JPS58176984A - Magneto-resistance device - Google Patents

Magneto-resistance device

Info

Publication number
JPS58176984A
JPS58176984A JP57060558A JP6055882A JPS58176984A JP S58176984 A JPS58176984 A JP S58176984A JP 57060558 A JP57060558 A JP 57060558A JP 6055882 A JP6055882 A JP 6055882A JP S58176984 A JPS58176984 A JP S58176984A
Authority
JP
Japan
Prior art keywords
film
resistance
magneto
thin film
magnetoresistive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57060558A
Other languages
Japanese (ja)
Inventor
Yoshi Yoshino
吉野 好
Kenichi Ao
建一 青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP57060558A priority Critical patent/JPS58176984A/en
Publication of JPS58176984A publication Critical patent/JPS58176984A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To enhance yield through protection of magneto-resistance material from damage and also enhance reliability through improvement in moisture resistance by structuring a magneto-resistance material through formation of patterned ferromagnetic thin film on an insulated substrate and by forming a protecting film consisting of metal film. CONSTITUTION:A ferromagnetic thin film is formed through vacuum deposition of ferromagnetic material consisting of a Ni-Co alloy on the surface of insulated substrate 11, the specified magneto-resistance material 12 is formed by patterning such thin film with the etching method, and a metal film 13 consisting of Ta is vacuum deposited over the entire part. The area where will become electrode 14a, 15b at both ends of magneto-resistance material 12 is masked with a resist 15 and an anode oxide film 16. After removing the resist 15, electrodes 17a, 17b are formed by vacuum-depositing aluminium and thereby a magneto-resistance device is completed. A silicon oxide film, silicon nitride film or resin film 18 is coated thereon, a contact hole is formed by etching the electrodes 17a, 17b. Thereby, change of resistance for high temperature or high humidity and resistance changing rate can be extremely stabilized.

Description

【発明の詳細な説明】 この発明は、特に磁気抵抗体に対する信頼性をよ)向上
させるように改嵐し九磁気抵抗装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetoresistive device which has been modified to particularly improve the reliability of the magnetoresistive element.

従来より、磁気抵抗装置は、絶縁性基板上にN1−Co
金合金中1−F・合金等O強磁性体材料を真空蒸着して
強磁性薄膜を形成し、この強磁性薄膜をエツチングして
/4ターン化して磁気抵抗体を形成することによって基
本的に構成される。
Traditionally, magnetoresistive devices have been developed using N1-Co on an insulating substrate.
Basically, a ferromagnetic material such as 1-F or O alloy in a gold alloy is vacuum-deposited to form a ferromagnetic thin film, and this ferromagnetic thin film is etched into /4 turns to form a magnetoresistive element. configured.

すなわち、このΔターン化された磁気抵抗体の両端部に
電極部を形成し、この電極部上に電極用金属層を形成す
ることによって磁気抵抗装置が完成されるものである。
That is, a magnetoresistive device is completed by forming electrode parts at both ends of this Δ-turn magnetoresistive element and forming an electrode metal layer on the electrode parts.

この場合、磁気抵抗体は上記したような卑金属によって
構成されるものであるため、通常に外気に接触する状態
では酸化され易く、時間の経過と共に磁気抵抗特性に劣
化を生じ易い状態にある。このため、この磁気抵抗体部
を保護膜で被援するものであるが、通常用いられている
CVD法によシ蛾化シリコン膜を形成するのでは、この
保@膜を形成する過程において、大気中で高温処理され
るものであるため、結果的に抵抗体が酸化し、適用する
ことができない。したがって、この磁気抵抗体に対する
保腫膜としては、有機レジン(PIQ等)が用いられて
いる。しかし、有機レジンではf!1面が柔かく且つ薄
いものであるため、磁気抵抗体に対して傷の付き易いも
のでTo夛、保繰膜として充分な機能を発揮することが
できない、ま九11頼性特に耐湿性に対して問題のある
もので′ある。
In this case, since the magnetoresistive element is made of the above-mentioned base metal, it is easily oxidized when exposed to the outside air, and its magnetoresistive properties tend to deteriorate over time. For this reason, this magnetoresistive part is covered with a protective film, but if a silicon film is formed by the commonly used CVD method, in the process of forming this protective film, Since it is processed at high temperature in the atmosphere, the resistor becomes oxidized and cannot be used. Therefore, an organic resin (such as PIQ) is used as a tumor film for this magnetoresistive element. However, with organic resin, f! Because one side is soft and thin, it easily scratches the magnetoresistive element, making it unable to perform its full function as a protective membrane. There are some problems with this.

この発明は上記のような点に鑑みなされたもので、磁気
抵抗体を傷から保緬して歩wbを向上させるようにする
と共に、さらに耐湿性等をも充分向上させて信頼性を充
分に高いものとすることのできる磁気抵抗装置を提供し
ようとするものである。
This invention was made in view of the above points, and it not only protects the magnetic resistance element from scratches and improves the walking distance wb, but also sufficiently improves the moisture resistance etc. to sufficiently increase reliability. The object is to provide a magnetoresistive device that can be made high.

すなわち、この発明に係る磁気抵抗装置は、絶縁性基板
上に・臂ターン化して強磁性薄膜を形成して磁気抵抗体
を構成すると共に、この抵抗体上に電極部を残して陽極
酸化した金属被膜でなる保護層を形成するようにし九も
のである。
That is, the magnetoresistive device according to the present invention comprises a magnetoresistive element by forming a ferromagnetic thin film on an insulating substrate, and anodized metal with an electrode portion left on the resistor. This method forms a protective layer consisting of a film.

以下図面を参照してこの発明の一実施例を製造過程に対
応して説明する。まず、第1図に示すように絶縁基板1
1の表面上に、例えばN1−C。
An embodiment of the present invention will be described below in accordance with the manufacturing process with reference to the drawings. First, as shown in FIG.
1, for example N1-C.

合金からなる強磁性材料を蒸着して強磁性[%を形成し
、この薄膜をエツチング法によって・譬ターン化して所
定の磁気抵抗体12を形成する。
A ferromagnetic material made of an alloy is deposited to form a ferromagnetic material, and this thin film is patterned by etching to form a predetermined magnetoresistive element 12.

そして、第2図に示すようにこの磁気抵抗体12を含む
全面に、例えばT1からなる金属被膜13を10001
の厚さで蒸着形成する。
Then, as shown in FIG. 2, a metal coating 13 made of, for example, T1 is coated on the entire surface including the magnetoresistive element 12.
Formed by vapor deposition to a thickness of .

次に、この金属被膜13上に、第3図で示すように磁気
抵抗体12の両端電極部14a。
Next, on this metal coating 13, as shown in FIG. 3, both end electrode portions 14a of the magnetoresistive body 12 are placed.

14bとなる部分をレゾスト1st1″用いてマスクし
、0.1マ・L−のリン#R溶液中あるいは/ム量−〇
澗石酸濤液中で陽極酸化を行ない、陽極酸化膜16を形
成するようにした。この陽極酸化膜16は磁気抵抗体1
2の保一層として作用するもので、上記レジスト15を
取シ去った後、第4図に示すようにアルミニウムを蒸着
して電極17m、11bを形成し、磁気抵抗装置が完成
される。
The part that will become 14b is masked using Resost 1st1'', and anodized in a 0.1 Ma.L-phosphorus #R solution or /mu.-〇 chlorite acid solution to form an anodic oxide film 16. This anodic oxide film 16 is
After the resist 15 is removed, aluminum is deposited to form electrodes 17m and 11b as shown in FIG. 4, and the magnetoresistive device is completed.

上記のように構成された磁気抵抗装置について、従来の
磁気抵抗装置と^温、高湿(121℃。
Regarding the magnetoresistive device configured as described above, compared to the conventional magnetoresistive device, temperature and high humidity (121°C) were observed.

2atm 、 100 fk R−H8)試験をして時
間の経過に伴なう抵抗変化を比軟してみると第5図に示
すようになシ、また磁気抵抗効果による抵抗値変化率(
出力)を見ると第6図に示すようになる。
2 atm, 100 fk R-H8) test to compare the resistance change over time, as shown in Figure 5, and the resistance change rate due to the magnetoresistive effect (
The output (output) is as shown in Figure 6.

すなわち、抵抗値変化の状態は上記実施例に示した磁気
抵抗装置では第5図にAで示すように100時間後の抵
抗変化が2s以下であるのに対して、陽極酸化膜16に
よる保護層の存在しない従来のものでは同じく第5図に
Bで示すように100時間後に40−程度大きくなる。
That is, in the case of the magnetoresistive device shown in the above embodiment, the resistance change after 100 hours is less than 2 seconds, as shown by A in FIG. In the case of the conventional type without the presence of , the size increases by about 40 - after 100 hours, as shown by B in Fig. 5.

これは抵抗体12を構成するNi−Co合金でなる強磁
性薄膜が酸化するからである。また、第6図の曲線人か
ら明らかなように、上記実施例で示した磁気抵抗装置は
出力がほとんど変化しないのに対して、従来のものは曲
線Bに示すように出力が大きく低下し1.5優程度とな
ってしまうO また、上記実施例に示し九磁気抵抗装置にあっては、磁
気抵抗体120表面は、Taの固い陽極酸化膜16で被
接されるものであるため、機械的外力による耐傷性も地
線的に向上されるものであ)、信積性の高い磁気抵抗装
置が実現されるように′なるものである。
This is because the ferromagnetic thin film made of the Ni--Co alloy that constitutes the resistor 12 is oxidized. Further, as is clear from the curved line in FIG. 6, the output of the magnetoresistive device shown in the above embodiment hardly changes, whereas the output of the conventional device greatly decreases as shown in curve B. In addition, in the magnetoresistive device shown in the above embodiment, the surface of the magnetoresistive element 120 is covered with the hard anodic oxide film 16 of Ta, so that the mechanical The resistance to scratches caused by external forces is also significantly improved, and a magnetic resistance device with high reliability can be realized.

尚、保護層を形成する金属被膜13の材料としては、上
記Taの他にTI 、 Zr 、 Nb4が使用できる
もので69、その材料としては容易に陽極酸化すること
ができると共に、他の金属との接着性の良好で電極強度
の充分な材料を選定すればよい。ti、m然のことなが
ら、これら金属の合金、あるいはこれら金属金主成分と
した合金も同様の効果を発揮する材料として適用可能で
ある。
In addition to Ta, TI, Zr, and Nb4 can be used as the material for the metal coating 13 forming the protective layer.69 These materials can be easily anodized and are compatible with other metals. A material with good adhesion and sufficient electrode strength may be selected. Of course, alloys of these metals or alloys containing gold as a main component of these metals can also be used as materials that exhibit similar effects.

また、磁気抵抗体12を構成する材料としても、他にN
1−F・合金等の強磁性材料を使用することが可能であ
ることももちろんである。
Moreover, as a material constituting the magnetoresistive body 12, N
Of course, it is also possible to use ferromagnetic materials such as 1-F alloys.

上記実施例では陽極酸化膜16による保護層部を外部に
露出するような状態で示したが、第7図に示すようにそ
の上面に通常の手段でシリコン鐵化膜、シリコン窒化膜
あるいはレノン等の膜18で被膜し、電極11m、17
b上をエツチングしてコンタクト孔が形成されるように
する。
In the above embodiment, the protective layer portion formed by the anodic oxide film 16 was shown exposed to the outside, but as shown in FIG. The electrodes 11m, 17 are coated with a film 18 of
Etch on b so that a contact hole is formed.

このように構成すると、前記実施例と同様に高温、高温
に対する抵抗変化、また抵抗値変化率(出力)は非常に
安定したものとすることができると共に、さらに耐優性
が向上し、歩留りを従来に比較して25%以上も向上さ
せることができ、特に1iIt湿性が20〜30倍も向
上するものである。
With this configuration, the high temperature, the resistance change with respect to high temperature, and the resistance value change rate (output) can be made very stable as in the above embodiment, and the resistance is further improved and the yield is lower than that of the conventional example. It can be improved by 25% or more compared to the above, and in particular, the 1iIt wettability is improved by 20 to 30 times.

尚、wc7図・において第4図と同一構成部分は同一符
号を付してその説明は省略する。
In Fig. WC7, the same components as those in Fig. 4 are given the same reference numerals, and the explanation thereof will be omitted.

以上のようにこの発明によれば、磁気抵抗体の特に高温
、高湿状態における抵抗変化、出力特性を充分に安定し
て保持することができると共に、耐傷性を著るしく向上
させることのできるものでオシ、単に歩留υを向上させ
るのみならず、信頼性をも充分に向上させた磁気抵抗装
置が得られるものである。
As described above, according to the present invention, the resistance change and output characteristics of the magnetoresistive element, especially in high temperature and high humidity conditions, can be kept sufficiently stable, and the scratch resistance can be significantly improved. As a result, it is possible to obtain a magnetoresistive device that not only improves the yield υ but also sufficiently improves the reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図はこの発明の一実施例に係る磁気抵抗
装置をその製造過程と共に説明する図、第5図および第
6図は上記実施例に係る装置と従来の装置とを比較して
示す特性図、第7図はこの発明の、他の実施例を説明す
る断面構成図である。
1 to 4 are diagrams for explaining a magnetoresistive device according to an embodiment of the present invention together with its manufacturing process, and FIGS. 5 and 6 are diagrams for comparing the device according to the above embodiment and a conventional device. FIG. 7 is a cross-sectional configuration diagram illustrating another embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)  絶縁性基板上に/臂ターン形成された強磁性
体薄膜でなる磁気抵抗体と、この抵抗体上に積層形成さ
れその電極部を残して陽極酸化した金属被膜でなる保賎
層と、上記金属被膜の陽極酸化されない部分に形成した
電極金属層とを具備したことを特徴とする磁気抵抗装置
(1) A magnetoresistive element made of a ferromagnetic thin film formed on an insulating substrate, and a protective layer made of a metal film laminated on this resistor and anodized leaving the electrode part. and an electrode metal layer formed on a portion of the metal coating that is not anodized.
(2)上記保鰻層は上記金属被膜の陽極酸化部分にさら
にレシン、シリコン窒化膜あるいはシリコン窒化膜等を
積層形成して構成してなる特許請求の範j!18第1項
記載の装置。
(2) Claims j! The eel protection layer is formed by further laminating resin, silicon nitride film, silicon nitride film, etc. on the anodized portion of the metal coating. 18. The device according to item 1.
JP57060558A 1982-04-12 1982-04-12 Magneto-resistance device Pending JPS58176984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57060558A JPS58176984A (en) 1982-04-12 1982-04-12 Magneto-resistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57060558A JPS58176984A (en) 1982-04-12 1982-04-12 Magneto-resistance device

Publications (1)

Publication Number Publication Date
JPS58176984A true JPS58176984A (en) 1983-10-17

Family

ID=13145720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57060558A Pending JPS58176984A (en) 1982-04-12 1982-04-12 Magneto-resistance device

Country Status (1)

Country Link
JP (1) JPS58176984A (en)

Similar Documents

Publication Publication Date Title
US20020076940A1 (en) Manufacture of composite oxide film and magnetic tunneling junction element having thin composite oxide film
JP2612997B2 (en) Magnetoresistance read transducer
JPH0214793B2 (en)
JPS58176984A (en) Magneto-resistance device
JPH07226547A (en) Magnetoresistance element and its manufacture
JP2643004B2 (en) Hybrid IC substrate
JPS6155785B2 (en)
JPS5866379A (en) Preparation of metal substrate
JP2720442B2 (en) Method of manufacturing magnetoresistive element
JPS6184572A (en) Magnetic sensor
JPS6029914A (en) Thin film head
JP2990971B2 (en) Semiconductor thin film magnetoresistive element and method of manufacturing the same
JP2806284B2 (en) Thin film magnetic head
JPS62131589A (en) Ferromagnetic magnetoresistance element and manufacture thereof
JPS63263702A (en) Manufacture of platinum thin film temperature sensor
JPH0658896B2 (en) Method for manufacturing semiconductor device
JPH01108704A (en) Thin film resistance element
JPH0666337B2 (en) Method for manufacturing T-type gate
JPH05304325A (en) Semiconductor thin film magnetic resistor element and fabrication thereof
JPS60192211A (en) Magnetic head and its manufacture
JPH0945975A (en) Semiconductor magnetic sensor
JPS6168714A (en) Manufacture of thin-film magnetic head
JPS628034B2 (en)
JPH07147438A (en) Magnetroelectric transducer
JPH07106332A (en) Semiconductor device and manufacture thereof