JP2014098611A - Magnetic sensor device and method for manufacturing the same - Google Patents

Magnetic sensor device and method for manufacturing the same Download PDF

Info

Publication number
JP2014098611A
JP2014098611A JP2012250164A JP2012250164A JP2014098611A JP 2014098611 A JP2014098611 A JP 2014098611A JP 2012250164 A JP2012250164 A JP 2012250164A JP 2012250164 A JP2012250164 A JP 2012250164A JP 2014098611 A JP2014098611 A JP 2014098611A
Authority
JP
Japan
Prior art keywords
terminal
solder
flexible wiring
magnetic sensor
element substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012250164A
Other languages
Japanese (ja)
Other versions
JP6243111B2 (en
Inventor
Teruhiko Outaki
輝彦 王滝
Ryusuke Higashi
隆祐 東
Ryoichi Hachiman
亮一 八幡
Masao Takemura
政夫 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2012250164A priority Critical patent/JP6243111B2/en
Publication of JP2014098611A publication Critical patent/JP2014098611A/en
Application granted granted Critical
Publication of JP6243111B2 publication Critical patent/JP6243111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sensor device capable of electrically connecting a terminal of an element substrate to a terminal of a flexible wiring board at a comparatively low cost with high reliability, and a method for manufacturing the magnetic sensor device.SOLUTION: When electrically connecting second terminals 31 of a flexible wiring board 30 to a plurality of first terminals 16 including a magnetoresistive film 13 extending from a magnetoresistive element 14 in the element substrate 10 of a magnetic sensor device, solder layers 33 are formed on the surfaces of the second terminals 31, and then a composition 8 for solder joint having a plurality of solder particles 81 having a melting point lower than that of the solder layer 33 and dispersed in a thermosetting resin material 80 is interposed between the element substrate 10 and the flexible wiring boards 30 and is heated while being pressurized in this state.

Description

本発明は、磁気抵抗素子が形成された素子基板にフレキシブル配線基板が接続された磁気センサ装置およびその製造方法に関するものである。   The present invention relates to a magnetic sensor device in which a flexible wiring board is connected to an element substrate on which a magnetoresistive element is formed, and a method for manufacturing the same.

剛性基板に形成された複数の端子とフレキシブル配線基板に形成された複数の端子とを導通させる場合や、第1フレキシブル配線基板に形成された複数の端子と第2フレキシブル配線基板に形成された複数の端子とを導通させる場合、端子の表面に金や銅等を形成しておき、ハンダ粒子が樹脂材料中に分散したペースト状のハンダ接合用組成物を基板間に介在させて加圧加熱する接合方法が採用されることがある。   When conducting a plurality of terminals formed on the rigid substrate and a plurality of terminals formed on the flexible wiring substrate, or a plurality of terminals formed on the first flexible wiring substrate and a plurality of terminals formed on the second flexible wiring substrate When conducting electrical connection with the terminal, gold, copper, or the like is formed on the surface of the terminal, and a paste-like solder bonding composition in which solder particles are dispersed in the resin material is interposed between the substrates and heated under pressure. A joining method may be employed.

磁気センサ装置のように、素子基板において、磁気抵抗素子から延在する磁気抵抗膜を備えた端子にフレキシブル配線基板の端子を導通させる場合、端子の表面に金や銅等を形成すると、磁気センサ装置としてはコストが増大しすぎるため、従来は、上記技術の適用が困難である。   When the terminal of the flexible wiring board is made to conduct to the terminal provided with the magnetoresistive film extending from the magnetoresistive element as in the magnetic sensor device, if the surface of the terminal is made of gold or copper, the magnetic sensor Conventionally, it is difficult to apply the above technique because the cost of the apparatus is excessively increased.

一方、磁気センサ装置の製造工程において、磁気抵抗素子が形成された素子基板の一方面側にフレキシブル配線基板を接続する際、異方性導電シートを用いる方法が提案されている(特許文献1参照)。   On the other hand, in the manufacturing process of a magnetic sensor device, a method using an anisotropic conductive sheet has been proposed when a flexible wiring board is connected to one side of an element substrate on which a magnetoresistive element is formed (see Patent Document 1). ).

特開平7−159197号公報JP 7-159197 A

しかしながら、特許文献1に記載の技術でも、異方性導電シートが高価であるとともに、端子の表面に金層を形成する必要があるため、磁気センサ装置としてはコストが嵩みすぎるという問題点がある。   However, even in the technique described in Patent Document 1, since the anisotropic conductive sheet is expensive and a gold layer needs to be formed on the surface of the terminal, there is a problem that the cost is too high for the magnetic sensor device. is there.

以上の問題点に鑑みて、本発明の課題は、比較的低コストで素子基板の端子とフレキシブル配線基板の端子とを高い信頼性をもって導通させることができる磁気センサ装置、およびその製造方法を提供することにある。   In view of the above problems, an object of the present invention is to provide a magnetic sensor device capable of electrically connecting a terminal of an element substrate and a terminal of a flexible wiring substrate at a relatively low cost, and a manufacturing method thereof. There is to do.

上記課題を解決するために、本発明は、磁気抵抗素子から延在する磁気抵抗膜を備えた複数の第1端子が接続領域で配列する素子基板と、前記複数の第1端子の各々に導通する複数の第2端子を備えたフレキシブル配線基板と、を有する磁気センサ装置において、前記第2端子の表面にはハンダ層が形成されており、前記接続領域では、前記素子基板と前記フレキシブル配線基板との間に、前記ハンダ層より低融点の複数のハンダ粒子が樹脂材料中に分散したハンダ接合用組成物が介在し、前記樹脂材料によって前記素子基板と前記フレキシブル配線基板とが接着され、前記複数のハンダ粒子のうち、前記第1端子と前記第2端子との重なり領域で溶融したハンダ粒子によって前記第1端子と前記第2端子とが導通し、前記第1端子と前記第2端子との重なり領域以外に存在するハンダ粒子は、前記樹脂材料中に分散していることを特徴とする。   In order to solve the above-described problems, the present invention provides an element substrate in which a plurality of first terminals each including a magnetoresistive film extending from a magnetoresistive element are arranged in a connection region, and conductive to each of the plurality of first terminals And a flexible wiring board having a plurality of second terminals, wherein a solder layer is formed on a surface of the second terminal, and in the connection region, the element substrate and the flexible wiring board And a solder bonding composition in which a plurality of solder particles having a melting point lower than that of the solder layer are dispersed in a resin material, the element substrate and the flexible wiring board are bonded by the resin material, Among the plurality of solder particles, the first terminal and the second terminal are electrically connected by the solder particles melted in the overlapping region of the first terminal and the second terminal, and the first terminal and the second terminal Solder particles present in the non-overlapping region of the terminal is characterized in that it is dispersed in the resin material.

また、本発明は、素子基板において磁気抵抗素子から延在する磁気抵抗膜を備えた複数の第1端子が配列する接続領域で、フレキブル配線基板に形成されている複数の第2端子を各々前記複数の第1端子と導通させる接合工程を有する磁気センサ装置の製造方法において、前記第2端子の表面にハンダ層を形成しておき、前記接合工程では、前記接続領域と前記フレキシブル配線基板との間に、前記ハンダ層より低融点の複数のハンダ粒子が樹脂材料中に分散したペースト状のハンダ接合用組成物を配置する第1工程と、前記接続領域において前記フレキシブル配線基板と前記素子基板とを加圧しながら前記ハンダ粒子の融点より高く前記ハンダ層の融点より低い温度で前記ハンダ接合用組成物を加熱する第2工程と、を行うことを特徴とする。   Further, the present invention provides a connection region in which a plurality of first terminals provided with a magnetoresistive film extending from the magnetoresistive element on the element substrate are arranged, and each of the plurality of second terminals formed on the flexible wiring board is In the method of manufacturing a magnetic sensor device having a joining step for conducting with a plurality of first terminals, a solder layer is formed on the surface of the second terminal, and in the joining step, the connection region and the flexible wiring board A first step of disposing a paste-like solder bonding composition in which a plurality of solder particles having a melting point lower than that of the solder layer are dispersed in a resin material; and the flexible wiring substrate and the element substrate in the connection region And a second step of heating the solder bonding composition at a temperature higher than the melting point of the solder particles and lower than the melting point of the solder layer while pressurizing the solder particles. .

本発明では、ハンダ接合用組成物の樹脂材料によって、素子基板とフレキシブル配線基板とを接着できるとともに、第1端子と第2端子との重なり領域で溶融したハンダ粒子によって第1端子と第2端子とを導通させることができるので、異方性導電フィルムを用いた場合に比して、製造コストの低減を図ることができる。   In the present invention, the element substrate and the flexible wiring board can be bonded by the resin material of the solder bonding composition, and the first terminal and the second terminal are formed by the solder particles melted in the overlapping region between the first terminal and the second terminal. Therefore, the manufacturing cost can be reduced as compared with the case where an anisotropic conductive film is used.

本発明において、前記第1端子の表面は、前記磁気抵抗膜からなることが好ましい。かかる構成によれば、第1端子の表面に金層等を形成しない分、低コスト化を図ることができる。   In the present invention, the surface of the first terminal is preferably made of the magnetoresistive film. According to such a configuration, the cost can be reduced because the gold layer or the like is not formed on the surface of the first terminal.

本発明において、前記樹脂材料は、熱硬化性樹脂からなることが好ましい。かかる構成によれば、素子基板とフレキシブル配線基板とを確実に接着できるとともに、端子同士の接合個所の耐湿性能を向上することができる。   In the present invention, the resin material is preferably made of a thermosetting resin. According to such a configuration, the element substrate and the flexible wiring substrate can be securely bonded, and the moisture resistance performance at the junction between the terminals can be improved.

本発明において、前記ハンダ接合用組成物は、前記接続領域から前記素子基板の側面まで回り込んで当該側面と前記フレキシブル配線基板とを接着していることが好ましい。かかる構成によれば、素子基板にフレキシブル配線基板を強固に接続することができる。   In this invention, it is preferable that the said composition for solder joining goes around from the said connection area | region to the side surface of the said element substrate, and has adhere | attached the said side surface and the said flexible wiring board. According to this configuration, the flexible wiring board can be firmly connected to the element substrate.

本発明において、前記ハンダ粒子は、スズと、銅、銀、ビスマス、アンチモンおよびインジウムのうちの何れかの金属と、を含有し、融点が200℃以下であることが好ましい。かかる構成によれば、比較的低い温度で接合を行うことができる。   In the present invention, the solder particles preferably contain tin and a metal selected from copper, silver, bismuth, antimony and indium, and have a melting point of 200 ° C. or lower. According to this configuration, bonding can be performed at a relatively low temperature.

本発明において、前記第2工程を行う際、前記フレキシブル配線基板に対して前記素子基板とは反対側に緩衝部材を配置し、当該緩衝部材を介して前記フレキシブル配線基板を前記素子基板に向けて加圧することが好ましい。かかる構成によれば、フレキシブル配線基板の第2端子を素子基板の第1端子に適正に加圧することができる。   In this invention, when performing the said 2nd process, a buffer member is arrange | positioned on the opposite side to the said element substrate with respect to the said flexible wiring board, and the said flexible wiring board is faced to the said element substrate via the said buffer member. It is preferable to apply pressure. According to such a configuration, the second terminal of the flexible wiring board can be appropriately pressed against the first terminal of the element substrate.

本発明において、前記樹脂材料が熱硬化性樹脂からなり、前記第2工程の後、前記ハンダ粒子の融点より低い温度で前記接続領域を加熱する第3工程を行うことが好ましい。かかる構成によれば、樹脂材料の未硬化成分を確実に硬化させることができる。   In this invention, it is preferable that the said resin material consists of thermosetting resins, and performs the 3rd process of heating the said connection area | region at the temperature lower than melting | fusing point of the said solder particle after a said 2nd process. According to this structure, the uncured component of the resin material can be reliably cured.

本発明では、ハンダ接合用組成物の樹脂材料によって、素子基板とフレキシブル配線基板とを接着できるとともに、第1端子と第2端子との重なり領域で溶融したハンダ粒子によって第1端子と第2端子とを導通させることができるので、異方性導電フィルムを用いた場合に比して、製造コストの低減を図ることができる。   In the present invention, the element substrate and the flexible wiring board can be bonded by the resin material of the solder bonding composition, and the first terminal and the second terminal are formed by the solder particles melted in the overlapping region between the first terminal and the second terminal. Therefore, the manufacturing cost can be reduced as compared with the case where an anisotropic conductive film is used.

本発明を適用した磁気センサ装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the magnetic sensor apparatus to which this invention is applied. 本発明を適用した磁気センサ装置の素子基板モジュールの説明図である。It is explanatory drawing of the element substrate module of the magnetic sensor apparatus to which this invention is applied. 本発明を適用した磁気センサ装置の製造工程のうち、素子基板とフレキシブル配線基板とを接合する接合工程を示す工程断面図である。It is process sectional drawing which shows the joining process which joins an element substrate and a flexible wiring board among the manufacturing processes of the magnetic sensor apparatus to which this invention is applied.

図面を参照して、本発明を適用した磁気センサ装置および製造方法を説明する。   A magnetic sensor device and a manufacturing method to which the present invention is applied will be described with reference to the drawings.

(磁気センサ装置1の全体構成)
図1は、本発明を適用した磁気センサ装置1の全体構成を示す説明図であり、図1(a)、(b)、(c)は、磁気センサ装置1を用いたエンコーダの説明図、磁気センサ装置1をセンサ面2側からみた斜視図、および磁気センサ装置1からシールド部材9を外した状態をセンサ面2側からみた斜視図である。
(Overall configuration of magnetic sensor device 1)
FIG. 1 is an explanatory diagram showing an overall configuration of a magnetic sensor device 1 to which the present invention is applied. FIGS. 1A, 1B, and 1C are explanatory diagrams of an encoder using the magnetic sensor device 1. FIG. 3 is a perspective view of the magnetic sensor device 1 as viewed from the sensor surface 2 side, and a perspective view of the magnetic sensor device 1 as viewed from the sensor surface 2 side with the shield member 9 removed.

図1に示すように、本形態における磁気センサ装置1を磁気式リニアエンコーダに用いた場合には、固定部材(図示せず)に設けた磁気センサ装置1の底面(センサ面2)に対して、可動部材(図示せず)に固定された磁気スケール1aを対向させる。磁気スケール1aには、例えば、長手方向(移動方向)に沿ってN極とS極とが交互に配列されている。従って、可動部材が磁気スケール1aとともに磁気スケール1aの長手方向に移動した際の磁気センサ装置1からの出力信号を検出すれば、可動部材の位置や移動速度等を検出することができる。磁気センサ装置1は、略直方体形状のアルミニウムダイカスト品からなる筐体6と、この筐体6の開口を覆う矩形板状のカバー90と、筐体6から延びたケーブル7とを備えている。カバー90はビス91によって筐体6に固定されている。筐体6において、磁気スケール1aと対向する底面60にはセンサ面2側とは反対側に凹んだ基板配置部62が形成されており、かかる基板配置部62に、後述する素子基板10が配置されている。   As shown in FIG. 1, when the magnetic sensor device 1 according to this embodiment is used for a magnetic linear encoder, the bottom surface (sensor surface 2) of the magnetic sensor device 1 provided on a fixing member (not shown) is used. The magnetic scale 1a fixed to a movable member (not shown) is opposed. On the magnetic scale 1a, for example, N poles and S poles are alternately arranged along the longitudinal direction (moving direction). Therefore, if the output signal from the magnetic sensor device 1 when the movable member moves in the longitudinal direction of the magnetic scale 1a together with the magnetic scale 1a is detected, the position and moving speed of the movable member can be detected. The magnetic sensor device 1 includes a housing 6 made of a substantially rectangular parallelepiped aluminum die-cast product, a rectangular plate-like cover 90 that covers an opening of the housing 6, and a cable 7 that extends from the housing 6. The cover 90 is fixed to the housing 6 with screws 91. In the housing 6, a bottom surface 60 facing the magnetic scale 1 a is formed with a substrate placement portion 62 that is recessed on the side opposite to the sensor surface 2, and an element substrate 10 to be described later is placed on the substrate placement portion 62. Has been.

筐体6の底面60において、基板配置部62の周りには、センサ面2側で開口する溝からなるシールド部材固定部66が形成されており、かかるシールド部材固定部66によって、素子基板10に対してセンサ面2側には、板状のシールド部材9が固定されている。より具体的には、シールド部材9は、基板配置部62および素子基板10をセンサ面2側で覆う矩形の端板部9aと、端板部9aの外縁からセンサ面2側とは反対側に屈曲してシールド部材固定部66に嵌った4枚の側板部(図示せず)とを備えており、側板部は、シールド部材固定部66の内部で接着剤等により固定されている。なお、筐体6の内部には、基板配置部62に樹脂材(図示せず)が充填されており、筐体6と素子基板10との間や、筐体6とシールド部材9との間は樹脂材で埋められている。本形態において、樹脂材は軟質性であり、かかる樹脂材としてはエポキシ系樹脂を用いることができる。   On the bottom surface 60 of the housing 6, a shield member fixing portion 66 made of a groove opened on the sensor surface 2 side is formed around the substrate placement portion 62, and the shield member fixing portion 66 allows the element substrate 10 to be formed. On the other hand, a plate-like shield member 9 is fixed on the sensor surface 2 side. More specifically, the shield member 9 includes a rectangular end plate portion 9a that covers the substrate placement portion 62 and the element substrate 10 on the sensor surface 2 side, and an outer edge of the end plate portion 9a on the side opposite to the sensor surface 2 side. 4 side plate portions (not shown) which are bent and fitted into the shield member fixing portion 66 are provided, and the side plate portions are fixed inside the shield member fixing portion 66 by an adhesive or the like. Note that the inside of the housing 6 is filled with a resin material (not shown) in the substrate placement portion 62, and between the housing 6 and the element substrate 10 or between the housing 6 and the shield member 9. Is filled with resin material. In this embodiment, the resin material is soft, and an epoxy resin can be used as the resin material.

(素子基板10等の構成)
図2は、本発明を適用した磁気センサ装置1の素子基板モジュール3の説明図であり、図2(a)、(b)、(c)、(d)は、素子基板モジュール3の側面図、素子基板モジュール3をセンサ面2側(シールド部材9側)からみた底面図、素子基板10とフレキシブル配線基板30との接続部分の断面構成を模式的に示す説明図、および素子基板10とフレキシブル配線基板30との接続部分の断面構成を模式的に拡大して示す説明図である。
(Configuration of element substrate 10 etc.)
2 is an explanatory view of the element substrate module 3 of the magnetic sensor device 1 to which the present invention is applied. FIGS. 2A, 2B, 2C, and 2D are side views of the element substrate module 3. FIG. The bottom view of the element substrate module 3 as viewed from the sensor surface 2 side (shield member 9 side), the explanatory view schematically showing the cross-sectional configuration of the connection portion between the element substrate 10 and the flexible wiring board 30, and the element substrate 10 and the flexible 3 is an explanatory diagram schematically showing a cross-sectional configuration of a connection portion with a wiring board 30 in an enlarged manner. FIG.

図1および図2に示すように、素子基板10において磁気センサ装置1のセンサ面2側に向く主面11(一方面)には、磁気抵抗膜13によって磁気抵抗素子14が形成された感磁領域15と、複数の第1端子16が基板縁に沿って配列形成された接続領域17とが形成されている。本形態において、接続領域17は、素子基板10の一方側の端部のみに形成されている。感磁領域15は、素子基板10の側面19から所定の寸法を隔てた内側領域に形成されており、また、接続領域17とは所定の寸法を隔てた位置にある。素子基板10の基板本体は、ガラス基板やシリコン基板である。   As shown in FIGS. 1 and 2, the magnetoresistive element 14 is formed with the magnetoresistive film 13 on the main surface 11 (one surface) facing the sensor surface 2 side of the magnetic sensor device 1 in the element substrate 10. A region 15 and a connection region 17 in which a plurality of first terminals 16 are arranged along the substrate edge are formed. In this embodiment, the connection region 17 is formed only at one end of the element substrate 10. The magnetosensitive region 15 is formed in an inner region separated from the side surface 19 of the element substrate 10 by a predetermined dimension, and is located at a position separated from the connection region 17 by a predetermined dimension. The substrate body of the element substrate 10 is a glass substrate or a silicon substrate.

感磁領域15には、磁気抵抗素子14として、A相の磁気抵抗素子14a、B相の磁気抵抗素子14b、およびZ相の磁気抵抗素子14zが形成されており、かかる磁気抵抗素子14と第1端子16とは配線部分18によって導通している。磁気抵抗素子14は、磁気抵抗膜13によって構成されている。かかる磁気抵抗膜13は、素子基板10の主面11に半導体プロセスにより形成された強磁性体NiFe等の磁性体膜からなり、ホイートストン・ブリッジ等を構成している。なお、磁気抵抗膜13は、Coを含有する磁性体膜であってもよい。   In the magnetosensitive region 15, an A-phase magnetoresistive element 14a, a B-phase magnetoresistive element 14b, and a Z-phase magnetoresistive element 14z are formed as the magnetoresistive element 14. The one terminal 16 is electrically connected by a wiring portion 18. The magnetoresistive element 14 is constituted by a magnetoresistive film 13. The magnetoresistive film 13 is made of a magnetic film such as a ferromagnetic NiFe formed on the main surface 11 of the element substrate 10 by a semiconductor process, and constitutes a Wheatstone bridge or the like. The magnetoresistive film 13 may be a magnetic film containing Co.

本形態において、配線部分18および第1端子16は、磁気抵抗素子14と同様、磁気抵抗膜13によって構成されている。すなわち、配線部分18および第1端子16は、感磁領域15から延在する磁気抵抗膜13によって形成されており、配線部分18および第1端子16の少なくとも最上層は、磁気抵抗膜13からなる。本形態においては、配線部分18および第1端子16の全体が磁気抵抗膜13からなる。なお、素子基板10の主面11には、感磁領域15、および配線部分18が形成されている領域にシリコン酸化膜等からなる絶縁膜が形成されている。かかる絶縁膜は接続領域17には形成されておらず、第1端子16の表面は露出した状態にある。   In the present embodiment, the wiring portion 18 and the first terminal 16 are configured by the magnetoresistive film 13, similarly to the magnetoresistive element 14. That is, the wiring portion 18 and the first terminal 16 are formed by the magnetoresistive film 13 extending from the magnetosensitive region 15, and at least the uppermost layer of the wiring portion 18 and the first terminal 16 is made of the magnetoresistive film 13. . In this embodiment, the entire wiring portion 18 and the first terminal 16 are made of the magnetoresistive film 13. Note that an insulating film made of a silicon oxide film or the like is formed on the main surface 11 of the element substrate 10 in a region where the magnetosensitive region 15 and the wiring portion 18 are formed. Such an insulating film is not formed in the connection region 17, and the surface of the first terminal 16 is exposed.

素子基板10の接続領域17にはフレキシブル配線基板30の端部34が接続されており、素子基板10およびフレキシブル配線基板30は素子基板モジュール3として、図1を参照して説明した筐体6の内部に保持されている。   An end 34 of the flexible wiring board 30 is connected to the connection region 17 of the element substrate 10, and the element substrate 10 and the flexible wiring board 30 serve as the element substrate module 3 of the housing 6 described with reference to FIG. 1. Retained inside.

図2に示すように、フレキシブル配線基板30は、ポリイミド等からなるベースフィルム35の一方面に銅層等からなる導電パターン32が形成された構成になっており、かかる導電パターン32の端部を利用して、フレキシブル配線基板30の端部34には、素子基板10の複数の第1端子16に各々導通する複数の第2端子31が形成されている。なお、フレキシブル配線基板30において、導電パターン32の表面側は絶縁膜で覆われている。但し、絶縁膜は、第2端子31の表面には形成されておらず、第2端子31の表面は、絶縁膜から露出している。   As shown in FIG. 2, the flexible wiring board 30 has a configuration in which a conductive pattern 32 made of a copper layer or the like is formed on one surface of a base film 35 made of polyimide or the like. The plurality of second terminals 31 that are respectively connected to the plurality of first terminals 16 of the element substrate 10 are formed at the end portion 34 of the flexible wiring board 30. In the flexible wiring board 30, the surface side of the conductive pattern 32 is covered with an insulating film. However, the insulating film is not formed on the surface of the second terminal 31, and the surface of the second terminal 31 is exposed from the insulating film.

(第1端子16と第2端子31との導通構造)
図2(d)に示すように、本形態の磁気センサ装置1においては、素子基板10の複数の第1端子16と、フレキシブル配線基板30の複数の第2端子31とを導通させるにあたって、まず、第2端子31では、フレキシブル配線基板30に形成された銅層からなる導電パターン32の表面にハンダ層33が形成されている。
(Conduction structure between the first terminal 16 and the second terminal 31)
As shown in FIG. 2D, in the magnetic sensor device 1 of the present embodiment, when the plurality of first terminals 16 of the element substrate 10 and the plurality of second terminals 31 of the flexible wiring substrate 30 are electrically connected, In the second terminal 31, a solder layer 33 is formed on the surface of a conductive pattern 32 made of a copper layer formed on the flexible wiring board 30.

また、接続領域17では、素子基板10とフレキシブル配線基板30との間に、ハンダ層33より低融点の複数のハンダ粒子81が樹脂材料80中に分散したハンダ接合用組成物8が介在しており、樹脂材料80によって素子基板10とフレキシブル配線基板30とが接着されている。また、複数のハンダ粒子81のうち、第1端子16と第2端子31との重なり領域で溶融したハンダ粒子812によって第1端子16と第2端子31とが導通している。ここで、第1端子16と第2端子31との重なり領域では、3個から4個のハンダ粒子812が溶融し、凝集した状態になっている。   In the connection region 17, a solder bonding composition 8 in which a plurality of solder particles 81 having a melting point lower than that of the solder layer 33 is dispersed in the resin material 80 is interposed between the element substrate 10 and the flexible wiring substrate 30. The element substrate 10 and the flexible wiring substrate 30 are bonded by the resin material 80. Further, among the plurality of solder particles 81, the first terminal 16 and the second terminal 31 are electrically connected by the solder particles 812 melted in the overlapping region between the first terminal 16 and the second terminal 31. Here, in the overlapping region between the first terminal 16 and the second terminal 31, three to four solder particles 812 are melted and aggregated.

なお、複数のハンダ粒子81のうち、第1端子16と第2端子31との重なり領域以外に存在するハンダ粒子811は、隣り合う第1端子16の間や、隣り合う第2端子31の間等で樹脂材料80中に分散している。ここで、第1端子16の間隔および第2端子31の間隔に比較して、ハンダ粒子81の粒径は小さい。例えば、第1端子16の間隔および第2端子31の間隔は、100μm程度であるのに対して、ハンダ粒子81の粒径は1〜12μm程度である。このため、隣り合う第1端子16の間や、隣り合う第2端子31の間等で樹脂材料80中に分散しているハンダ粒子81が、隣り合う第1端子16同士や、隣り合う第2端子31同士を短絡させることはない。   In addition, among the plurality of solder particles 81, the solder particles 811 existing outside the overlapping region of the first terminal 16 and the second terminal 31 are between the adjacent first terminals 16 or between the adjacent second terminals 31. Or the like in the resin material 80. Here, the particle size of the solder particles 81 is smaller than the interval between the first terminals 16 and the interval between the second terminals 31. For example, the interval between the first terminals 16 and the interval between the second terminals 31 is about 100 μm, whereas the particle size of the solder particles 81 is about 1 to 12 μm. For this reason, the solder particles 81 dispersed in the resin material 80 between the adjacent first terminals 16 or between the adjacent second terminals 31 or the like are adjacent to each other between the adjacent first terminals 16 or the adjacent second terminals. The terminals 31 are not short-circuited.

本形態では、樹脂材料80としてエポキシ系等の熱硬化樹脂が用いられている。また、ハンダ粒子81は、スズと、銅、銀、ビスマス、アンチモンおよびインジウムのうちの何れかの金属とを含有しており、融点が200℃以下の低融点ハンダ材料からなる。例えば、ハンダ粒子81は、スズ−ビスマス系のハンダ材料からなり、融点は約140℃である。これに対して、ハンダ層33は、ハンダ粒子81より融点が高いハンダ材料からなり、その融点は、200℃を超える温度である。例えば、ハンダ層33は、スズ−銅系のハンダ材料からなり、融点は約230℃である。なお、ハンダ層33は、スズ−銅系のハンダ材料の他、スズ−銀−銅系や、スズ−ビスマス系のハンダ材料であってもよい。   In the present embodiment, an epoxy-based thermosetting resin is used as the resin material 80. The solder particles 81 contain tin and any one of copper, silver, bismuth, antimony and indium, and are made of a low melting point solder material having a melting point of 200 ° C. or less. For example, the solder particles 81 are made of a tin-bismuth solder material and have a melting point of about 140 ° C. On the other hand, the solder layer 33 is made of a solder material having a melting point higher than that of the solder particles 81, and the melting point is a temperature exceeding 200 ° C. For example, the solder layer 33 is made of a tin-copper solder material and has a melting point of about 230 ° C. The solder layer 33 may be a tin-silver-copper or tin-bismuth solder material in addition to a tin-copper solder material.

ここで、ハンダ接合用組成物8は、図2(a)に示すように、接続領域17から素子基板10の側面19まで回り込んだ部分88を有しており、かかる部分88は、側面19とフレキシブル配線基板30とを接着している。   Here, as shown in FIG. 2A, the solder bonding composition 8 has a portion 88 that extends from the connection region 17 to the side surface 19 of the element substrate 10. And the flexible wiring board 30 are bonded.

(磁気センサ装置1の製造方法)
図3は、本発明を適用した磁気センサ装置1の製造工程のうち、素子基板10とフレキシブル配線基板30とを接合する接合工程を示す工程断面図である。
(Manufacturing method of the magnetic sensor device 1)
FIG. 3 is a process cross-sectional view illustrating a joining process for joining the element substrate 10 and the flexible wiring board 30 in the manufacturing process of the magnetic sensor device 1 to which the present invention is applied.

本形態の磁気センサ装置1を製造するにあたっては、素子基板10とフレキシブル配線基板30とを接合する接合工程を行う。かかる接合工程を行う際、図2(d)を参照して説明したハンダ層33をフレキシブル配線基板30の第2端子31に形成しておく。   In manufacturing the magnetic sensor device 1 of the present embodiment, a bonding process for bonding the element substrate 10 and the flexible wiring substrate 30 is performed. When performing such a joining process, the solder layer 33 described with reference to FIG. 2D is formed on the second terminal 31 of the flexible wiring board 30.

接合工程では、まず、図3(a)、(b)に示す第1工程において、接続領域17とフレキシブル配線基板30の端部34との間に、図2を参照して説明したハンダ接合用組成物8を配置する。この時点では、ハンダ接合用組成物8は未硬化であり、ペースト状になっている。本形態では、図3(a)に示すように、ディスペンサーによる塗布やマスク印刷等の方法により、素子基板10の接続領域17にペースト状の未硬化のハンダ接合用組成物8を配置した後、図3(b)に示すように、フレキシブル配線基板30の端部34を重ねる。その際、素子基板10の第1端子16とフレキシブル配線基板30の第2端子31とを重ねる。   In the joining step, first, in the first step shown in FIGS. 3A and 3B, between the connection region 17 and the end portion 34 of the flexible wiring board 30, the solder joining described with reference to FIG. Composition 8 is placed. At this time, the solder bonding composition 8 is uncured and is in a paste form. In this embodiment, as shown in FIG. 3A, after disposing the paste-like uncured solder bonding composition 8 in the connection region 17 of the element substrate 10 by a method such as application by a dispenser or mask printing, As shown in FIG. 3B, the end portions 34 of the flexible wiring board 30 are overlapped. At that time, the first terminal 16 of the element substrate 10 and the second terminal 31 of the flexible wiring substrate 30 are overlapped.

次に、図3(c)に示す第2工程では、接続領域17においてフレキシブル配線基板30と素子基板10とを加圧しながらハンダ粒子81の融点より高くハンダ層33の融点より低い温度でハンダ接合用組成物8を加熱する。本形態では、素子基板10をステージ4上に配置し、ヒータチップ5によって、フレキシブル配線基板30を素子基板10に向けて加圧し、加熱する。本形態では、ヒータチップ5によって、5g/mm2〜20g/mm2の荷重を印加する。また、本形態では、ヒータチップ5によって、ハンダ接合用組成物8を約200℃に加熱する。また、本形態では、ハンダ接合用組成物8において、図2(d)に示す樹脂材料80は、熱硬化性樹脂含有フラックスとして配合されている。 Next, in the second step shown in FIG. 3C, solder bonding is performed at a temperature higher than the melting point of the solder particles 81 and lower than the melting point of the solder layer 33 while pressing the flexible wiring substrate 30 and the element substrate 10 in the connection region 17. The composition 8 for heating is heated. In this embodiment, the element substrate 10 is placed on the stage 4, and the flexible wiring substrate 30 is pressurized and heated by the heater chip 5 toward the element substrate 10. In this embodiment, the heater chip 5, to apply a load of 5g / mm 2 ~20g / mm 2 . In this embodiment, the solder bonding composition 8 is heated to about 200 ° C. by the heater chip 5. Further, in this embodiment, in the solder bonding composition 8, the resin material 80 shown in FIG. 2D is blended as a thermosetting resin-containing flux.

また、本形態では、第2工程を行う際、フレキシブル配線基板30に対して素子基板10側とは反対側、すなわち、フレキシブル配線基板30とヒータチップ5との間に緩衝部材50を配置し、緩衝部材50を介してフレキシブル配線基板30を素子基板10に向けて加圧する。本形態では、緩衝部材50として、アルミニウムシートや、アルミニウムシートにフッ素樹脂シートを接合したシート等、熱伝導性が高いシートを用いる。かかる緩衝部材50の厚さは20μm〜100μmである。なお、緩衝部材50の厚さは、フレキシブル配線基板30のベースフィルム35の厚さの1倍から2倍が好ましい。例えば、フレキシブル配線基板30のベースフィルム35の厚さが25μmである場合、緩衝部材50の厚さは、25μm〜50μmであることが好ましい。   Further, in this embodiment, when performing the second step, the buffer member 50 is disposed on the side opposite to the element substrate 10 side with respect to the flexible wiring substrate 30, that is, between the flexible wiring substrate 30 and the heater chip 5. The flexible wiring board 30 is pressurized toward the element substrate 10 via the buffer member 50. In this embodiment, as the buffer member 50, a sheet having high thermal conductivity such as an aluminum sheet or a sheet obtained by bonding a fluororesin sheet to the aluminum sheet is used. The thickness of the buffer member 50 is 20 μm to 100 μm. The thickness of the buffer member 50 is preferably 1 to 2 times the thickness of the base film 35 of the flexible wiring board 30. For example, when the thickness of the base film 35 of the flexible wiring board 30 is 25 μm, the thickness of the buffer member 50 is preferably 25 μm to 50 μm.

かかる第2工程の結果、図2(d)を参照して説明したように、樹脂材料80は、素子基板10とフレキシブル配線基板30との間で硬化し、素子基板10とフレキシブル配線基板30とを接着する。その際、樹脂材料80は、素子基板10とフレキシブル配線基板30との間で広がり、素子基板10の接続領域17とフレキシブル配線基板30の端部34との間を樹脂材料80が完全に埋める。また、図2(a)を参照して説明したように、ハンダ接合用組成物8の一部は、接続領域17から素子基板10の側面19まで回り込み、かかる部分88は、側面19とフレキシブル配線基板30とを接着する。また、複数のハンダ粒子81のうち、第1端子16と第2端子31との重なり領域に位置するハンダ粒子812は、第1端子16と第2端子31との間で溶融し、凝集する結果、第1端子16と第2端子31とはハンダ粒子812を介して導通する。また、複数のハンダ粒子81のうち、第1端子16と第2端子31との重なり領域以外に存在するハンダ粒子811は、隣り合う第1端子16の間や、隣り合う第2端子31の間等で樹脂材料80中に分散しており、隣り合う第1端子16同士や、隣り合う第2端子31同士を短絡させることはない。   As a result of the second step, as described with reference to FIG. 2D, the resin material 80 is cured between the element substrate 10 and the flexible wiring substrate 30, and the element substrate 10 and the flexible wiring substrate 30. Glue. At that time, the resin material 80 spreads between the element substrate 10 and the flexible wiring substrate 30, and the resin material 80 completely fills between the connection region 17 of the element substrate 10 and the end portion 34 of the flexible wiring substrate 30. Further, as described with reference to FIG. 2A, a part of the solder bonding composition 8 wraps around from the connection region 17 to the side surface 19 of the element substrate 10, and the portion 88 includes the side surface 19 and the flexible wiring. The substrate 30 is bonded. Further, among the plurality of solder particles 81, the solder particles 812 located in the overlapping region between the first terminal 16 and the second terminal 31 are melted and aggregated between the first terminal 16 and the second terminal 31. The first terminal 16 and the second terminal 31 are electrically connected via the solder particles 812. Further, among the plurality of solder particles 81, the solder particles 811 existing outside the overlapping region of the first terminal 16 and the second terminal 31 are between the adjacent first terminals 16 or between the adjacent second terminals 31. The first terminals 16 adjacent to each other and the second terminals 31 adjacent to each other are not short-circuited.

本形態では、樹脂材料80の未硬化成分を完全に硬化させるという観点から、第2工程の後、ハンダ粒子81の融点より低い温度、例えば、120℃〜140℃の温度で接続領域17を加熱する第3工程(アフターキュア工程)を行う。   In this embodiment, from the viewpoint of completely curing the uncured component of the resin material 80, the connection region 17 is heated at a temperature lower than the melting point of the solder particles 81, for example, a temperature of 120 ° C. to 140 ° C. after the second step. A third step (after cure step) is performed.

(本形態の主な効果)
以上説明したように、本形態では、ハンダ層33より低融点の複数のハンダ粒子81が樹脂材料80中に分散したハンダ接合用組成物8を用いて、素子基板10の接続領域17とフレキシブル配線基板30の端部34とが接合されている。このため、ハンダ接合用組成物8の樹脂材料80によって、素子基板10の接続領域とフレキシブル配線基板30の端部34とを接着することができるとともに、素子基板10の第1端子16とフレキシブル配線基板30の第2端子31との重なり領域で溶融したハンダ粒子81(ハンダ粒子811)によって第1端子16と第2端子31とを導通させることができる。それ故、異方性導電フィルムを用いた場合に比して、製造コストの低減を図ることができる。
(Main effects of this form)
As described above, in this embodiment, the connection region 17 of the element substrate 10 and the flexible wiring are formed using the solder bonding composition 8 in which a plurality of solder particles 81 having a melting point lower than that of the solder layer 33 are dispersed in the resin material 80. The end portion 34 of the substrate 30 is joined. Therefore, the resin material 80 of the solder bonding composition 8 can bond the connection region of the element substrate 10 and the end portion 34 of the flexible wiring substrate 30, and also the first terminal 16 of the element substrate 10 and the flexible wiring. The first terminals 16 and the second terminals 31 can be made conductive by the solder particles 81 (solder particles 811) melted in the overlapping region of the substrate 30 with the second terminals 31. Therefore, the manufacturing cost can be reduced as compared with the case where an anisotropic conductive film is used.

また、第2端子31では、フレキシブル配線基板30に形成された銅層からなる導電パターン32の表面にハンダ層33が形成されているため、銅層からなる導電パターン32の表面酸化等の問題が発生しない。それ故、安定した電気的な接続を行うことができる。   Further, in the second terminal 31, since the solder layer 33 is formed on the surface of the conductive pattern 32 made of the copper layer formed on the flexible wiring board 30, there are problems such as surface oxidation of the conductive pattern 32 made of the copper layer. Does not occur. Therefore, a stable electrical connection can be made.

また、接続領域17は樹脂材料80で封止されるので、耐湿特性を向上することができる。さらに、ハンダ粒子81の粒径や配合量によって、隣り合う端子同士の短絡を防止することができるので、端子間距離が短い場合でも、十分に対応することができる。また、第2端子31の表面にハンダ層33を形成すればよく、金層を形成する必要がないので、その点でも、製造コストの低減を図ることができる。さらに、ハンダ接合用組成物8中のハンダ粒子81の融点は、第2端子31表面のハンダ層33の融点より低いので、第2端子31表面のハンダ層33に食われが発生することを防止することができる。さらにまた、ハンダ接合用組成物8がフラックスを含んでいる場合でも、フラックスは樹脂材料80中に封じ込められるので、フラックス洗浄を省略することができる。   In addition, since the connection region 17 is sealed with the resin material 80, the moisture resistance can be improved. Furthermore, since the short-circuiting between adjacent terminals can be prevented by the particle size and blending amount of the solder particles 81, it is possible to sufficiently cope with a short distance between terminals. Further, the solder layer 33 may be formed on the surface of the second terminal 31, and it is not necessary to form a gold layer, so that the manufacturing cost can be reduced also in this respect. Furthermore, since the melting point of the solder particles 81 in the solder bonding composition 8 is lower than the melting point of the solder layer 33 on the surface of the second terminal 31, it is possible to prevent the solder layer 33 on the surface of the second terminal 31 from being eroded. can do. Furthermore, even when the solder bonding composition 8 contains a flux, the flux is sealed in the resin material 80, so that flux cleaning can be omitted.

また、第1端子16の表面は磁気抵抗膜13のままでよいので、第1端子16の表面に金層等を形成する必要がない分、低コスト化を図ることができる。   Further, since the surface of the first terminal 16 may remain the magnetoresistive film 13, the cost can be reduced because it is not necessary to form a gold layer or the like on the surface of the first terminal 16.

また、樹脂材料80は、熱硬化性樹脂からなるため、素子基板10とフレキシブル配線基板30とを確実に接着できるとともに、端子同士の接合個所の耐湿性能を向上することができる。しかも、本形態では、第2工程の後、ハンダ粒子81の融点より低い温度で接続領域17を加熱する第3工程(アフターキュア工程)を行うため、樹脂材料80の未硬化成分を確実に硬化させることができる。それ故、素子基板10にフレキシブル配線基板30を強固に接続することができるとともに、未硬化成分がアウターガスとして発生するのを抑制することができる。   Moreover, since the resin material 80 consists of thermosetting resin, while being able to adhere | attach the element substrate 10 and the flexible wiring board 30 reliably, the moisture resistance performance of the junction part of terminals can be improved. Moreover, in this embodiment, after the second step, the third step (after-cure step) of heating the connection region 17 at a temperature lower than the melting point of the solder particles 81 is performed, so that the uncured component of the resin material 80 is surely cured. Can be made. Therefore, the flexible wiring board 30 can be firmly connected to the element substrate 10 and the generation of uncured components as outer gas can be suppressed.

さらに、ハンダ接合用組成物8は、接続領域17から素子基板10の側面19まで回り込んで側面19とフレキシブル配線基板30とを接着している。このため、素子基板10にフレキシブル配線基板30を強固に接続することができる。   Further, the solder bonding composition 8 goes from the connection region 17 to the side surface 19 of the element substrate 10 to bond the side surface 19 and the flexible wiring substrate 30. For this reason, the flexible wiring board 30 can be firmly connected to the element substrate 10.

さらにまた、第2工程を行う際、フレキシブル配線基板30に対して素子基板10とは反対側に緩衝部材50を配置し、緩衝部材50を介してフレキシブル配線基板30を素子基板10に向けて加圧する。このため、フレキシブル配線基板30の第2端子31を素子基板10の第1端子16に適正に加圧することができる。   Furthermore, when performing the second step, a buffer member 50 is disposed on the opposite side of the element substrate 10 to the flexible wiring board 30, and the flexible wiring board 30 is applied toward the element substrate 10 via the buffer member 50. Press. For this reason, the second terminal 31 of the flexible wiring board 30 can be appropriately pressed against the first terminal 16 of the element substrate 10.

(他の実施の形態)
上記実施の形態では、素子基板10の一方の端部にフレキシブル配線基板30が接続された磁気センサ装置1を例示したが、素子基板10の両方の端部にフレキシブル配線基板30が接続された磁気センサ装置に本発明を適用してもよい。
(Other embodiments)
In the embodiment described above, the magnetic sensor device 1 in which the flexible wiring board 30 is connected to one end of the element substrate 10 is illustrated. However, the magnetic sensor in which the flexible wiring board 30 is connected to both ends of the element substrate 10. The present invention may be applied to a sensor device.

上記実施の形態では、磁気式リニアエンコーダに用いた磁気センサ装置1を例示したが、磁気式ロータリエンコーダにおいて、回転ドラム(可動部材)の外周面や端面に配置された磁気スケールに対向配置される磁気センサ装置に本発明を適用してもよい。   In the above-described embodiment, the magnetic sensor device 1 used for the magnetic linear encoder is illustrated. However, in the magnetic rotary encoder, the magnetic sensor is disposed so as to face the magnetic scale disposed on the outer peripheral surface or end surface of the rotating drum (movable member). The present invention may be applied to a magnetic sensor device.

1 磁気センサ装置
3 素子基板モジュール
8 ハンダ接合用組成物
10 素子基板
11 主面
13 磁気抵抗膜
14 磁気抵抗素子
15 感磁領域
16 第1端子
17 接続領域
30 フレキシブル配線基板
31 第2端子
33 ハンダ層
50 緩衝部材
80 樹脂材料
81 ハンダ粒子
DESCRIPTION OF SYMBOLS 1 Magnetic sensor apparatus 3 Element substrate module 8 Solder bonding composition 10 Element substrate 11 Main surface 13 Magnetoresistive film 14 Magnetoresistive element 15 Magnetosensitive region 16 First terminal 17 Connection region 30 Flexible wiring substrate 31 Second terminal 33 Solder layer 50 Buffer member 80 Resin material 81 Solder particles

Claims (9)

磁気抵抗素子から延在する磁気抵抗膜を備えた複数の第1端子が接続領域で配列する素子基板と、前記複数の第1端子の各々に導通する複数の第2端子を備えたフレキシブル配線基板と、を有する磁気センサ装置において、
前記第2端子の表面にはハンダ層が形成されており、
前記接続領域では、前記素子基板と前記フレキシブル配線基板との間に、前記ハンダ層より低融点の複数のハンダ粒子が樹脂材料中に分散したハンダ接合用組成物が介在し、
前記樹脂材料によって前記素子基板と前記フレキシブル配線基板とが接着され、
前記複数のハンダ粒子のうち、前記第1端子と前記第2端子との重なり領域で溶融したハンダ粒子によって前記第1端子と前記第2端子とが導通し、前記第1端子と前記第2端子との重なり領域以外に存在するハンダ粒子は、前記樹脂材料中に分散していることを特徴とする磁気センサ装置。
An element substrate having a plurality of first terminals provided with a magnetoresistive film extending from the magnetoresistive element and arranged in a connection region, and a flexible wiring substrate having a plurality of second terminals electrically connected to each of the plurality of first terminals In a magnetic sensor device having:
A solder layer is formed on the surface of the second terminal,
In the connection region, a solder bonding composition in which a plurality of solder particles having a melting point lower than that of the solder layer is dispersed in a resin material is interposed between the element substrate and the flexible wiring substrate.
The element substrate and the flexible wiring board are bonded by the resin material,
Among the plurality of solder particles, the first terminal and the second terminal are electrically connected to each other by solder particles melted in an overlapping region between the first terminal and the second terminal, and the first terminal and the second terminal. Solder particles that exist outside the overlapping region are dispersed in the resin material.
前記第1端子の表面は、前記磁気抵抗膜からなることを特徴とする請求項1に記載の磁気センサ装置。   The magnetic sensor device according to claim 1, wherein the surface of the first terminal is made of the magnetoresistive film. 前記樹脂材料は、熱硬化性樹脂からなることを特徴とする請求項1または2に記載の磁気センサ装置。   The magnetic sensor device according to claim 1, wherein the resin material is made of a thermosetting resin. 前記ハンダ接合用組成物は、前記接続領域から前記素子基板の側面まで回り込んで当該側面と前記フレキシブル配線基板とを接着していることを特徴とする請求項1乃至3の何れか一項に記載の磁気センサ装置。   4. The solder bonding composition according to claim 1, wherein the solder bonding composition wraps around from the connection region to a side surface of the element substrate and bonds the side surface to the flexible wiring substrate. The magnetic sensor device described. 前記ハンダ粒子は、スズと、銅、銀、ビスマス、アンチモンおよびインジウムのうちの何れかの金属と、を含有し、融点が200℃以下であることを特徴とする請求項1乃至4の何れか一項に記載の磁気センサ装置。   5. The solder particle according to claim 1, wherein the solder particles contain tin and a metal selected from copper, silver, bismuth, antimony, and indium, and have a melting point of 200 ° C. or less. The magnetic sensor device according to one item. 素子基板において磁気抵抗素子から延在する磁気抵抗膜を備えた複数の第1端子が配列する接続領域で、フレキシブル配線基板に形成されている複数の第2端子を各々前記複数の第1端子と導通させる接合工程を有する磁気センサ装置の製造方法において、
前記第2端子の表面にハンダ層を形成しておき、
前記接合工程では、
前記接続領域と前記フレキシブル配線基板との間に、前記ハンダ層より低融点の複数のハンダ粒子が樹脂材料中に分散したペースト状のハンダ接合用組成物を配置する第1工程と、
前記接続領域において前記フレキシブル配線基板と前記素子基板とを加圧しながら前記ハンダ粒子の融点より高く前記ハンダ層の融点より低い温度で前記ハンダ接合用組成物を加熱する第2工程と、
を行うことを特徴とする磁気センサ装置の製造方法。
A plurality of second terminals formed on the flexible wiring board are respectively connected to the plurality of first terminals in a connection region in which a plurality of first terminals having a magnetoresistive film extending from the magnetoresistive element is arranged on the element substrate. In the method of manufacturing a magnetic sensor device having a joining step for conducting,
Forming a solder layer on the surface of the second terminal;
In the joining step,
A first step of disposing a paste-like solder bonding composition in which a plurality of solder particles having a melting point lower than that of the solder layer are dispersed in a resin material between the connection region and the flexible wiring board;
A second step of heating the solder bonding composition at a temperature higher than the melting point of the solder particles and lower than the melting point of the solder layer while pressurizing the flexible wiring board and the element substrate in the connection region;
The manufacturing method of the magnetic sensor apparatus characterized by performing.
前記第1端子の表面は、前記磁気抵抗膜からなることを特徴とする請求項6に記載の磁気センサ装置の製造方法。   The method of manufacturing a magnetic sensor device according to claim 6, wherein a surface of the first terminal is made of the magnetoresistive film. 前記第2工程を行う際、前記フレキシブル配線基板に対して前記素子基板とは反対側に緩衝部材を配置し、当該緩衝部材を介して前記フレキシブル配線基板を前記素子基板に向けて加圧することを特徴とする請求項6または7に記載の磁気センサ装置の製造方法。   When performing the second step, a buffer member is disposed on the opposite side of the element substrate with respect to the flexible wiring substrate, and the flexible wiring substrate is pressurized toward the element substrate via the buffer member. 8. A method of manufacturing a magnetic sensor device according to claim 6 or 7, wherein: 前記樹脂材料は、熱硬化性樹脂からなり、
前記第2工程の後、前記ハンダ粒子の融点より低い温度で前記接続領域を加熱する第3工程を行うことを特徴とする請求項6乃至8の何れか一項に記載の磁気センサ装置の製造方法。
The resin material is made of a thermosetting resin,
The magnetic sensor device according to any one of claims 6 to 8, wherein after the second step, a third step of heating the connection region at a temperature lower than the melting point of the solder particles is performed. Method.
JP2012250164A 2012-11-14 2012-11-14 Magnetic sensor device and manufacturing method thereof Active JP6243111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012250164A JP6243111B2 (en) 2012-11-14 2012-11-14 Magnetic sensor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012250164A JP6243111B2 (en) 2012-11-14 2012-11-14 Magnetic sensor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014098611A true JP2014098611A (en) 2014-05-29
JP6243111B2 JP6243111B2 (en) 2017-12-06

Family

ID=50940733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250164A Active JP6243111B2 (en) 2012-11-14 2012-11-14 Magnetic sensor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6243111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128277A (en) * 2018-01-25 2019-08-01 日本電産サンキョー株式会社 Magnetic sensor device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262890A (en) * 1990-09-27 1992-09-18 Motorola Inc Flux agent and adhesive containing metal particle
JPH05198864A (en) * 1991-09-26 1993-08-06 Aisin Seiki Co Ltd Magnetoresistance element
JPH0945975A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Semiconductor magnetic sensor
JPH11135909A (en) * 1997-10-29 1999-05-21 Olympus Optical Co Ltd Electronic equipment and flexible wiring board
JPH11340541A (en) * 1998-05-28 1999-12-10 Nippon Seiki Kk Semiconductor magnetoresistance element and manufacture thereof
JP2002206950A (en) * 2001-01-11 2002-07-26 Hitachi Metals Ltd Magnetic sensor
JP2005116596A (en) * 2003-10-03 2005-04-28 Matsushita Electric Ind Co Ltd Bonding method
JP2007232616A (en) * 2006-03-02 2007-09-13 Nidec Sankyo Corp Magnetic sensor
JP2008118091A (en) * 2006-10-10 2008-05-22 Sumitomo Electric Ind Ltd Wiring board, wiring board connecting body and wiring board module
JP2010062339A (en) * 2008-09-04 2010-03-18 Dainippon Printing Co Ltd Component built-in wiring board, and method of manufacturing component built-in wiring board
JP2010226140A (en) * 2010-06-15 2010-10-07 Sony Chemical & Information Device Corp Method of manufacturing connection structure
JP2012023263A (en) * 2010-07-16 2012-02-02 Panasonic Corp Bonding method of electronic component

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04262890A (en) * 1990-09-27 1992-09-18 Motorola Inc Flux agent and adhesive containing metal particle
JPH05198864A (en) * 1991-09-26 1993-08-06 Aisin Seiki Co Ltd Magnetoresistance element
JPH0945975A (en) * 1995-08-03 1997-02-14 Matsushita Electric Ind Co Ltd Semiconductor magnetic sensor
JPH11135909A (en) * 1997-10-29 1999-05-21 Olympus Optical Co Ltd Electronic equipment and flexible wiring board
JPH11340541A (en) * 1998-05-28 1999-12-10 Nippon Seiki Kk Semiconductor magnetoresistance element and manufacture thereof
JP2002206950A (en) * 2001-01-11 2002-07-26 Hitachi Metals Ltd Magnetic sensor
JP2005116596A (en) * 2003-10-03 2005-04-28 Matsushita Electric Ind Co Ltd Bonding method
JP2007232616A (en) * 2006-03-02 2007-09-13 Nidec Sankyo Corp Magnetic sensor
JP2008118091A (en) * 2006-10-10 2008-05-22 Sumitomo Electric Ind Ltd Wiring board, wiring board connecting body and wiring board module
JP2010062339A (en) * 2008-09-04 2010-03-18 Dainippon Printing Co Ltd Component built-in wiring board, and method of manufacturing component built-in wiring board
JP2010226140A (en) * 2010-06-15 2010-10-07 Sony Chemical & Information Device Corp Method of manufacturing connection structure
JP2012023263A (en) * 2010-07-16 2012-02-02 Panasonic Corp Bonding method of electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019128277A (en) * 2018-01-25 2019-08-01 日本電産サンキョー株式会社 Magnetic sensor device
JP7050500B2 (en) 2018-01-25 2022-04-08 日本電産サンキョー株式会社 Magnetic sensor device

Also Published As

Publication number Publication date
JP6243111B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP6000859B2 (en) Semiconductor device manufacturing method, semiconductor device, and endoscope
JP5152499B2 (en) Electrical device and connection method thereof
JP5889718B2 (en) Electronic component mounting structure and input device, and method of manufacturing the mounting structure
CN105379435B (en) Rigid flex-circuits interconnect
US8022558B2 (en) Semiconductor package with ribbon with metal layers
JP2011222553A (en) Wiring board with built-in semiconductor chip and manufacturing method of the same
CN107170769B (en) Packaging structure and packaging method of image sensing chip
JP2014127706A5 (en) Manufacturing method of semiconductor device
JP6187918B2 (en) Circuit member connection structure, connection method, and connection material
WO2013146098A1 (en) Image pickup module and method for manufacturing image pickup module
TWI406376B (en) Semiconductor chip package
JP2014168037A (en) Electronic component
JPS61194732A (en) Method for jointing semiconductor pellet and substrate
JP2010016096A (en) Electronic component
JP6243111B2 (en) Magnetic sensor device and manufacturing method thereof
JP6433604B2 (en) Non-reciprocal circuit device, non-reciprocal circuit device and manufacturing method thereof
JP5577859B2 (en) Manufacturing method of electronic device
JP2011009397A (en) Electronic component-mounting wiring board
JP2011199138A (en) Method and structure for connection between electronic component
TW200929468A (en) Soldering substrate, electrocial soldering structure and method for soldering same
WO2013187329A1 (en) Method for manufacturing solar cell module, conductive adhesive for solar cell, and solar cell module
JP2005116881A (en) Semiconductor device, its manufacturing method, circuit board, and electronic equipment
JP6474008B2 (en) Connecting material
JP2015002200A (en) Wiring board, manufacturing method thereof, and connection body with the other board
JP6178622B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171109

R150 Certificate of patent or registration of utility model

Ref document number: 6243111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150