JPS5817689A - Manufacture of josephson circuit - Google Patents

Manufacture of josephson circuit

Info

Publication number
JPS5817689A
JPS5817689A JP56115923A JP11592381A JPS5817689A JP S5817689 A JPS5817689 A JP S5817689A JP 56115923 A JP56115923 A JP 56115923A JP 11592381 A JP11592381 A JP 11592381A JP S5817689 A JPS5817689 A JP S5817689A
Authority
JP
Japan
Prior art keywords
film
thin
coating film
etching
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56115923A
Other languages
Japanese (ja)
Other versions
JPH0334675B2 (en
Inventor
Takeshi Imamura
健 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56115923A priority Critical patent/JPS5817689A/en
Publication of JPS5817689A publication Critical patent/JPS5817689A/en
Publication of JPH0334675B2 publication Critical patent/JPH0334675B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices

Abstract

PURPOSE:To prevent the disconnection of a wiring layer while controlling the film thickness of an insulator accurately by improving a treatment process executed onto a substrate in the manufacture of the Josephson circuit. CONSTITUTION:A thin-film consisting of a superconducting substance such as Nb is evaporated or formed through a means such as RF sputtering onto the substrate 8 with a flat surface, such as Si, GaAo sapphire, etc., and a pattern 9 is manufactured through a means, such as lift-off, selective etching, etc. The insulator is applied onto the thin-film 9 in the thickness of approximately 1mum, and a coating film 10 is shaped. A thin-film 11 composed of a substance, the speed of etching thereof can be made slower than the coating film 10 such as Al, is formed onto the coating film 10. Corresponding predetermined regions on the superconducting layer 9 of the Al thin-film 11 are exfoliated, the coating film 10 is exposed, and the thin-film 11 and the coating film 10 are etched simultaneously. The coating film 10 is etched at uniform velocity extending over the whole surface when etching is continued, and etching is stopped when the surface of the superconducting layer 9 is exposed.

Description

【発明の詳細な説明】 本発明はシロセフノン回路の製造方法に係り、特に量子
干渉製素子を含んだジ璽セフンン来積回路の製造方法に
関するものである◎ 第1図に量子干渉型素子の一般的構造を示す〇図中1は
表面の平坦なシリコン等から成る基板、2はNbにオブ
)、Nb化合物、pb(鉛)合金等の超伝導物質から成
る下部電極、3は5iO(−酸化シリ;ン)等から成る
絶縁層、4は超伝導物質から成る上部電極、5は絶縁物
層、6は制御線路、7は股厚数10(A)のトンネル絶
縁膜である0 ここで、上部電極4と下部電&2は2個のトンネル接合
を、トンネル絶縁$7を介して形成しており、該トンネ
ル絶縁膜7以外の領域では両電極は絶縁層3により絶縁
膜れている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a digital circuit, and more particularly to a method for manufacturing a digital circuit including a quantum interference device. In the figure, 1 is a substrate made of silicon or the like with a flat surface, 2 is a lower electrode made of a superconducting material such as Nb (Nb), Nb compound, or PB (lead) alloy, and 3 is a 5iO (-oxide) substrate. 4 is an upper electrode made of a superconducting material, 5 is an insulating layer, 6 is a control line, and 7 is a tunnel insulating film with a thickness of 10 (A). The upper electrode 4 and the lower electrode &2 form two tunnel junctions via a tunnel insulating film 7, and both electrodes are insulated by an insulating layer 3 in a region other than the tunnel insulating film 7.

又、前記2つの接合は、両電極により並列に接続されて
おり、両液合間の絶縁膜3と下部電極2並びに上部電極
4は所謂インダクティプブリッジを形成している。
Further, the two junctions are connected in parallel by both electrodes, and the insulating film 3 between the two liquids, the lower electrode 2 and the upper electrode 4 form a so-called inductive bridge.

このようにジョセフノン接合素子はfIR層構造をもっ
ているため、制御線路6や上部電極4はそれぞれの下層
に配tiれた超伝導配線2や、絶縁薄膜の開口部によっ
て生ずる複数の段差をのりこえて配縁する必兼がある。
Since the Joseph non-junction element has the fIR layer structure as described above, the control line 6 and the upper electrode 4 cross over multiple steps caused by the superconducting wiring 2 arranged in the lower layer and the openings in the insulating thin film. There is a need to arrange.

このため従来のジ璽セ7ンン接合素子0>造方法におい
ては下層から上層の薄膜へいくにつれてその膜厚を厚く
して断線を防ぐ方法がとられているが1素子形状が縮小
し、配線の線幅がせまくなるKつれて、断線が起シ島く
なるという欠点がある@ 又、ジ曹セ7ソン接合素子以外の部分たとえは、常伝導
薄膜から成る抵抗素子及び超伝導薄膜から成る信号伝搬
線路においても上述したと同様の欠点がある。
For this reason, in the conventional method of manufacturing a diode junction element, the film thickness is increased from the lower layer to the upper layer to prevent disconnection, but the shape of one element is reduced, and the wiring As the line width becomes narrower, there is a disadvantage that disconnections occur more often. Signal propagation lines also have the same drawbacks as mentioned above.

更に、第1Ht)絶縁薄膜3及び5として塗布被膜を用
いれば、基板表面の凹凸をある程度平坦化で龜るが、絶
縁薄膜、411に′r4接合間の絶縁膜厚を被膜の塗布
条件のみで制御する事は困難である0量子干渉蓋素子で
は、中央のインダクティブブリッジの部分に磁束量子(
2X10’−”Wb)の大きさに相当する磁束が入る事
を単位として素子4I性が周期的に変化するので、絶縁
層1130腰厚は1賛な設計パラメーターであ〕、回路
設計上鼓膜厚を精1に制御することが不可欠である◎ 本発明の$111の目的は、上記従来のジ冒七フソン回
路の製造で問題となっていた配線層の断線を防止するこ
とにある。
Furthermore, if a coated film is used as the first Ht) insulating thin films 3 and 5, the unevenness of the substrate surface can be smoothed out to some extent, but the thickness of the insulating film between the insulating thin films and the 'r4 junctions can be adjusted only by the coating conditions. In the zero-quantum interference lid element, which is difficult to control, the magnetic flux quantum (
Since the element 4I property changes periodically in units of magnetic flux corresponding to the size of 2X10'-"Wb), the thickness of the insulating layer 1130 is an important design parameter. It is indispensable to precisely control the wiring layer. The purpose of the present invention is to prevent disconnection of the wiring layer, which has been a problem in manufacturing the above-mentioned conventional circuit.

又、本発明の第2の目的は、%に量子干渉歴素子等にお
いて、下部電極上に選択的に残存せしめる絶縁物の膜厚
を正確に制御することが可能なジ冒セフソン回路の製造
方法を提供するところにあるO 又、上記本発明の目的は、基板上の上記下部電極と、該
下部電極表面を被覆する絶縁層を形成するに際し、表面
の平坦な領域上に選択的に超伝導層を形成する工程と、
腋超伝導層表面をも含めた表面金体に比較的厚く絶縁物
を塗布し、被覆せしめる工程と、該被覆誤表面に該被覆
膜よりもエツチング速度の小さな薄膜を形成し、該薄膜
の前記超伝導層上に対応する所定領域のみを除去する工
程と、次いで表面よp諌薄膜並びに前記被覆膜を同時に
エツチングして前記超伝導層の所定領域を嵌出せしめる
工程とを有するジ、セフソン回路の製造方法によシ達成
される・ 以下、l!11面を参照して本発明の一実施例について
lll!明會する0 8i(シリコ7)、GaAs(ガリクムヒ素)。
A second object of the present invention is to provide a method for manufacturing a dithering circuit that can accurately control the film thickness of an insulator selectively left on a lower electrode in a quantum interference history element or the like. Another object of the present invention is to selectively apply superconductivity to a flat region of the surface when forming the lower electrode on the substrate and an insulating layer covering the surface of the lower electrode. a step of forming a layer;
A process of coating the surface metal body, including the surface of the axillary superconducting layer, with a relatively thick layer of insulating material, and forming a thin film with a lower etching rate than the coating film on the surface where the coating was not applied. a step of removing only a corresponding predetermined region on the superconducting layer; and then a step of simultaneously etching the thin film from the surface and the coating film to extrude the predetermined region of the superconducting layer; This is achieved by the manufacturing method of the Sefson circuit. Hereinafter, l! Refer to page 11 to learn about an embodiment of the present invention! 08i (silico 7), GaAs (gallicum arsenic).

す7アイヤ等表面の平坦な基板8上に、Nb岬の超伝導
物質から成る薄膜を蒸着、又は高周波スノくツタリング
等の手段で形成し、次いでリフトオフ、又は選択エツチ
ング等の手段で第2図1に示すノ(ターフ9を製造する
。こζで、超伝導材料としては、Nb、Nb化合物、P
b倉金等が用いられ、膜厚は1000〜7000(A)
II[であるO次いで、上記薄膜9上に約1(JIm)
程度の膜厚で絶縁物を塗布し、被m膜10を形成するO
(第211b ) こむで、被覆膜lOとしては、例えにポリシロ中サン等
を用いることにより、表面の平坦化が可能である0 例えば、上記超伝導層Wkgの膜厚が5000囚。
A thin film made of a superconducting Nb cape is formed on a flat substrate 8 with a surface such as a 7-layer film by means such as vapor deposition or high-frequency sloping, and then by means such as lift-off or selective etching as shown in FIG. The turf 9 shown in 1 is manufactured. In this ζ, the superconducting materials include Nb, Nb compound, P
b Kuragane etc. are used, and the film thickness is 1000 to 7000 (A)
II [O is then about 1 (JIm) on the thin film 9
An insulating material is applied to a film thickness of about
(No. 211b) As the coating film 10, the surface can be flattened by using, for example, polysilicone, etc. For example, the thickness of the superconducting layer Wkg is 5000 mm.

パターン幅が10(sm)の場合、この被覆膜10によ
って、5000囚の表面の凹凸が、被覆[1100表面
で、zoooA以下となることが確認されている。
When the pattern width is 10 (sm), it has been confirmed that with this coating film 10, the unevenness on the surface of 5000 mm becomes less than zooooA on the surface of 1100 mm.

その後、前記被覆M2O上にA1等被覆ll110より
もエツチング速度を遅くすることが可能な物質よシ成る
薄膜11を形成する。(第2図C)該薄膜11の膜厚は
、残存させる被覆1[10の厚さ及び鋏被覆1[10並
びに薄膜11のエツチングレートの比で決定される。
Thereafter, a thin film 11 made of a material capable of lowering the etching rate than the coating 1110 such as A1 is formed on the coating M2O. (FIG. 2C) The thickness of the thin film 11 is determined by the ratio of the thickness of the remaining coating 1[10 and the etching rate of the scissors coating 1[10 and the thin film 11].

例えdlこむではAI膜を約300囚の膜厚で形成す名
For example, in dlcom, the AI film is formed with a film thickness of about 300 mm.

次いで、第2図dに示すように、該AI薄jilllの
超伝導層9上の対応する所定領域を剥離し、被覆膜10
を表出せしめる0 しかる後、上記薄膜11並ひに被覆j[ilOを同時に
エツチングする。
Next, as shown in FIG. 2d, a corresponding predetermined area on the superconducting layer 9 of the AI thin film is peeled off, and a coating film 10 is removed.
Then, the thin film 11 and the coating j[ilO are etched at the same time.

エツチング方法として、ここではボリア0キサン塗膜並
びにA1を同時にエツチングするため、CHP、ガスを
用いたりアクティブエツチングを適用する〇 かかるCHP、を用い九リアクティブエツチングにおい
て、ポリシロキサン塗膜は1o(mTorr)QW囲気
中で約400(A/mln )のエツチング速寂を得る
As an etching method, in order to simultaneously etch the boria 0 xane coating film and A1, we use CHP, gas, or apply active etching. ) Obtains an etching speed of approximately 400 (A/mln) in a QW atmosphere.

それに対し、一般に金属薄Il!は、リアクチ(プエッ
チングでのエツチング速度は小さく、同様にCHF、ガ
−X 10m Ton (D条件下でAIの場合約30
、A/分である。
On the other hand, generally thin metal Il! The etching rate in reactant (pre-etching) is low; similarly, CHF, GAR-
, A/min.

このように被後腹10と薄膜11のエッチ速度の差が大
きいので、パターンが形成されている薄ll[llはエ
ツチングに対してマスクのような働きをする0工ツチン
グ開始約lO分後、薄11111が完全に除去された時
点で、被覆i!10には第2図eK示すような深さ約4
000(A)の凹部が形成されるO この後も、エツチングを継続すれば、被覆膜10は全面
にわたって均一な速匿でエツチングされ、超伝導層9の
表面が表出した時点でエツチングを停止する。(第2図
f) 残存する被後腹lOの、中央の凸部12の膜厚は塗布被
膜13(D凹部の深さと同等で約4000<AIである
、 即ち、本発明では、薄膜11(2)膜厚をX囚、被覆膜
10と腋薄腺11のエツチング速度をそれぞれp (A
/m l n、) 、 q (A/m l n、)とす
れば超伝導層9上に残存する被覆ll112の膜厚はp
x/q囚となる。
As described above, since the difference in etching speed between the backside 10 and the thin film 11 is large, the thin film 11 on which the pattern is formed [11] acts like a mask for etching. Once the thin layer 11111 has been completely removed, the coating i! 10 has a depth of about 4 as shown in Figure 2 eK.
A concave portion of 000 (A) is formed. After this, if etching is continued, the coating film 10 will be etched uniformly and quickly over the entire surface, and the etching will be stopped when the surface of the superconducting layer 9 is exposed. Stop. (Fig. 2 f) The film thickness of the central convex part 12 of the remaining posterior ventral lO is the coating film 13 (equivalent to the depth of the recessed part D, approximately 4000<AI; that is, in the present invention, the thickness of the thin film 11 ( 2) The film thickness is X, and the etching rate of the coating film 10 and the axillary gland 11 is p
/ml n, ), q (A/ml n,), the thickness of the coating 112 remaining on the superconducting layer 9 is p
x/q becomes a prisoner.

以上、本発明によれは超伝導層によシ生じた1板表面の
凹凸を平坦化し、且つ量子干渉素子のインダクティプブ
リッジ部分に相当する被後腹を正確な膜厚で残存させる
ことが可能である〇又、本発明の適用は、上記基板表面
上形成された超伝導層及び該超伝導層を覆う絶縁被膜に
限定されるものではない0即ち、ジッセフノン回路を構
成する他の絶縁被覆膜についてもその適用が可能である
As described above, according to the present invention, it is possible to flatten the irregularities on the surface of a single plate caused by the superconducting layer, and to leave the antinode corresponding to the inductive bridge part of the quantum interference device with an accurate film thickness. In addition, the application of the present invention is not limited to the superconducting layer formed on the surface of the substrate and the insulating coating covering the superconducting layer. It can also be applied to membranes.

第3図に本発明を超伝導配線15に適用した場合の実施
例を示す。同、図面番号で第2図と同一のものは、同一
の領域を示すものとする〇こζでは、下部電極9形成後
に被後腹1o、tzを、トンネル絶縁膜14、上部電極
13、及び超伝導配線15を形成した後に同じポリシロ
キサ/から成る被覆膜16を第2図a −fで示し次工
程と同様の工程で形成している◎ この様に、本発明の実施はジ嘗セフソン接合部の窓開け
のみではなく、第3図の超電導配1115と制御線路1
7の如く、超電導配線相互間のコンタクトホール形成に
おいても可能である。
FIG. 3 shows an embodiment in which the present invention is applied to superconducting wiring 15. 2, the drawing numbers that are the same as those in FIG. 2 indicate the same regions. After forming the superconducting wiring 15, a coating film 16 made of the same polysiloxane is formed in the same steps as the next step as shown in FIG. In addition to opening the window at the joint, the superconducting wiring 1115 and control line 1 shown in Figure 3
7, it is also possible to form contact holes between superconducting wirings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常のジ、セフソン回路の断面概要図を、第2
図a −fは本発明によるジ嘗セ7ソン回  二路の製
造方法の一実施例を、第3図は本発明によるジ冒セフソ
ン回路の製造方法によ)形成された回路の一例をそれぞ
れ表わしている0 図中1.8は基板を、2.4.6.9.13.15.1
7は超伝導層を、3.5.10.12.16は絶縁物か
らなる被覆膜を、7.14はトンネル絶縁膜を、11は
金属膜等の薄膜を示す0 を1図
Figure 1 shows a cross-sectional schematic diagram of a normal di-Sefson circuit, and Figure 2
Figures a to f show an example of a method for manufacturing a seven-channel circuit according to the present invention, and Figure 3 shows an example of a circuit formed by a method for manufacturing a seven-channel circuit according to the present invention. 1.8 in the figure represents the board, 2.4.6.9.13.15.1
7 indicates a superconducting layer, 3.5.10.12.16 indicates a coating film made of an insulator, 7.14 indicates a tunnel insulating film, and 11 indicates a thin film such as a metal film.

Claims (1)

【特許請求の範囲】[Claims] 表面の平坦な領域上に選択的に超伝導層を形成する1楊
と、該超伝導層表面をも含めた表面全体に比較的厚く絶
縁物を塗布し、核種せしめる1掘と、該被覆膜表面に該
被覆膜よりもエツチング速度の小さな薄膜を形成し、該
薄膜の前記超伝導層上に対比する所定領域を除去する1
楊と、次いで表面より鋏薄膜並びに前記被覆膜を同時に
エツチングして前記超伝導層の所定領域tt表出せしめ
る1穆とを有することを特徴とするシロセフノン回路の
製造方法。
One method is to selectively form a superconducting layer on a flat area of the surface, the other method is to apply a relatively thick insulating material to the entire surface including the superconducting layer surface and allow the nuclide to form on the surface. Forming a thin film having a lower etching rate than the coating film on the film surface, and removing a contrasting predetermined region on the superconducting layer of the thin film.
1. A method for manufacturing a silocephalon circuit, comprising the steps of etching a thin scissors film and the coating film from the surface at the same time to expose a predetermined region tt of the superconducting layer.
JP56115923A 1981-07-24 1981-07-24 Manufacture of josephson circuit Granted JPS5817689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56115923A JPS5817689A (en) 1981-07-24 1981-07-24 Manufacture of josephson circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56115923A JPS5817689A (en) 1981-07-24 1981-07-24 Manufacture of josephson circuit

Publications (2)

Publication Number Publication Date
JPS5817689A true JPS5817689A (en) 1983-02-01
JPH0334675B2 JPH0334675B2 (en) 1991-05-23

Family

ID=14674542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56115923A Granted JPS5817689A (en) 1981-07-24 1981-07-24 Manufacture of josephson circuit

Country Status (1)

Country Link
JP (1) JPS5817689A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263181A (en) * 1985-05-17 1986-11-21 Agency Of Ind Science & Technol Formation of superconducting line
JPS61271880A (en) * 1985-05-27 1986-12-02 Agency Of Ind Science & Technol Forming method for superconductive wire
US4790696A (en) * 1987-12-03 1988-12-13 The Stanley Works Chuck key mounting and ejector arrangement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158870A (en) * 1978-06-06 1979-12-15 Matsushita Electric Ind Co Ltd Etching method
JPS5658247A (en) * 1979-10-17 1981-05-21 Fujitsu Ltd Production of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158870A (en) * 1978-06-06 1979-12-15 Matsushita Electric Ind Co Ltd Etching method
JPS5658247A (en) * 1979-10-17 1981-05-21 Fujitsu Ltd Production of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263181A (en) * 1985-05-17 1986-11-21 Agency Of Ind Science & Technol Formation of superconducting line
JPH0374514B2 (en) * 1985-05-17 1991-11-27
JPS61271880A (en) * 1985-05-27 1986-12-02 Agency Of Ind Science & Technol Forming method for superconductive wire
JPH0376791B2 (en) * 1985-05-27 1991-12-06 Kogyo Gijutsuin
US4790696A (en) * 1987-12-03 1988-12-13 The Stanley Works Chuck key mounting and ejector arrangement

Also Published As

Publication number Publication date
JPH0334675B2 (en) 1991-05-23

Similar Documents

Publication Publication Date Title
JPH0354464B2 (en)
US3994758A (en) Method of manufacturing a semiconductor device having closely spaced electrodes by perpendicular projection
US4266333A (en) Method of making a Schottky barrier field effect transistor
JPS5817689A (en) Manufacture of josephson circuit
US4775644A (en) Zero bird-beak oxide isolation scheme for integrated circuits
JPS6154265B2 (en)
JPH0346977B2 (en)
JPS6387741A (en) Manufacture of semiconductor device
JPS63273363A (en) Manufacture of semiconductor device
JPH04124822A (en) Manufacture of semiconductor device
JPS6059742B2 (en) Semiconductor device and its manufacturing method
JP2924085B2 (en) Manufacturing method of electrode line
JPS63244772A (en) Contact hole of semiconductor device
JP4072248B2 (en) Manufacturing method of semiconductor device
JPS62281356A (en) Manufacture of semiconductor device
JPS639952A (en) Manufacture of semiconductor device
JPH02307231A (en) Manufacture of semiconductor device
JPH023926A (en) Forming method of wiring
JPS6025277A (en) Manufacture of semiconductor device
JPH0364933A (en) Manufacture of semiconductor device
JPS5841775B2 (en) hand tai souchi no seizou houhou
JPH04158533A (en) Fabrication of compound semiconductor device
JPS62114239A (en) Manufacture of semiconductor device
JPS63289880A (en) Manufacture of josephson junction device
JPS6279676A (en) Manufacture of field effect transistor