of forming a first conductor in the exposed adhesive layer and the region where the electrode terminal is to be formed; A step of forming a second conductor from a region to be an electrode connection part to the first conductor by a lift-off method, and a step of forming the HgCdTe crystal and the first and second conductors into a photosensitive section at once. and a step of etching into the shape of the electrode connection portion and the electrode terminal.

(実施例) 以下、図面を用いて本発明の赤外線検出素子の
製造方法を説明する。
(Example) Hereinafter, a method for manufacturing an infrared detection element of the present invention will be explained using the drawings.

第1図は本発明の製造方法の実施例を工程順に
示した断面図及び平面図である。まず第1図aの
断面図に示すように絶縁基板21上に接着剤23
を用いてHgCdTe結晶22を接着し、これを30〜
60μmの厚さまで研磨する。この絶縁基板21と
しては熱伝導率のよいサフアイア等が適しており
また接着剤23として低温用エポキシ等を用いる
ことができる。次に第1図bに示すように第1の
レジストパターン24を用いて、感光部と電極接
続部を形成する領域25及び26の寸法に
HgCdTe結晶12をエツチングにより整形する。
この際に接着剤23の一部は露出される。続いて
第1図cに示すようにHgCdTe結晶12の全体を
エツチングし所定の厚さ、通常は10μm程度に薄
くすると同時に、端部27をなだらかにする。こ
のエツチング液としては鏡面エツチング液として
周知の臭素メタノール液等が適している。次に、
第1の導電体を形成する工程として、第1図dに
示すようにHgCdTe結晶22の全体を第2のレジ
ストパターン28でおおつた後、導電体材料29
を積層する。この導電体材料29としてはCrな
いしはTiとAuとを積層したものやAl、In等が適
しており、例えばバイアススパツタリングや斜め
蒸着等のステツプカバレツジの良い成膜法により
積層する。次に第1図eに示すように第3のレジ
ストパターン30をマスクとしてエツチングを行
ない、露出した接着剤層23及びその周囲の電極
端子の形成領域31に第1の導電体32を形成さ
せる。この時、HgCdTe結晶22は第2のレジス
トパターン28によつて保護されており、この工
程でHgCdTe結晶22の特性を損なうことはな
い。続いて第2の導電体を形成する工程として、
第1図fに示すようにHgCdTe結晶22の感光部
とする領域25に形成した第4のレジストパター
ン33をマスクとして導電体材料34を積層し、
いわゆるリフトオフ法によつて第4のレジストパ
ターン33上の不要の電極材料を除去する。これ
によりHgCdTe結晶22の電極接続部とする領域
26から第1の導電体32にかけて第2の導電体
35が形成される。ここで第2の導電体材料とし
ては第1の導電体材料と同じものを用いることが
でき、またリフトオフし易いように成膜すればよ
い。次に第1図gの断面図及び第1図hの平面図
に示すように、感光部及び電極接続部及び電極端
子の形状の第5のレジストパターン36をマスク
として、不要部分のHgCdTe結晶及び第1と第2
の導電体を一括してエツチング除去することによ
り、第1図iに示すように感光部37、電極接続
部38及び電極端子39を形成して赤外線検出素
子の製造を完了する。尚、以上の説明では主要な
製造工程のみを示しており、これらの工程の他
に、例えばHgCdTe結晶のパシベーシヨンのため
に酸化処理する場合には第1の導電体の形成後
に、またZnS等の誘電体膜を形成する場合には最
後に行なうことができる。
FIG. 1 is a sectional view and a plan view showing an embodiment of the manufacturing method of the present invention in the order of steps. First, as shown in the cross-sectional view of FIG.
Glue the HgCdTe crystal 22 using
Polish to a thickness of 60μm. As this insulating substrate 21, sapphire or the like having good thermal conductivity is suitable, and as the adhesive 23, low temperature epoxy or the like can be used. Next, as shown in FIG. 1b, using the first resist pattern 24, the dimensions of the areas 25 and 26 where the photosensitive area and the electrode connection area are to be formed are adjusted.
The HgCdTe crystal 12 is shaped by etching.
At this time, a portion of the adhesive 23 is exposed. Subsequently, as shown in FIG. 1c, the entire HgCdTe crystal 12 is etched to a predetermined thickness, usually about 10 μm, and at the same time, the edges 27 are made smooth. As this etching solution, a bromine methanol solution, which is well known as a mirror etching solution, is suitable. next,
In the step of forming the first conductor, as shown in FIG. 1d, after covering the entire HgCdTe crystal 22 with a second resist pattern 28,
Laminate. The conductor material 29 is suitably made of Cr or a stack of Ti and Au, Al, In, etc., and is laminated by a film forming method with good step coverage, such as bias sputtering or oblique evaporation. Next, as shown in FIG. 1e, etching is performed using the third resist pattern 30 as a mask to form the first conductor 32 in the exposed adhesive layer 23 and the electrode terminal formation region 31 around it. At this time, the HgCdTe crystal 22 is protected by the second resist pattern 28, and the characteristics of the HgCdTe crystal 22 are not impaired in this step. Subsequently, as a step of forming a second conductor,
As shown in FIG. 1f, a conductor material 34 is laminated using the fourth resist pattern 33 formed in the area 25 of the HgCdTe crystal 22 as a photosensitive part as a mask,
Unnecessary electrode material on the fourth resist pattern 33 is removed by a so-called lift-off method. As a result, a second conductor 35 is formed extending from the region 26 of the HgCdTe crystal 22 to be the electrode connection portion to the first conductor 32. Here, the second conductor material may be the same as the first conductor material, and may be formed to facilitate lift-off. Next, as shown in the cross-sectional view of FIG. 1g and the plan view of FIG. 1st and 2nd
By etching away the conductors all at once, a photosensitive portion 37, an electrode connection portion 38, and an electrode terminal 39 are formed as shown in FIG. 1I, thereby completing the manufacture of the infrared detection element. Note that the above explanation shows only the main manufacturing steps, and in addition to these steps, for example, in the case of oxidation treatment for passivation of HgCdTe crystal, after the formation of the first conductor, and oxidation treatment of ZnS etc. When forming a dielectric film, it can be performed last.

こうして製造した赤外膜検出素子では第2図a
に示すように接着剤層23の段差部23′が高さ
数μmの殆んど垂直な段差であるにもかかわら
ず、形成した導電体32のステツプカバレツジは
良好で、いわゆる段差切れは生じていない。これ
に対し第3図に示した従来の製造方法によるもの
ではリフトオフを行なうためにステツプカバレツ
ジを十分にすることができず、第2図bに示すよ
うに段差切れを生じたり、また段差切れには至ら
ないまでも極度に薄くなつてしまい、素子の動作
中に発熱して切断する故障が多く発生した。こう
して、本発明の製造方法によるものは従来の製造
方法によるものに比較して良品率が大幅に向上す
るのみでなく、更に動作中に故障するものは殆ん
どなくなり、信頼性が大幅に向上していることが
確認された。
The infrared film detection element manufactured in this way is shown in Fig. 2a.
As shown in FIG. 2, although the step portion 23' of the adhesive layer 23 is an almost vertical step with a height of several μm, the step coverage of the formed conductor 32 is good, and so-called step breakage does not occur. Not yet. On the other hand, with the conventional manufacturing method shown in Figure 3, it is not possible to provide sufficient step coverage for lift-off, resulting in step breakage as shown in Figure 2b; Although not yet extremely thin, the device became extremely thin, resulting in many failures where the device generated heat and broke during operation. In this way, products manufactured using the manufacturing method of the present invention not only have a significantly higher yield rate than products manufactured using conventional manufacturing methods, but also have almost no failures during operation, greatly improving reliability. It was confirmed that

(発明の効果) 以上説明したように、本発明によれば接着剤層
の段差部でのステツプカバレツジを改善すること
ができ、製造歩留りが良く、また信頼性の高い赤
外線検出素子の製造方法を提供できる効果を有す
るものである。
(Effects of the Invention) As explained above, according to the present invention, the step coverage at the stepped portion of the adhesive layer can be improved, the manufacturing yield is high, and the method for manufacturing an infrared detection element is highly reliable. It has the effect of providing the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜iは本発明の実施例の主要工程の説
明図、第2図a及びbはそれぞれ本発明の製造方
法と従来の製造方法による段差部形状を示す断面
図、第3図a〜dは従来の製造方法を説明する主
要工程図である。 図において、21は絶縁基板、22はHgCdTe
結晶、27はHgCdTe結晶の端部、25は感光部
とする領域、26は電極接続部とする領域、31
は電極端子を形成する領域、37は感光部、38
は電極接続部、39は電極端子、23は接着剤
層、24,28,30,33及び36はそれぞれ
第1、第2、第3、第4及び第5のレジストパタ
ーン、29及び34は成膜した導電体材料、32
は第1の導電体であり、35は第2の導電体であ
る。
Figures 1 a to i are explanatory diagrams of the main steps of the embodiment of the present invention, Figures 2 a and b are sectional views showing the shape of the stepped portion according to the manufacturing method of the present invention and the conventional manufacturing method, respectively, and Figure 3 a -d are main process diagrams illustrating a conventional manufacturing method. In the figure, 21 is an insulating substrate, 22 is HgCdTe
Crystal, 27 is the end of the HgCdTe crystal, 25 is the area to be the photosensitive part, 26 is the area to be the electrode connection part, 31
37 is a region forming an electrode terminal, 37 is a photosensitive portion, and 38 is a region where an electrode terminal is formed.
39 is an electrode terminal; 23 is an adhesive layer; 24, 28, 30, 33, and 36 are first, second, third, fourth, and fifth resist patterns, respectively; 29 and 34 are finished resist patterns; Filmed conductor material, 32
is the first conductor, and 35 is the second conductor.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁基板上にHgCdTe結晶を接着してこれを
研磨する工程と、該HgCdTe結晶を感光部と電極
接続部を形成する領域の寸法に整形すると共に、
接着剤層を一部露出させる工程と、前記HgCdTe
結晶を所定の厚さまでエツチング除去すると共に
その端部をなだらかにする工程と、前記露出した
接着剤層及び電極端子を形成する領域に第1の導
電体を形成する工程と、前記HgCdTe結晶の電極
接続部とする領域から前記第1の導電体にかけて
第2の導電体をリフトオフ法によつて形成する工
程と、前記HgCdTe結晶及び前記第1と第2の導
電体とを一括して感光部及び電極接続部及び電極
端子の形状にエツチング加工する工程とを行うこ
とを特徴とする赤外線検出素子の製造方法。
1. A process of bonding an HgCdTe crystal on an insulating substrate and polishing it, shaping the HgCdTe crystal to the dimensions of the area where the photosensitive part and the electrode connection part are to be formed,
A step of partially exposing the adhesive layer and the HgCdTe
a step of etching the crystal to a predetermined thickness and smoothing its edges; a step of forming a first conductor in the exposed adhesive layer and the region where the electrode terminal is to be formed; and an electrode of the HgCdTe crystal. A step of forming a second conductor from a region to be a connection portion to the first conductor by a lift-off method, and a step of forming the HgCdTe crystal and the first and second conductors at a photosensitive portion 1. A method of manufacturing an infrared detection element, comprising the step of etching into the shape of an electrode connection part and an electrode terminal.
JP59186831A 1984-09-06 1984-09-06 Manufacture of infrared detecting element Granted JPS6164173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186831A JPS6164173A (en) 1984-09-06 1984-09-06 Manufacture of infrared detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186831A JPS6164173A (en) 1984-09-06 1984-09-06 Manufacture of infrared detecting element

Publications (2)

Publication Number Publication Date
JPS6164173A JPS6164173A (en) 1986-04-02
JPH0546708B2 true JPH0546708B2 (en) 1993-07-14

Family

ID=16195376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186831A Granted JPS6164173A (en) 1984-09-06 1984-09-06 Manufacture of infrared detecting element

Country Status (1)

Country Link
JP (1) JPS6164173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117089A (en) * 1994-10-26 1996-05-14 Sugamo Heiwa Reien:Kk Panel altar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117089A (en) * 1994-10-26 1996-05-14 Sugamo Heiwa Reien:Kk Panel altar

Also Published As

Publication number Publication date
JPS6164173A (en) 1986-04-02

Similar Documents

Publication Publication Date Title
JPS6149819B2 (en)
JPH0531304B2 (en)
JPH0546708B2 (en)
JP2751242B2 (en) Method for manufacturing semiconductor device
JP2502581B2 (en) Method for forming protruding electrode of semiconductor element
JPH0730095A (en) Semiconductor device and manufacture thereof
JPH05283412A (en) Semiconductor device and its manufacture
JPS6125221B2 (en)
JPH0482054B2 (en)
JPH0330986B2 (en)
JP2985426B2 (en) Semiconductor device and manufacturing method thereof
JPS5814746B2 (en) hand tai souchi no seizou houhou
JP2739842B2 (en) Method for manufacturing semiconductor device
JPH0244145B2 (en)
JPH03265140A (en) Semiconductor device and manufacture thereof
JP2750737B2 (en) Method for manufacturing semiconductor device
JPH0480536B2 (en)
JPS62281356A (en) Manufacture of semiconductor device
JPS61239647A (en) Semiconductor device
JP2654655B2 (en) Manufacturing method of resistor
JP2003273147A (en) Semiconductor device and manufacturing method thereof
JPH03297145A (en) Manufacture of semiconductor device
JPH0213936B2 (en)
JPS60171616A (en) Thin film magnetic head
JPS61100981A (en) Manufacture of semiconductor device