JPH0945975A - Semiconductor magnetic sensor - Google Patents

Semiconductor magnetic sensor

Info

Publication number
JPH0945975A
JPH0945975A JP7198527A JP19852795A JPH0945975A JP H0945975 A JPH0945975 A JP H0945975A JP 7198527 A JP7198527 A JP 7198527A JP 19852795 A JP19852795 A JP 19852795A JP H0945975 A JPH0945975 A JP H0945975A
Authority
JP
Japan
Prior art keywords
semiconductor
magnetic sensor
electrode
film
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7198527A
Other languages
Japanese (ja)
Inventor
Takamichi Hattori
孝道 服部
Akihiro Korechika
哲広 是近
Tetsuo Kawasaki
哲生 川崎
Hideyuki Tanigawa
秀之 谷川
Akira Matsuura
昭 松浦
Satoshi Ouchi
智 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7198527A priority Critical patent/JPH0945975A/en
Publication of JPH0945975A publication Critical patent/JPH0945975A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor magnetic sensor utilizing a semiconductor magnetoresistive element in which the semiconductor resistive film and the electrode film are protected. SOLUTION: The semiconductor magnetic sensor comprises a semiconductor magnetoresistive film 2, a short circuit electrode 3, and an electrode part 4 for taking out an electric signal from the semiconductor reluctance film, all formed on the surface of a substrate 1, which are coated with a protective film 6 formed on the substrate 1 except the electrode part 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気検出あるいは磁気
回転検出等に使用される半導体磁気抵抗素子からなる半
導体磁気センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor magnetic sensor including a semiconductor magnetoresistive element used for magnetic detection or magnetic rotation detection.

【0002】[0002]

【従来の技術】InSb,InSb−NiSb,InA
s等のキャリヤ移動度が高い半導体は、磁界を作用させ
たとき抵抗値が変化するという性質を有しており、この
性質を利用したものが半導体磁気センサである。
2. Description of the Related Art InSb, InSb-NiSb, InA
A semiconductor having a high carrier mobility such as s has a property that the resistance value changes when a magnetic field is applied, and a semiconductor magnetic sensor uses this property.

【0003】図5に半導体磁気センサを使用している一
般的な磁気検出器の構造を示す。磁気検出器は、図5に
示すように4つのパーツにより構成されている。図中、
31は半導体磁気センサ、32は前記半導体磁気センサ
31の電気信号の取り出し部(リード取り出し)、33
はバイアス磁石であり、ベース36の表裏に前記半導体
磁気センサ31とバイアス磁石33を配し、電磁シール
ドを兼ねた金属製の保護ケース34内に収納されてい
る。
FIG. 5 shows the structure of a general magnetic detector using a semiconductor magnetic sensor. The magnetic detector is composed of four parts as shown in FIG. In the figure,
Reference numeral 31 is a semiconductor magnetic sensor, 32 is a portion for taking out an electric signal of the semiconductor magnetic sensor 31 (lead taking-out), 33
Is a bias magnet, and the semiconductor magnetic sensor 31 and the bias magnet 33 are arranged on the front and back of the base 36, and are housed in a metal protective case 34 that also serves as an electromagnetic shield.

【0004】この磁気検出器は、半導体磁気センサ31
上の保護ケース34の表面を被検出の磁気材が圧接移動
する。圧接により保護ケース34がたわむこともあるの
で、半導体磁気センサ31と保護ケース34間にはエア
ーギャップ(空隙)35が設けられ、半導体磁気センサ
31の応力歪みによる抵抗変化の発生(以降、ピエゾ抵
抗効果と呼ぶ)及び磁気感度低下を防止すると共に保護
ケース34と半導体磁気センサ31の電気信号の取り出
し部との絶縁をも兼ねている。
This magnetic detector is a semiconductor magnetic sensor 31.
The magnetic material to be detected moves in pressure contact with the surface of the upper protective case 34. Since the protective case 34 may bend due to pressure contact, an air gap (air gap) 35 is provided between the semiconductor magnetic sensor 31 and the protective case 34, and a resistance change due to stress strain of the semiconductor magnetic sensor 31 occurs (hereinafter, piezo resistance). (Referred to as “effect”) and magnetic sensitivity reduction, and also serves as insulation between the protective case 34 and the electric signal extraction portion of the semiconductor magnetic sensor 31.

【0005】図6,7に従来の半導体磁気センサの構成
を示す。21は基板、22は前記基板上に設けた半導体
磁気抵抗膜、23は前記半導体磁気抵抗膜22上に設け
た短絡電極、24は前記半導体磁気抵抗膜22に設けた
出力取り出し電極である。
6 and 7 show the structure of a conventional semiconductor magnetic sensor. Reference numeral 21 is a substrate, 22 is a semiconductor magnetoresistive film provided on the substrate, 23 is a short-circuit electrode provided on the semiconductor magnetoresistive film 22, and 24 is an output extraction electrode provided on the semiconductor magnetoresistive film 22.

【0006】図8には半導体磁気センサからのリード取
り出し例を示す。図中、26はリード取り出し端子、2
7は保護膜であり、保護膜27はリード取り出し端子2
6を前記出力取り出し電極24に接続した後に形成した
ものである。
FIG. 8 shows an example of taking out leads from the semiconductor magnetic sensor. In the figure, 26 is a lead extraction terminal, 2
7 is a protective film, and the protective film 27 is a lead takeout terminal 2
6 is formed after being connected to the output extraction electrode 24.

【0007】[0007]

【発明が解決しようとする課題】上記のように、半導体
磁気抵抗膜22及び短絡電極23上の保護膜27は、リ
ード取り出し端子26の接続後に形成されるものである
ため、リード取り出し端子26の実装時に半導体磁気抵
抗膜22及び短絡電極23、特に半導体磁気抵抗膜22
は非常に柔らかく取り扱いが非常に難しい。特に、半導
体磁気センサへのリード取り出し端子26の接続及び磁
気検出器としての組立工程で、素子面等に傷や素子破壊
の恐れがあり、取り扱いに注意を要する。
As described above, the protective film 27 on the semiconductor magnetoresistive film 22 and the short-circuit electrode 23 is formed after the lead take-out terminal 26 is connected. During mounting, the semiconductor magnetoresistive film 22 and the short-circuit electrode 23, especially the semiconductor magnetoresistive film 22
Is very soft and very difficult to handle. In particular, in the process of connecting the lead take-out terminal 26 to the semiconductor magnetic sensor and the assembling process as a magnetic detector, there is a risk of scratches or destruction of the element surface and the like, and caution is required in handling.

【0008】本発明は上記課題を解消し得る半導体磁気
センサを提供することを目的とする。
An object of the present invention is to provide a semiconductor magnetic sensor which can solve the above problems.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明の半導体磁気センサは、基板の表面に形成した
半導体磁気抵抗膜及び前記半導体磁気抵抗膜の電気信号
取り出し用の電極部を、前記電極部上のみを残して前記
基板上に形成した保護膜により保護するように構成した
ことを特徴としている。
A semiconductor magnetic sensor of the present invention for solving the above-mentioned problems includes a semiconductor magnetoresistive film formed on a surface of a substrate and an electrode portion for extracting an electric signal of the semiconductor magnetoresistive film. It is characterized in that it is configured to be protected by a protective film formed on the substrate while leaving only the electrode portion.

【0010】[0010]

【作用】以上の構成にすれば、磁気センサへのリード取
り出し端子の接続及び磁気検出器にするための組立工程
での取り扱いにて、非常に柔らかい半導体磁気抵抗膜や
短絡電極膜を傷つけず、素子を破壊等から防止すること
が出来る。
With the above structure, the extremely soft semiconductor magnetoresistive film and the short-circuit electrode film are not damaged during the connection of the lead-out terminals to the magnetic sensor and the handling in the assembly process for forming the magnetic detector. It is possible to prevent the element from being broken.

【0011】[0011]

【実施例】以下、本発明の実施例について図に基づき説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1,2は本発明の半導体磁気センサの一
実施例を示す。図中、1はSiやガラス等の基板、2は
InSb,InSb−NiSb,InAs等のキャリヤ
移動度が高い半導体磁気抵抗膜であり、前記基板1上に
設けられている。3は短絡電極であり、前記半導体磁気
抵抗膜2上に設けられている。4は半導体磁気抵抗膜2
の電気信号取り出し電極部であり、前記半導体磁気抵抗
膜2上に設けられている。前記短絡電極3及び電極部4
は、Cu/Ti,Cu/Cr,Al/Cr等の2層構造
として構成されている場合と、In等の単層構造として
構成されている場合とがある。尚、前記短絡電極3と電
極部4とを同一材料で形成すると工程が簡略化される。
6は前記半導体磁気抵抗膜2と短絡電極3を保護するポ
リイミド、SiO2,SiN等の保護膜であり、電極部
4上を残して基板1上に形成されている。7は素子から
の電気信号取り出し用のリード端子で、前記電極部4と
接続されている。ここで、前記電極部4がCu/Ti,
Cu/Cr,In等で構成される場合には半田付けにて
接続され、電極部4がAl/Cr等で構成される場合に
は熱加熱により接続されている。前記保護膜6は、前記
リード端子7を電極部4に接続前に形成するため、保護
膜6には、熱加圧等によりリード端子7を電極部4に接
続する時に発生する高熱が伝導される。例えば半田にて
接続する場合、300〜350℃の高温が伝導され保護
膜6として耐熱性が要求されるため、ポリイミドが適し
ている。
1 and 2 show an embodiment of the semiconductor magnetic sensor of the present invention. In the figure, 1 is a substrate such as Si or glass, and 2 is a semiconductor magnetoresistive film with high carrier mobility such as InSb, InSb-NiSb, InAs, etc., which is provided on the substrate 1. Reference numeral 3 is a short-circuit electrode, which is provided on the semiconductor magnetoresistive film 2. 4 is a semiconductor magnetoresistive film 2
Of the electric signal extracting electrode, and is provided on the semiconductor magnetoresistive film 2. The short-circuit electrode 3 and the electrode portion 4
May be configured as a two-layer structure of Cu / Ti, Cu / Cr, Al / Cr or the like, or may be configured as a single-layer structure of In or the like. If the short-circuit electrode 3 and the electrode portion 4 are made of the same material, the process is simplified.
Reference numeral 6 is a protective film for protecting the semiconductor magnetoresistive film 2 and the short-circuiting electrode 3, such as polyimide, SiO 2 , SiN, etc., which is formed on the substrate 1 except the electrode portion 4. Reference numeral 7 denotes a lead terminal for taking out an electric signal from the element, which is connected to the electrode portion 4. Here, the electrode portion 4 is Cu / Ti,
When they are made of Cu / Cr, In or the like, they are connected by soldering, and when they are made of Al / Cr or the like, they are connected by heating. Since the protective film 6 is formed before the lead terminal 7 is connected to the electrode portion 4, high heat generated when the lead terminal 7 is connected to the electrode portion 4 is conducted to the protective film 6 by applying heat or pressure. It For example, when connecting with solder, polyimide is suitable because a high temperature of 300 to 350 ° C. is conducted and heat resistance is required for the protective film 6.

【0013】本実施例で素子実装工程及び磁気検出器と
するための組立工程を行った結果、素子面への傷、素子
破壊の発生は見られなかった。また、半導体磁気抵抗膜
は、素子面上に歪みを加えるとピエゾ抵抗効果が発生す
る特性があり、保護膜の形成膜に半導体磁気抵抗膜へ作
用する応力に注意する必要がある。このため保護膜によ
り発生する応力を小さく形成することが望ましい。Si
2,SiN等の保護膜は、形成条件にて応力調整が出
来、素子特性への影響を低減出来るもので、実際条件に
より小さく形成できた。ポリイミド保護膜は、Si
2,SiN等の保護膜に比べ膜応力がやや大きく形成
されたが、磁気特性を調べた結果、影響は少ないことが
確認された。SiO2,SiN等の保護膜は、一般的に
真空装置により基板1上の全面に形成され、電極部4上
の保護膜をフォトリソおよびエッチング工程にて除去し
て形成される。それに比べてポリイミド保護膜は、フォ
トリソ工程のみで形成されるために工程の簡略化及び安
価に形成出来る特徴を有している。さらに、5×10-5
/℃以下の線膨張係数を有するポリイミドを用いると、
SiO2,SiN等の保護膜の作用する応力と同等また
はそれ以下に形成することが出来、さらに有利である。
As a result of carrying out the element mounting step and the assembly step for forming a magnetic detector in the present embodiment, no damage to the element surface or element destruction was observed. Further, the semiconductor magnetoresistive film has a characteristic that a piezoresistive effect is generated when strain is applied on the element surface, and it is necessary to pay attention to the stress acting on the semiconductor magnetoresistive film in the protective film forming film. Therefore, it is desirable to reduce the stress generated by the protective film. Si
The protective film such as O 2 and SiN can be adjusted in stress depending on the forming conditions and can reduce the influence on the device characteristics, and can be formed small according to the actual conditions. Polyimide protective film is Si
Although the film stress was formed to be slightly larger than that of the protective film such as O 2 or SiN, the magnetic properties were examined, and it was confirmed that the influence was small. The protective film of SiO 2 , SiN or the like is generally formed on the entire surface of the substrate 1 by a vacuum device, and is formed by removing the protective film on the electrode portion 4 by a photolithography and etching process. On the other hand, since the polyimide protective film is formed only by the photolithography process, it has features that the process can be simplified and the cost can be reduced. Furthermore, 5 × 10 -5
When a polyimide having a linear expansion coefficient of / ° C or less is used,
This is more advantageous because the stress can be formed to be equal to or less than the stress acting on the protective film such as SiO 2 or SiN.

【0014】図3に本発明の半導体磁気センサの第2の
実施例を示す。図3に示すように、第1の実施例の場合
のように電極部4を半導体磁気抵抗膜2上に形成するの
ではなく、電極部4を基板1上に形成し、基板1上に設
けた半導体磁気抵抗膜2に形成したものである。この実
施例では、電極部4として、Cu/Ti,Cu/Cr,
Al/Crの2層構造のものが利用され、電極部4と基
板1との剥離強度が約1.5倍向上した。第1の実施例
の構成では、リード端子7を電極部4に接続する際に熱
加熱等で発生する高熱と圧接により電極部4と電極部4
下の半導体磁気抵抗膜2とが拡散されさらに応力も加わ
り、基板1と磁気抵抗膜2の強度の低下が見られたが、
この第2の実施例では、電極部4が直接基板1上に形成
されているために、磁気抵抗膜2との拡散や応力の発生
が少ない。この第2の実施例により、基板1と電極部4
との接続の信頼性をさらに向上することが出来るもので
ある。
FIG. 3 shows a second embodiment of the semiconductor magnetic sensor of the present invention. As shown in FIG. 3, instead of forming the electrode portion 4 on the semiconductor magnetoresistive film 2 as in the case of the first embodiment, the electrode portion 4 is formed on the substrate 1 and provided on the substrate 1. It is formed on the semiconductor magnetoresistive film 2. In this embodiment, as the electrode portion 4, Cu / Ti, Cu / Cr,
A two-layer structure of Al / Cr was used, and the peel strength between the electrode portion 4 and the substrate 1 was improved by about 1.5 times. In the structure of the first embodiment, when the lead terminal 7 is connected to the electrode portion 4, the electrode portion 4 and the electrode portion 4 are brought into contact with each other due to the high heat generated by heat heating and the pressure contact.
Although the lower semiconductor magnetoresistive film 2 was diffused and stress was further applied, the strengths of the substrate 1 and the magnetoresistive film 2 were reduced,
In the second embodiment, since the electrode portion 4 is formed directly on the substrate 1, diffusion with the magnetoresistive film 2 and generation of stress are small. According to this second embodiment, the substrate 1 and the electrode portion 4 are
It is possible to further improve the reliability of connection with.

【0015】図4は本発明の半導体磁気センサの第3の
実施例を示す。図4に示すように、本実施例では、電極
部4としてCu/Ti,Cu/Cr,Al/Crの2層
構造の第1の電極層8上にAu/Ni,半田/Ni等の
2層構造の第2の電極層9を形成したものであり、第2
の電極層9を電界めっきにて形成することにより、電極
部4が保護膜6より高く形成されており、リード端子7
を接続したものである。電極部4を保護膜6より高く形
成することにより、リード端子7の形状や接続治工具、
またリード端子7の位置精度及び接続が簡単となる。ま
た第2の電極層9を電界めっきにより形成することによ
り、接続部材の選択範囲が拡大し接続の信頼性が向上す
る。バンプ形成は電極部4の材料や厚みの許容範囲が狭
く、また形成条件、管理が厳しく接続の信頼性の確保が
難しいが、他に第2の電極層9を形成する方法として
は、Au,Al等のバンプ形成がある。
FIG. 4 shows a third embodiment of the semiconductor magnetic sensor of the present invention. As shown in FIG. 4, in the present embodiment, two electrodes such as Au / Ni and solder / Ni are formed on the first electrode layer 8 having a two-layer structure of Cu / Ti, Cu / Cr, and Al / Cr as the electrode portion 4. The second electrode layer 9 having a layered structure is formed, and
Since the electrode layer 9 is formed by electroplating, the electrode portion 4 is formed higher than the protective film 6, and the lead terminal 7
Is connected. By forming the electrode portion 4 higher than the protective film 6, the shape of the lead terminal 7 and the connection jig,
Moreover, the positional accuracy and connection of the lead terminal 7 are simplified. Further, by forming the second electrode layer 9 by electroplating, the selection range of the connection member is expanded and the reliability of connection is improved. In the bump formation, the allowable range of the material and thickness of the electrode portion 4 is narrow, and the formation conditions and management are strict, and it is difficult to secure the reliability of the connection, but as another method for forming the second electrode layer 9, Au, There is bump formation of Al or the like.

【0016】この実施例によると、リードフレームやT
AB実装でのリード端子7の接続が容易になり、しかも
接続強度も向上するものである。尚、保護膜6は電極層
5をめっきにより形成する時のめっきマスクの役目を兼
ね備えており、工程の簡略化および安価にめっき形成出
来る特徴も兼ね備えている。
According to this embodiment, the lead frame and the T
The connection of the lead terminal 7 in the AB mounting becomes easy, and the connection strength is also improved. The protective film 6 also serves as a plating mask when the electrode layer 5 is formed by plating, and also has the features of simplifying the process and enabling inexpensive plating.

【0017】リードフレームによる接続の場合には半田
/Niの第2電極層9とすると、接続強度が特に良好
で、第2の実施例(Cu/Ti,Cu/Cr電極部4)
に比べ約1.5倍以上の接続強度が得られた。TAB実
装による接続の場合にはAu/Ni,半田/Niの第2
の電極層9とすると接続強度が特に良好で、第2の実施
例(Cu/Ti,Cu/Cr,Al/Cr電極部4)に
比べ約2倍以上の接続強度が得られた。
In the case of connection by the lead frame, if the second electrode layer 9 of solder / Ni is used, the connection strength is particularly good, and the second embodiment (Cu / Ti, Cu / Cr electrode portion 4) is used.
The connection strength of about 1.5 times or more was obtained. In case of connection by TAB mounting, Au / Ni, solder / Ni second
When the electrode layer 9 was used, the connection strength was particularly good, and about twice or more the connection strength was obtained as compared with the second embodiment (Cu / Ti, Cu / Cr, Al / Cr electrode portion 4).

【0018】さらに本実施例の第2の電極層9を第1の
電極層8の領域より小さく形成することで、リード端子
7の接続により発生する応力が電極部4の形成領域の全
領域に加わらない。よって電極部4と基板1との接続部
に直接応力が加わらず、接続強度の信頼性がさらに強化
され、接続条件やリードの取り扱いを容易にすることが
出来る。
Further, by forming the second electrode layer 9 of the present embodiment smaller than the area of the first electrode layer 8, the stress generated by the connection of the lead terminals 7 is applied to the entire area of the formation area of the electrode portion 4. Do not join. Therefore, no stress is directly applied to the connecting portion between the electrode portion 4 and the substrate 1, the reliability of the connecting strength is further enhanced, and the connecting condition and the handling of the lead can be facilitated.

【0019】尚、第3の実施例において、保護膜6とし
て耐熱性のポリイミドや線膨張係数が5×10-5/℃以
下のポリイミドを使用することが出来ることは言うまで
もない。
In the third embodiment, it is needless to say that heat-resistant polyimide or polyimide having a coefficient of linear expansion of 5 × 10 -5 / ° C. or less can be used as the protective film 6.

【0020】他に、Cu/Ti,Cu/Cr,Al/C
r等の短絡電極3及び電極部4の表面にCr,Ni,N
iCr等の材料でコーティングしてもよい。電極上には
保護膜6が形成されているが形成時にごみ等を巻き込ん
で欠陥の無い膜を形成することが出来にくく、現状の信
頼性には影響が無いが多少の酸化が生じている。本実施
例のような電極コーティングの構成とすることにより、
電極表面の酸化を確実に防止することが出来、高信頼性
を得ることが出来る。
In addition, Cu / Ti, Cu / Cr, Al / C
Cr, Ni, N on the surfaces of the short-circuit electrode 3 and the electrode portion 4 such as r
It may be coated with a material such as iCr. Although the protective film 6 is formed on the electrodes, it is difficult to form a defect-free film by entrapping dust or the like at the time of formation, and the present reliability is not affected, but some oxidation occurs. With the configuration of the electrode coating as in this example,
Oxidation of the electrode surface can be reliably prevented and high reliability can be obtained.

【0021】[0021]

【発明の効果】以上のように本発明によれば、基板の表
面に形成した半導体磁気抵抗膜及び、前記半導体磁気抵
抗膜の電気信号取り出し用の電極部を、前記電極部上の
みを残して前記基板に形成した保護膜により被覆してあ
るため、磁気センサへのリード取り出し端子の接続及び
磁気検出器とするための組立工程での取り扱いにて、非
常に柔らかい半導体磁気抵抗膜や短絡電極膜を傷つける
ことがなく、素子を破壊等から防止する事が出来るもの
である。
As described above, according to the present invention, the semiconductor magnetoresistive film formed on the surface of the substrate and the electrode portion for extracting an electric signal of the semiconductor magnetoresistive film are left only on the electrode portion. Since it is covered with the protective film formed on the substrate, it is a very soft semiconductor magnetoresistive film or short-circuit electrode film when connecting the lead-out terminals to the magnetic sensor and handling in the assembly process to form a magnetic detector. It is possible to prevent the element from being damaged or the like without damaging the element.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体磁気センサの一実施例を示す斜
視図
FIG. 1 is a perspective view showing an embodiment of a semiconductor magnetic sensor of the present invention.

【図2】同センサの断面図FIG. 2 is a sectional view of the sensor.

【図3】第2の実施例を示す半導体磁気センサの断面図FIG. 3 is a sectional view of a semiconductor magnetic sensor showing a second embodiment.

【図4】第3の実施例を示す半導体磁気センサの断面図FIG. 4 is a sectional view of a semiconductor magnetic sensor showing a third embodiment.

【図5】従来の磁気検出器を示す概略断面図FIG. 5 is a schematic sectional view showing a conventional magnetic detector.

【図6】従来の半導体磁気センサの斜視図FIG. 6 is a perspective view of a conventional semiconductor magnetic sensor.

【図7】同センサの断面図FIG. 7 is a sectional view of the sensor.

【図8】従来の半導体磁気センサリード取り出し構成を
示す断面図
FIG. 8 is a cross-sectional view showing a conventional semiconductor magnetic sensor lead lead-out structure.

【符号の説明】[Explanation of symbols]

1,21 基板 2,22 半導体磁気抵抗膜 3,23 短絡電極 4,24 電極部 5 第2の電極層 6,27 保護膜 7,26 リード端子 8 2層構造の第1の電極層 9 2層構造の第2の電極層 31 半導体磁気センサ 32 リード取り出し部 33 バイアス磁石 34 保護ケース 35 エアーギャップ 36 ベース 1, 21 substrate 2, 22 semiconductor magnetoresistive film 3, 23 short-circuit electrode 4, 24 electrode part 5 second electrode layer 6, 27 protective film 7, 26 lead terminal 8 first electrode layer of two-layer structure 9 2 layers Second electrode layer of structure 31 Semiconductor magnetic sensor 32 Lead extraction part 33 Bias magnet 34 Protective case 35 Air gap 36 Base

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷川 秀之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松浦 昭 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 大内 智 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideyuki Tanigawa, 1006 Kadoma, Kadoma, Osaka Prefecture, Matsushita Electric Industrial Co., Ltd. (72) Akira Matsuura, 1006, Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 72) Inventor Satoshi Ouchi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板の表面に形成した半導体磁気抵抗膜
と、前記半導体磁気抵抗膜上に形成した短絡電極および
電気信号取り出し用の電極部と、前記電極部のみを残し
て前記基板上に前記半導体磁気抵抗膜および短絡電極を
覆うように形成した保護膜を備えた半導体磁気センサ。
1. A semiconductor magnetoresistive film formed on a surface of a substrate, a short-circuit electrode and an electrode portion for extracting an electric signal formed on the semiconductor magnetoresistive film, and the above-mentioned substrate on the substrate leaving only the electrode portion. A semiconductor magnetic sensor comprising a semiconductor magnetoresistive film and a protective film formed so as to cover the short-circuit electrode.
【請求項2】 電極部は、基板上に形成され、半導体磁
気抵抗膜に接続したことを特徴とする請求項1記載の半
導体磁気センサ。
2. The semiconductor magnetic sensor according to claim 1, wherein the electrode portion is formed on the substrate and is connected to the semiconductor magnetoresistive film.
【請求項3】 保護膜は、耐熱性のあるポリイミド材で
構成したことを特徴とする請求項1または2記載の半導
体磁気センサ。
3. The semiconductor magnetic sensor according to claim 1, wherein the protective film is made of a heat-resistant polyimide material.
【請求項4】 保護膜はその線膨張係数が5×10-5
℃以下のポリイミド材であることを特徴とする請求項1
または2記載の半導体磁気センサ。
4. The protective film has a linear expansion coefficient of 5 × 10 −5 /
A polyimide material having a temperature of ℃ or less.
Alternatively, the semiconductor magnetic sensor according to the item 2.
【請求項5】 電極部は、半導体磁気抵抗膜に接続され
た第1の電極層と、この第1の電極層上に形成した第2
の電極層とを備えており、保護膜の厚さより高く構成し
たことを特徴とする請求項1,2,3,4のいずれかに
記載の半導体磁気センサ。
5. The electrode portion comprises a first electrode layer connected to the semiconductor magnetoresistive film, and a second electrode layer formed on the first electrode layer.
5. The semiconductor magnetic sensor according to claim 1, wherein the semiconductor magnetic sensor is configured to have a thickness higher than a thickness of the protective film.
【請求項6】 第2の電極層をメッキにより形成したこ
とを特徴とする請求項5記載の半導体磁気センサ。
6. The semiconductor magnetic sensor according to claim 5, wherein the second electrode layer is formed by plating.
【請求項7】 第2の電極層を、第1の電極層の領域よ
り小さく形成したことを特徴とする請求項5または6記
載の半導体磁気センサ。
7. The semiconductor magnetic sensor according to claim 5, wherein the second electrode layer is formed smaller than the region of the first electrode layer.
【請求項8】 短絡電極および電極部の表面をCr,N
i,NiCr合金のいずれかでコーティングしたことを
特徴とする請求項1または2記載の半導体磁気センサ。
8. The surface of the short-circuit electrode and the electrode portion is made of Cr, N
3. The semiconductor magnetic sensor according to claim 1, wherein the semiconductor magnetic sensor is coated with either i or NiCr alloy.
JP7198527A 1995-08-03 1995-08-03 Semiconductor magnetic sensor Pending JPH0945975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7198527A JPH0945975A (en) 1995-08-03 1995-08-03 Semiconductor magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7198527A JPH0945975A (en) 1995-08-03 1995-08-03 Semiconductor magnetic sensor

Publications (1)

Publication Number Publication Date
JPH0945975A true JPH0945975A (en) 1997-02-14

Family

ID=16392633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7198527A Pending JPH0945975A (en) 1995-08-03 1995-08-03 Semiconductor magnetic sensor

Country Status (1)

Country Link
JP (1) JPH0945975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101162A (en) * 1998-09-25 2000-04-07 Asahi Kasei Denshi Kk Small-sized magnetoelectric transducer and manufacture thereof
JP2014098611A (en) * 2012-11-14 2014-05-29 Nidec Sankyo Corp Magnetic sensor device and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000101162A (en) * 1998-09-25 2000-04-07 Asahi Kasei Denshi Kk Small-sized magnetoelectric transducer and manufacture thereof
JP4573368B2 (en) * 1998-09-25 2010-11-04 旭化成エレクトロニクス株式会社 Manufacturing method of small magnetoelectric transducer for face-down connection
JP2014098611A (en) * 2012-11-14 2014-05-29 Nidec Sankyo Corp Magnetic sensor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4005288A (en) Photodetector mounting and connecting
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JPH0945975A (en) Semiconductor magnetic sensor
JPH0661012A (en) Thin film thermistor
JPH09116173A (en) Semiconductor sensor and its manufacture
US4089991A (en) Process for applying electrical conductors for Dewar flask
US5958606A (en) Substrate structure with adhesive anchoring-seams for securely attaching and boding to a thin film supported thereon
JP3152005B2 (en) Manufacturing method of semiconductor acceleration sensor
JP3588952B2 (en) Semiconductor thin film magnetoresistive element
JP2610083B2 (en) Ferromagnetic magnetoresistive element
JP2001119083A (en) Semiconductor magnetism detection element
US3992774A (en) Method for fabricating lead through for Dewar flask
JP3510803B2 (en) Flow rate detecting device and manufacturing method thereof
JPH0886848A (en) Magnetism detector
KR200197336Y1 (en) Thin Film Thermocouple within the Bonded Silicon Wafers
JP3569129B2 (en) Flow detector
JP2990971B2 (en) Semiconductor thin film magnetoresistive element and method of manufacturing the same
JP2946983B2 (en) Magnetoresistive element
JPH05304325A (en) Semiconductor thin film magnetic resistor element and fabrication thereof
JPH06164016A (en) Semiconductor thin-film magnetoresistance element
JPH0484471A (en) Manufacture of integrated magnetic sensor
JPS6370584A (en) Magnetoresistance effect type element of shunt type
JP2003188438A (en) Magneto-resistive element
JPS61156824A (en) Semiconductor device
KR0174124B1 (en) Fabricating method of semiconductor pressure sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040427