JPS6164173A - Manufacture of infrared detecting element - Google Patents

Manufacture of infrared detecting element

Info

Publication number
JPS6164173A
JPS6164173A JP59186831A JP18683184A JPS6164173A JP S6164173 A JPS6164173 A JP S6164173A JP 59186831 A JP59186831 A JP 59186831A JP 18683184 A JP18683184 A JP 18683184A JP S6164173 A JPS6164173 A JP S6164173A
Authority
JP
Japan
Prior art keywords
crystal
conductor
hgcdte
adhesive layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59186831A
Other languages
Japanese (ja)
Other versions
JPH0546708B2 (en
Inventor
Toshio Yamagata
山形 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59186831A priority Critical patent/JPS6164173A/en
Publication of JPS6164173A publication Critical patent/JPS6164173A/en
Publication of JPH0546708B2 publication Critical patent/JPH0546708B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To improve yield on manufacture by enhancing a step coverage at the stepped section of an adhesive layer. CONSTITUTION:An HgCdTe crystal 22 is bonded onto an insulating substrate 21 by using adhesives 23, and the crystal 22 is abraded, and HgCdTe crystals 12 are shaped to regions 25 and 26 in which a photosensitive section and electrode connecting sections are formed. One parts of adhesives 23 are exposed at that time. The whole HgCdTe crystals 12 are etched, end sections 27 are made gentle, and a process through which first and second conductors are shaped is executed. A laminate consisting of Cr or Ti and Au or Al, In or the like is fitted as a conductor material 29, and these elements are laminated through a film formation method having an excellent step coverage, such as bias sputtering, oblique evaporation, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はHgCdTeを用いた赤外線検出素子の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an infrared detection element using HgCdTe.

(従来の技術) HgCdTeは高感度赤外線素子に最適の材料として知
られておシ、これを用いた赤外線検出素子は基本的には
厚さ10μm程度のHgCdTe結晶に電極端子を形成
し、その間の抵抗変化を検出するよう構成されたもので
ある。こうした赤外線検出素子の従来の製造方法を示す
と、その主要工程は以下のようなものである。すなわち
、第3図(a)に示すように絶縁基板1上K HgCd
Te結晶2を接着してこれを研磨し、続いてとのHgC
dTe結晶を所定の厚さ、通常は10μm程度にエツチ
ングすると共に、その端部3をなだらかにする。次に、
第3図(b)に示すようにHgCdTe結晶2の感光部
とする領域4以外の部分、すなわち電極接続部及び電極
端子を形成する部分5及び6にいわゆるリフトオフ法に
よって導電体7t−形成する。更に、第3図(C)及び
(→に示すようにHgCdTe結晶2と導電体7とを一
括して感光部8及び電極接続部9及び電極端子10の形
状に工、チング加工することによ)製造されていた。こ
こで導電体7をリフトオフ法によって形成するのは導電
体7の材料とHgCdTe結晶とが直接触れないように
して感光部8の特性劣化を防ぐためである。
(Prior art) HgCdTe is known as an optimal material for high-sensitivity infrared elements, and infrared detection elements using this are basically formed with electrode terminals on HgCdTe crystals with a thickness of about 10 μm, and The device is configured to detect a change in resistance. The main steps of the conventional manufacturing method of such an infrared detection element are as follows. That is, as shown in FIG. 3(a), K HgCd on the insulating substrate 1
Te crystal 2 is glued and polished, followed by HgC
The dTe crystal is etched to a predetermined thickness, usually about 10 μm, and its edges 3 are made smooth. next,
As shown in FIG. 3(b), a conductor 7t is formed in a portion of the HgCdTe crystal 2 other than the region 4 which is to be a photosensitive portion, that is, in portions 5 and 6 where an electrode connection portion and an electrode terminal are to be formed, by a so-called lift-off method. Furthermore, as shown in FIG. ) was manufactured. The reason why the conductor 7 is formed by the lift-off method is to prevent the material of the conductor 7 from coming into direct contact with the HgCdTe crystal, thereby preventing deterioration of the characteristics of the photosensitive portion 8.

図中14はレジス) ノ4ターンを示している。In the figure, 14 indicates 4 turns of Regis).

(発明が解決しようとする問題点) ところで、この導電体7の形成の際、接着剤層11の端
の段差部12をまたいで導電体が形成され、かつ電気的
接続が保たれねばならない。しかし、接着剤層11は一
般に数μmの厚さであシ、段差部12は高さ数μmの殆
んど垂直な段差となっているため、いわゆる段差切れが
生じ易く、電気的接続はどうしても不十分とならざるを
得ない。こうした段差切れは通常はバイアススパッタリ
ングや斜め蒸着等の成膜法により改善が可能であるが、
逆にリフトオフを困難にしてしまう。こうして従来の製
造方法では段差切れの改善とりフトオフとの両立は非常
に困難となっておシ、製造歩留シの低下のみならず、素
子動作中に導通不良を生じる等にょシ信頼性の低下を招
いていた。
(Problems to be Solved by the Invention) When forming the conductor 7, the conductor must be formed across the stepped portion 12 at the end of the adhesive layer 11, and electrical connection must be maintained. However, since the adhesive layer 11 is generally several micrometers thick, and the step portion 12 is a nearly vertical step with a height of several micrometers, so-called step breakage is likely to occur, making electrical connection impossible. It has to be inadequate. These steps can usually be improved by film formation methods such as bias sputtering and oblique evaporation.
On the contrary, it makes lift-off difficult. In this way, with conventional manufacturing methods, it is extremely difficult to improve the problem of step breakage and to simultaneously improve the lift-off.This not only lowers the manufacturing yield, but also reduces reliability, such as conduction failure during device operation. was inviting.

本発明の目的は上記の欠点をなくし、製造歩留シが良く
、また信頼性の高い赤外線検出素子の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an infrared detection element that eliminates the above-mentioned drawbacks, has a good manufacturing yield, and is highly reliable.

(問題点を解決するための手段) 本発明は絶縁基板上にHgCdTe結晶を接着してこれ
を研磨する工程と、該HgCdTeを感光部と電極接続
部を形成する領域の寸法に整形すると共に、接着剤層を
一部露出させる工程と、前記HgCdTe結晶を所定の
厚さまでエツチング除去すると共にその端部をなだらか
にする工程と、前記露出した接着剤層及び電極端子を形
成する領域に第1の導電体を形成する工程と、前記Hg
CdTe結晶の電極接続部とする領域から前記第1の導
電体にかけて第2の導電体をリフトオフ法によって形成
する工程と、前記HgCdTe結晶及び前記第1と第2
の導電体とを一括して感光部及び電極接続部及び電極端
子の形状にエツチング加工する工程とを行うことを特徴
とする赤外線検出素子の製造方法である。
(Means for Solving the Problems) The present invention includes a step of bonding an HgCdTe crystal onto an insulating substrate and polishing it, shaping the HgCdTe to the dimensions of a region where a photosensitive part and an electrode connection part are to be formed, and a step of exposing a portion of the adhesive layer; a step of etching and removing the HgCdTe crystal to a predetermined thickness and smoothing its edges; A step of forming a conductor and the Hg
forming a second conductor from a region of the CdTe crystal to be an electrode connection part to the first conductor by a lift-off method;
This method of manufacturing an infrared detecting element is characterized by performing a step of etching the conductor and the conductor together into the shapes of a photosensitive part, an electrode connection part, and an electrode terminal.

(実施例) 以下、図面を用いて本発明の赤外線検出素子の製造方法
を説明する。
(Example) Hereinafter, a method for manufacturing an infrared detection element of the present invention will be explained using the drawings.

fX1図は本発明の製造方法の実施例を工程順に′ 示
した断面図及び平面図である。まず第1図(、)の断面
図に示すように絶縁基板21上に接着剤23を用いてH
gCdTe結晶22を接着し、これを30〜60μmの
厚さまで研磨する。との絶縁基板21としては熱伝導率
のよいサファイア等が適しておシまた接着剤23として
は低温用エポキシ等を用いることができる。次に第1図
(b)に示すように第1のレジスト・ぐターン24を用
いて、感光部と電極接続部を形成する領域25及び26
の寸法にHgCdT e結晶12をエツチングによシ整
形する。この際に接着剤23の一部は露出される。続い
て第1図(C)に示すようにHgCdTe結晶12の全
体をエツチングし所定の厚さ、通常は10Am程度KM
(すると同時に、端部27をなだらかにする。このエツ
チング液としては鏡面エツチング液として周知の臭累メ
タノール液等が適している。次に、第1の導電体を形成
する工程として、第1図(d)に示すようにHgCdT
e結晶22の全体を第2のレジストパターン28でおお
った後、導電体材料29を積層する。この導電体材料2
9としてはOrないしはTiとAuとを積層したものや
At、In等が適しておシ、例えばバイアススパッタリ
ングや斜め蒸着等のステ、fカパレ、ジの良い成膜法に
よシ積層する。次に第1図(、)に示すように第3のレ
ジストパターン30ヲマスクとしてエツチングを行ない
、露出した接着剤層23及びその周囲の電極′端子の形
成領域31に第・1の導電体32を形成させる。
Figure fX1 is a sectional view and a plan view showing an embodiment of the manufacturing method of the present invention in the order of steps. First, as shown in the cross-sectional view of FIG.
A gCdTe crystal 22 is bonded and polished to a thickness of 30 to 60 μm. As the insulating substrate 21, sapphire or the like having good thermal conductivity is suitable, and as the adhesive 23, low temperature epoxy or the like can be used. Next, as shown in FIG. 1(b), a first resist pattern 24 is used to form areas 25 and 26 where the photosensitive area and the electrode connection area are to be formed.
The HgCdTe crystal 12 is shaped by etching to the dimensions of . At this time, a portion of the adhesive 23 is exposed. Subsequently, as shown in FIG. 1(C), the entire HgCdTe crystal 12 is etched to a predetermined thickness, usually about 10 Am.
(At the same time, the end portion 27 is made smooth. As this etching liquid, a well-known odorous methanol solution as a specular etching liquid is suitable. Next, as a step of forming the first conductor, as shown in FIG. HgCdT as shown in (d)
After covering the entire e-crystal 22 with the second resist pattern 28, a conductive material 29 is laminated. This conductor material 2
As the material 9, a layered layer of Or or Ti and Au, At, In, etc. is suitable.For example, the layer is laminated by a film forming method such as bias sputtering, oblique evaporation, etc., which has good stability. Next, as shown in FIG. 1(, ), etching is performed using the third resist pattern 30 as a mask, and the first conductor 32 is formed on the exposed adhesive layer 23 and the surrounding area 31 where the electrode terminal is to be formed. Let it form.

この時、HgCdTe結晶22は第2のレジス) p4
ターン28によって保護されており、この工程でHgC
dTe結晶22の特性を損なうことはない。続いて第2
の導電体を形成する工程として、第1図(f)に示すよ
うにHgCdTe結晶22の感光部とする領域25に形
成した第4のレジストパターン33をマスクとして導電
体材料34を積層し、いわゆるリフトオフ法によって第
4のレジストパターン33上の不要の電極材料を除去す
る。これによl) HgCdTe結晶22の電極接続部
とする領域26から第1の導電体32にかけて第2の導
電体35が形成される。ここで第2の導電体材料として
は第1の導電体材料と同じものを用いることができ、ま
たリフトオフし易いように成膜すればよい。次に第1図
(g)の断面図及び第1図(h)の平面図に示すようK
、感光部及び電極接続部及び電極端子の形状の第5のレ
ジス) t4ターン36ヲマスクとして、不要部分のH
gCdTe結晶及び第1と第2の導電体を一括してエラ
チン・グ除去することにより、第1図(1)に示すよう
に感光部37、電極接続部38及び電極端子39を形成
して赤外線検出素子の製造を完了する。尚、以上の説明
では主要な製造工程のみを示しておシ、これらの工程の
他に、例えばHgCdT@結晶のパシベーションのため
に酸化処理する場合には第1の導電体の形成後に、また
ZnS等の誘電体膜を形成する場合には最後に行なうこ
とができる。
At this time, the HgCdTe crystal 22 is the second resist) p4
It is protected by turn 28, and in this process HgC
The characteristics of the dTe crystal 22 are not impaired. Then the second
As a step of forming a conductor, as shown in FIG. 1(f), a conductor material 34 is laminated using the fourth resist pattern 33 formed in the area 25 of the HgCdTe crystal 22 as a photosensitive part as a mask. Unnecessary electrode material on the fourth resist pattern 33 is removed by a lift-off method. As a result, a second conductor 35 is formed extending from the region 26 of the HgCdTe crystal 22 to be the electrode connection portion to the first conductor 32. Here, the second conductor material may be the same as the first conductor material, and may be formed to facilitate lift-off. Next, as shown in the cross-sectional view of Fig. 1 (g) and the plan view of Fig. 1 (h),
, the fifth resist in the shape of the photosensitive part, electrode connection part, and electrode terminal) As a mask for t4 turn 36, remove unnecessary parts of H.
By removing the gCdTe crystal and the first and second conductors all at once, a photosensitive part 37, an electrode connection part 38, and an electrode terminal 39 are formed as shown in FIG. Complete the manufacturing of the detection element. The above explanation shows only the main manufacturing steps. In addition to these steps, for example, in the case of oxidation treatment for passivation of HgCdT@ crystal, after the formation of the first conductor, and ZnS This can be done last when forming a dielectric film such as.

こうして製造した赤外線検出素子では第2図(、)【示
すように接着剤層23の段差部23′が高さ数μmの殆
んど垂直な段差であるにもかかわらず、形成した導電体
32のステップカバレッジは良好で、いわゆる段差切れ
は生じていない。これに対し第3図に示した従来の製造
方法によるものではリフトオフを行なうだめにステップ
カバン、ジを十分にすることができず、第2図(b)に
示すように段差切れを生じたシ、また段差切れには至ら
ないまでも極度に薄くなってしまい、素子の動作中に発
熱して切断する故障が多く発生した。こうして、本発明
の製造方法によるものは従来の製造方法によるものに比
較して良品率が大幅に向上するのみでなく、更に動作中
に故障するものは殆んどなくなり、信頼性が大幅に向上
していることが確認された。
In the infrared detecting element manufactured in this way, although the stepped portion 23' of the adhesive layer 23 is an almost vertical step with a height of several μm, as shown in FIG. The step coverage is good, and there are no so-called step breaks. On the other hand, with the conventional manufacturing method shown in Figure 3, it was not possible to make enough step bags and jackets for lift-off, and the result was a step breakage as shown in Figure 2 (b). In addition, although it did not result in step breakage, it became extremely thin, and there were many failures where the device generated heat and broke during operation. In this way, products manufactured using the manufacturing method of the present invention not only have a significantly higher yield rate than products manufactured using conventional manufacturing methods, but also have almost no failures during operation, greatly improving reliability. It was confirmed that

(発明の効果) 以上説明したように、本発明によれば接着剤層の段差部
でのステップカバレッジを改善することができ、製造歩
留シが良く、また信頼性の高い赤外線検出素子の製造方
法を提供できる効果を有するものである。
(Effects of the Invention) As explained above, according to the present invention, the step coverage at the stepped portion of the adhesive layer can be improved, the manufacturing yield is good, and an infrared detection element with high reliability can be manufactured. This has the effect of providing a method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(i)は本発明の実施例の主要工程の説
明図、第2図(、)及び(b)はそれぞれ本発明の製造
方法と従来の製造方法による段差部形状を示す断面図、
第3図(、)〜(d)は従来の製造方法を説明する主要
工程図である。 図において、21は絶縁基板、22はHgCdTe結晶
、27は)HgCdTe結晶の端部、25は感光部とす
る領域、26は電極接続部とする領域、31は電極端子
を形成する領域、37は感光部、38は電極接続部、3
9は電極端子、23は接着剤層、24.28.30.3
3及び36はそれぞれ第1.第2.第3.第4及び第5
のレジス) i4ターン、29及び34は成膜した導電
体材料、32は第1の導電体であり、35は第2の導電
体である。 第2図 (α) (b、1
Figures 1 (,) to (i) are explanatory diagrams of the main steps of the embodiment of the present invention, and Figures 2 (,) and (b) illustrate the shape of the stepped portion according to the manufacturing method of the present invention and the conventional manufacturing method, respectively. A cross-sectional view showing,
FIGS. 3(a) to 3(d) are main process diagrams illustrating the conventional manufacturing method. In the figure, 21 is an insulating substrate, 22 is an HgCdTe crystal, 27 is an end of the HgCdTe crystal, 25 is a region to be a photosensitive part, 26 is a region to be an electrode connection part, 31 is a region to form an electrode terminal, and 37 is an end part of the HgCdTe crystal. Photosensitive part, 38 is electrode connection part, 3
9 is an electrode terminal, 23 is an adhesive layer, 24.28.30.3
3 and 36 are the 1st. Second. Third. 4th and 5th
In the i4 turn, 29 and 34 are formed conductor materials, 32 is a first conductor, and 35 is a second conductor. Figure 2 (α) (b, 1

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁基板上にHgCdTe結晶を接着してこれを
研磨する工程と、該HgCdTe結晶を感光部と電極接
続部を形成する領域の寸法に整形すると共に、接着剤層
を一部露出させる工程と、前記HgCdTe結晶を所定
の厚さまでエッチング除去すると共にその端部をなだら
かにする工程と、前記露出した接着剤層及び電極端子を
形成する領域に第1の導電体を形成する工程と、前記H
gCdTe結晶の電極接続部とする領域から前記第1の
導電体にかけて第2の導電体をリフトオフ法によって形
成する工程と、前記HgCdTe結晶及び前記第1と第
2の導電体とを一括して感光部及び電極接続部及び電極
端子の形状にエッチング加工する工程とを行うことを特
徴とする赤外線検出素子の製造方法。
(1) A step of adhering an HgCdTe crystal on an insulating substrate and polishing it, and a step of shaping the HgCdTe crystal to the dimensions of the area where the photosensitive part and the electrode connection part will be formed, and exposing a part of the adhesive layer. a step of etching away the HgCdTe crystal to a predetermined thickness and smoothing its edges; a step of forming a first conductor in the exposed adhesive layer and the region where the electrode terminal is to be formed; H
A step of forming a second conductor from a region of the gCdTe crystal that is to be an electrode connection part to the first conductor by a lift-off method, and a step of photo-sensing the HgCdTe crystal and the first and second conductors at once. 1. A method for manufacturing an infrared detecting element, comprising the steps of etching into the shapes of the electrode terminal, the electrode connecting portion, and the electrode terminal.
JP59186831A 1984-09-06 1984-09-06 Manufacture of infrared detecting element Granted JPS6164173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186831A JPS6164173A (en) 1984-09-06 1984-09-06 Manufacture of infrared detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186831A JPS6164173A (en) 1984-09-06 1984-09-06 Manufacture of infrared detecting element

Publications (2)

Publication Number Publication Date
JPS6164173A true JPS6164173A (en) 1986-04-02
JPH0546708B2 JPH0546708B2 (en) 1993-07-14

Family

ID=16195376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186831A Granted JPS6164173A (en) 1984-09-06 1984-09-06 Manufacture of infrared detecting element

Country Status (1)

Country Link
JP (1) JPS6164173A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117089A (en) * 1994-10-26 1996-05-14 Sugamo Heiwa Reien:Kk Panel altar

Also Published As

Publication number Publication date
JPH0546708B2 (en) 1993-07-14

Similar Documents

Publication Publication Date Title
US4021767A (en) Hall element and method of manufacturing same
US5197804A (en) Resistance temperature sensor
JPH02150754A (en) Production of sensitive element
EP0186818B1 (en) Chip to pin interconnect method
JPS6164173A (en) Manufacture of infrared detecting element
US4089991A (en) Process for applying electrical conductors for Dewar flask
GB2043908A (en) Humidity Sensor Element
JPS646554B2 (en)
US3992774A (en) Method for fabricating lead through for Dewar flask
JPS59104523A (en) Production of infrared-ray detector
JPH0330986B2 (en)
JPH0153729B2 (en)
JPS61121348A (en) Semiconductor device
JPS59171821A (en) Manufacture of infrared ray detection element
JPS5814746B2 (en) hand tai souchi no seizou houhou
JPS60106976A (en) Detection of end point of etching
JPH0694663A (en) Humidity detection element and its manufacture
JPS592329A (en) Manufacture of substrate of semiconductor integrated circuit
JPH07109903B2 (en) Method for manufacturing photoconductive infrared detector
JPH0638511B2 (en) Method of manufacturing infrared detection element
JPS60171616A (en) Thin film magnetic head
JP2003273147A (en) Semiconductor device and manufacturing method thereof
JPS6028266A (en) Manufacture of infrared ray detecting element
JPS61100981A (en) Manufacture of semiconductor device
JPH11330586A (en) Magnetoelectric transducer, magnetic sensor using the transducer, and manufacture of the magnetoelectric transducer