JPS6164173A - Manufacture of infrared detecting element - Google Patents
Manufacture of infrared detecting elementInfo
- Publication number
- JPS6164173A JPS6164173A JP59186831A JP18683184A JPS6164173A JP S6164173 A JPS6164173 A JP S6164173A JP 59186831 A JP59186831 A JP 59186831A JP 18683184 A JP18683184 A JP 18683184A JP S6164173 A JPS6164173 A JP S6164173A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- conductor
- hgcdte
- adhesive layer
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000004020 conductor Substances 0.000 claims abstract description 31
- 239000013078 crystal Substances 0.000 claims abstract description 29
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000012790 adhesive layer Substances 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 6
- 238000005530 etching Methods 0.000 claims description 8
- 238000009499 grossing Methods 0.000 claims description 2
- 238000005498 polishing Methods 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 9
- 239000000853 adhesive Substances 0.000 abstract description 4
- 230000001070 adhesive effect Effects 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 230000008020 evaporation Effects 0.000 abstract description 3
- 238000001704 evaporation Methods 0.000 abstract description 3
- 238000004544 sputter deposition Methods 0.000 abstract description 3
- 229910052738 indium Inorganic materials 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1828—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
- H01L31/1832—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はHgCdTeを用いた赤外線検出素子の製造方
法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an infrared detection element using HgCdTe.
(従来の技術)
HgCdTeは高感度赤外線素子に最適の材料として知
られておシ、これを用いた赤外線検出素子は基本的には
厚さ10μm程度のHgCdTe結晶に電極端子を形成
し、その間の抵抗変化を検出するよう構成されたもので
ある。こうした赤外線検出素子の従来の製造方法を示す
と、その主要工程は以下のようなものである。すなわち
、第3図(a)に示すように絶縁基板1上K HgCd
Te結晶2を接着してこれを研磨し、続いてとのHgC
dTe結晶を所定の厚さ、通常は10μm程度にエツチ
ングすると共に、その端部3をなだらかにする。次に、
第3図(b)に示すようにHgCdTe結晶2の感光部
とする領域4以外の部分、すなわち電極接続部及び電極
端子を形成する部分5及び6にいわゆるリフトオフ法に
よって導電体7t−形成する。更に、第3図(C)及び
(→に示すようにHgCdTe結晶2と導電体7とを一
括して感光部8及び電極接続部9及び電極端子10の形
状に工、チング加工することによ)製造されていた。こ
こで導電体7をリフトオフ法によって形成するのは導電
体7の材料とHgCdTe結晶とが直接触れないように
して感光部8の特性劣化を防ぐためである。(Prior art) HgCdTe is known as an optimal material for high-sensitivity infrared elements, and infrared detection elements using this are basically formed with electrode terminals on HgCdTe crystals with a thickness of about 10 μm, and The device is configured to detect a change in resistance. The main steps of the conventional manufacturing method of such an infrared detection element are as follows. That is, as shown in FIG. 3(a), K HgCd on the insulating substrate 1
Te crystal 2 is glued and polished, followed by HgC
The dTe crystal is etched to a predetermined thickness, usually about 10 μm, and its edges 3 are made smooth. next,
As shown in FIG. 3(b), a conductor 7t is formed in a portion of the HgCdTe crystal 2 other than the region 4 which is to be a photosensitive portion, that is, in portions 5 and 6 where an electrode connection portion and an electrode terminal are to be formed, by a so-called lift-off method. Furthermore, as shown in FIG. ) was manufactured. The reason why the conductor 7 is formed by the lift-off method is to prevent the material of the conductor 7 from coming into direct contact with the HgCdTe crystal, thereby preventing deterioration of the characteristics of the photosensitive portion 8.
図中14はレジス) ノ4ターンを示している。In the figure, 14 indicates 4 turns of Regis).
(発明が解決しようとする問題点)
ところで、この導電体7の形成の際、接着剤層11の端
の段差部12をまたいで導電体が形成され、かつ電気的
接続が保たれねばならない。しかし、接着剤層11は一
般に数μmの厚さであシ、段差部12は高さ数μmの殆
んど垂直な段差となっているため、いわゆる段差切れが
生じ易く、電気的接続はどうしても不十分とならざるを
得ない。こうした段差切れは通常はバイアススパッタリ
ングや斜め蒸着等の成膜法により改善が可能であるが、
逆にリフトオフを困難にしてしまう。こうして従来の製
造方法では段差切れの改善とりフトオフとの両立は非常
に困難となっておシ、製造歩留シの低下のみならず、素
子動作中に導通不良を生じる等にょシ信頼性の低下を招
いていた。(Problems to be Solved by the Invention) When forming the conductor 7, the conductor must be formed across the stepped portion 12 at the end of the adhesive layer 11, and electrical connection must be maintained. However, since the adhesive layer 11 is generally several micrometers thick, and the step portion 12 is a nearly vertical step with a height of several micrometers, so-called step breakage is likely to occur, making electrical connection impossible. It has to be inadequate. These steps can usually be improved by film formation methods such as bias sputtering and oblique evaporation.
On the contrary, it makes lift-off difficult. In this way, with conventional manufacturing methods, it is extremely difficult to improve the problem of step breakage and to simultaneously improve the lift-off.This not only lowers the manufacturing yield, but also reduces reliability, such as conduction failure during device operation. was inviting.
本発明の目的は上記の欠点をなくし、製造歩留シが良く
、また信頼性の高い赤外線検出素子の製造方法を提供す
ることにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an infrared detection element that eliminates the above-mentioned drawbacks, has a good manufacturing yield, and is highly reliable.
(問題点を解決するための手段)
本発明は絶縁基板上にHgCdTe結晶を接着してこれ
を研磨する工程と、該HgCdTeを感光部と電極接続
部を形成する領域の寸法に整形すると共に、接着剤層を
一部露出させる工程と、前記HgCdTe結晶を所定の
厚さまでエツチング除去すると共にその端部をなだらか
にする工程と、前記露出した接着剤層及び電極端子を形
成する領域に第1の導電体を形成する工程と、前記Hg
CdTe結晶の電極接続部とする領域から前記第1の導
電体にかけて第2の導電体をリフトオフ法によって形成
する工程と、前記HgCdTe結晶及び前記第1と第2
の導電体とを一括して感光部及び電極接続部及び電極端
子の形状にエツチング加工する工程とを行うことを特徴
とする赤外線検出素子の製造方法である。(Means for Solving the Problems) The present invention includes a step of bonding an HgCdTe crystal onto an insulating substrate and polishing it, shaping the HgCdTe to the dimensions of a region where a photosensitive part and an electrode connection part are to be formed, and a step of exposing a portion of the adhesive layer; a step of etching and removing the HgCdTe crystal to a predetermined thickness and smoothing its edges; A step of forming a conductor and the Hg
forming a second conductor from a region of the CdTe crystal to be an electrode connection part to the first conductor by a lift-off method;
This method of manufacturing an infrared detecting element is characterized by performing a step of etching the conductor and the conductor together into the shapes of a photosensitive part, an electrode connection part, and an electrode terminal.
(実施例)
以下、図面を用いて本発明の赤外線検出素子の製造方法
を説明する。(Example) Hereinafter, a method for manufacturing an infrared detection element of the present invention will be explained using the drawings.
fX1図は本発明の製造方法の実施例を工程順に′ 示
した断面図及び平面図である。まず第1図(、)の断面
図に示すように絶縁基板21上に接着剤23を用いてH
gCdTe結晶22を接着し、これを30〜60μmの
厚さまで研磨する。との絶縁基板21としては熱伝導率
のよいサファイア等が適しておシまた接着剤23として
は低温用エポキシ等を用いることができる。次に第1図
(b)に示すように第1のレジスト・ぐターン24を用
いて、感光部と電極接続部を形成する領域25及び26
の寸法にHgCdT e結晶12をエツチングによシ整
形する。この際に接着剤23の一部は露出される。続い
て第1図(C)に示すようにHgCdTe結晶12の全
体をエツチングし所定の厚さ、通常は10Am程度KM
(すると同時に、端部27をなだらかにする。このエツ
チング液としては鏡面エツチング液として周知の臭累メ
タノール液等が適している。次に、第1の導電体を形成
する工程として、第1図(d)に示すようにHgCdT
e結晶22の全体を第2のレジストパターン28でおお
った後、導電体材料29を積層する。この導電体材料2
9としてはOrないしはTiとAuとを積層したものや
At、In等が適しておシ、例えばバイアススパッタリ
ングや斜め蒸着等のステ、fカパレ、ジの良い成膜法に
よシ積層する。次に第1図(、)に示すように第3のレ
ジストパターン30ヲマスクとしてエツチングを行ない
、露出した接着剤層23及びその周囲の電極′端子の形
成領域31に第・1の導電体32を形成させる。Figure fX1 is a sectional view and a plan view showing an embodiment of the manufacturing method of the present invention in the order of steps. First, as shown in the cross-sectional view of FIG.
A gCdTe crystal 22 is bonded and polished to a thickness of 30 to 60 μm. As the insulating substrate 21, sapphire or the like having good thermal conductivity is suitable, and as the adhesive 23, low temperature epoxy or the like can be used. Next, as shown in FIG. 1(b), a first resist pattern 24 is used to form areas 25 and 26 where the photosensitive area and the electrode connection area are to be formed.
The HgCdTe crystal 12 is shaped by etching to the dimensions of . At this time, a portion of the adhesive 23 is exposed. Subsequently, as shown in FIG. 1(C), the entire HgCdTe crystal 12 is etched to a predetermined thickness, usually about 10 Am.
(At the same time, the end portion 27 is made smooth. As this etching liquid, a well-known odorous methanol solution as a specular etching liquid is suitable. Next, as a step of forming the first conductor, as shown in FIG. HgCdT as shown in (d)
After covering the entire e-crystal 22 with the second resist pattern 28, a conductive material 29 is laminated. This conductor material 2
As the material 9, a layered layer of Or or Ti and Au, At, In, etc. is suitable.For example, the layer is laminated by a film forming method such as bias sputtering, oblique evaporation, etc., which has good stability. Next, as shown in FIG. 1(, ), etching is performed using the third resist pattern 30 as a mask, and the first conductor 32 is formed on the exposed adhesive layer 23 and the surrounding area 31 where the electrode terminal is to be formed. Let it form.
この時、HgCdTe結晶22は第2のレジス) p4
ターン28によって保護されており、この工程でHgC
dTe結晶22の特性を損なうことはない。続いて第2
の導電体を形成する工程として、第1図(f)に示すよ
うにHgCdTe結晶22の感光部とする領域25に形
成した第4のレジストパターン33をマスクとして導電
体材料34を積層し、いわゆるリフトオフ法によって第
4のレジストパターン33上の不要の電極材料を除去す
る。これによl) HgCdTe結晶22の電極接続部
とする領域26から第1の導電体32にかけて第2の導
電体35が形成される。ここで第2の導電体材料として
は第1の導電体材料と同じものを用いることができ、ま
たリフトオフし易いように成膜すればよい。次に第1図
(g)の断面図及び第1図(h)の平面図に示すようK
、感光部及び電極接続部及び電極端子の形状の第5のレ
ジス) t4ターン36ヲマスクとして、不要部分のH
gCdTe結晶及び第1と第2の導電体を一括してエラ
チン・グ除去することにより、第1図(1)に示すよう
に感光部37、電極接続部38及び電極端子39を形成
して赤外線検出素子の製造を完了する。尚、以上の説明
では主要な製造工程のみを示しておシ、これらの工程の
他に、例えばHgCdT@結晶のパシベーションのため
に酸化処理する場合には第1の導電体の形成後に、また
ZnS等の誘電体膜を形成する場合には最後に行なうこ
とができる。At this time, the HgCdTe crystal 22 is the second resist) p4
It is protected by turn 28, and in this process HgC
The characteristics of the dTe crystal 22 are not impaired. Then the second
As a step of forming a conductor, as shown in FIG. 1(f), a conductor material 34 is laminated using the fourth resist pattern 33 formed in the area 25 of the HgCdTe crystal 22 as a photosensitive part as a mask. Unnecessary electrode material on the fourth resist pattern 33 is removed by a lift-off method. As a result, a second conductor 35 is formed extending from the region 26 of the HgCdTe crystal 22 to be the electrode connection portion to the first conductor 32. Here, the second conductor material may be the same as the first conductor material, and may be formed to facilitate lift-off. Next, as shown in the cross-sectional view of Fig. 1 (g) and the plan view of Fig. 1 (h),
, the fifth resist in the shape of the photosensitive part, electrode connection part, and electrode terminal) As a mask for t4 turn 36, remove unnecessary parts of H.
By removing the gCdTe crystal and the first and second conductors all at once, a photosensitive part 37, an electrode connection part 38, and an electrode terminal 39 are formed as shown in FIG. Complete the manufacturing of the detection element. The above explanation shows only the main manufacturing steps. In addition to these steps, for example, in the case of oxidation treatment for passivation of HgCdT@ crystal, after the formation of the first conductor, and ZnS This can be done last when forming a dielectric film such as.
こうして製造した赤外線検出素子では第2図(、)【示
すように接着剤層23の段差部23′が高さ数μmの殆
んど垂直な段差であるにもかかわらず、形成した導電体
32のステップカバレッジは良好で、いわゆる段差切れ
は生じていない。これに対し第3図に示した従来の製造
方法によるものではリフトオフを行なうだめにステップ
カバン、ジを十分にすることができず、第2図(b)に
示すように段差切れを生じたシ、また段差切れには至ら
ないまでも極度に薄くなってしまい、素子の動作中に発
熱して切断する故障が多く発生した。こうして、本発明
の製造方法によるものは従来の製造方法によるものに比
較して良品率が大幅に向上するのみでなく、更に動作中
に故障するものは殆んどなくなり、信頼性が大幅に向上
していることが確認された。In the infrared detecting element manufactured in this way, although the stepped portion 23' of the adhesive layer 23 is an almost vertical step with a height of several μm, as shown in FIG. The step coverage is good, and there are no so-called step breaks. On the other hand, with the conventional manufacturing method shown in Figure 3, it was not possible to make enough step bags and jackets for lift-off, and the result was a step breakage as shown in Figure 2 (b). In addition, although it did not result in step breakage, it became extremely thin, and there were many failures where the device generated heat and broke during operation. In this way, products manufactured using the manufacturing method of the present invention not only have a significantly higher yield rate than products manufactured using conventional manufacturing methods, but also have almost no failures during operation, greatly improving reliability. It was confirmed that
(発明の効果)
以上説明したように、本発明によれば接着剤層の段差部
でのステップカバレッジを改善することができ、製造歩
留シが良く、また信頼性の高い赤外線検出素子の製造方
法を提供できる効果を有するものである。(Effects of the Invention) As explained above, according to the present invention, the step coverage at the stepped portion of the adhesive layer can be improved, the manufacturing yield is good, and an infrared detection element with high reliability can be manufactured. This has the effect of providing a method.
第1図(、)〜(i)は本発明の実施例の主要工程の説
明図、第2図(、)及び(b)はそれぞれ本発明の製造
方法と従来の製造方法による段差部形状を示す断面図、
第3図(、)〜(d)は従来の製造方法を説明する主要
工程図である。
図において、21は絶縁基板、22はHgCdTe結晶
、27は)HgCdTe結晶の端部、25は感光部とす
る領域、26は電極接続部とする領域、31は電極端子
を形成する領域、37は感光部、38は電極接続部、3
9は電極端子、23は接着剤層、24.28.30.3
3及び36はそれぞれ第1.第2.第3.第4及び第5
のレジス) i4ターン、29及び34は成膜した導電
体材料、32は第1の導電体であり、35は第2の導電
体である。
第2図
(α)
(b、1Figures 1 (,) to (i) are explanatory diagrams of the main steps of the embodiment of the present invention, and Figures 2 (,) and (b) illustrate the shape of the stepped portion according to the manufacturing method of the present invention and the conventional manufacturing method, respectively. A cross-sectional view showing,
FIGS. 3(a) to 3(d) are main process diagrams illustrating the conventional manufacturing method. In the figure, 21 is an insulating substrate, 22 is an HgCdTe crystal, 27 is an end of the HgCdTe crystal, 25 is a region to be a photosensitive part, 26 is a region to be an electrode connection part, 31 is a region to form an electrode terminal, and 37 is an end part of the HgCdTe crystal. Photosensitive part, 38 is electrode connection part, 3
9 is an electrode terminal, 23 is an adhesive layer, 24.28.30.3
3 and 36 are the 1st. Second. Third. 4th and 5th
In the i4 turn, 29 and 34 are formed conductor materials, 32 is a first conductor, and 35 is a second conductor. Figure 2 (α) (b, 1
Claims (1)
研磨する工程と、該HgCdTe結晶を感光部と電極接
続部を形成する領域の寸法に整形すると共に、接着剤層
を一部露出させる工程と、前記HgCdTe結晶を所定
の厚さまでエッチング除去すると共にその端部をなだら
かにする工程と、前記露出した接着剤層及び電極端子を
形成する領域に第1の導電体を形成する工程と、前記H
gCdTe結晶の電極接続部とする領域から前記第1の
導電体にかけて第2の導電体をリフトオフ法によって形
成する工程と、前記HgCdTe結晶及び前記第1と第
2の導電体とを一括して感光部及び電極接続部及び電極
端子の形状にエッチング加工する工程とを行うことを特
徴とする赤外線検出素子の製造方法。(1) A step of adhering an HgCdTe crystal on an insulating substrate and polishing it, and a step of shaping the HgCdTe crystal to the dimensions of the area where the photosensitive part and the electrode connection part will be formed, and exposing a part of the adhesive layer. a step of etching away the HgCdTe crystal to a predetermined thickness and smoothing its edges; a step of forming a first conductor in the exposed adhesive layer and the region where the electrode terminal is to be formed; H
A step of forming a second conductor from a region of the gCdTe crystal that is to be an electrode connection part to the first conductor by a lift-off method, and a step of photo-sensing the HgCdTe crystal and the first and second conductors at once. 1. A method for manufacturing an infrared detecting element, comprising the steps of etching into the shapes of the electrode terminal, the electrode connecting portion, and the electrode terminal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59186831A JPS6164173A (en) | 1984-09-06 | 1984-09-06 | Manufacture of infrared detecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59186831A JPS6164173A (en) | 1984-09-06 | 1984-09-06 | Manufacture of infrared detecting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6164173A true JPS6164173A (en) | 1986-04-02 |
JPH0546708B2 JPH0546708B2 (en) | 1993-07-14 |
Family
ID=16195376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59186831A Granted JPS6164173A (en) | 1984-09-06 | 1984-09-06 | Manufacture of infrared detecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6164173A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08117089A (en) * | 1994-10-26 | 1996-05-14 | Sugamo Heiwa Reien:Kk | Panel altar |
-
1984
- 1984-09-06 JP JP59186831A patent/JPS6164173A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0546708B2 (en) | 1993-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4021767A (en) | Hall element and method of manufacturing same | |
US5197804A (en) | Resistance temperature sensor | |
JPH02150754A (en) | Production of sensitive element | |
EP0186818B1 (en) | Chip to pin interconnect method | |
JPS6164173A (en) | Manufacture of infrared detecting element | |
US4089991A (en) | Process for applying electrical conductors for Dewar flask | |
GB2043908A (en) | Humidity Sensor Element | |
JPS646554B2 (en) | ||
US3992774A (en) | Method for fabricating lead through for Dewar flask | |
JPS59104523A (en) | Production of infrared-ray detector | |
JPH0330986B2 (en) | ||
JPH0153729B2 (en) | ||
JPS61121348A (en) | Semiconductor device | |
JPS59171821A (en) | Manufacture of infrared ray detection element | |
JPS5814746B2 (en) | hand tai souchi no seizou houhou | |
JPS60106976A (en) | Detection of end point of etching | |
JPH0694663A (en) | Humidity detection element and its manufacture | |
JPS592329A (en) | Manufacture of substrate of semiconductor integrated circuit | |
JPH07109903B2 (en) | Method for manufacturing photoconductive infrared detector | |
JPH0638511B2 (en) | Method of manufacturing infrared detection element | |
JPS60171616A (en) | Thin film magnetic head | |
JP2003273147A (en) | Semiconductor device and manufacturing method thereof | |
JPS6028266A (en) | Manufacture of infrared ray detecting element | |
JPS61100981A (en) | Manufacture of semiconductor device | |
JPH11330586A (en) | Magnetoelectric transducer, magnetic sensor using the transducer, and manufacture of the magnetoelectric transducer |