JPS58158942A - Semiconductor ic device and manufacture thereof - Google Patents

Semiconductor ic device and manufacture thereof

Info

Publication number
JPS58158942A
JPS58158942A JP4080582A JP4080582A JPS58158942A JP S58158942 A JPS58158942 A JP S58158942A JP 4080582 A JP4080582 A JP 4080582A JP 4080582 A JP4080582 A JP 4080582A JP S58158942 A JPS58158942 A JP S58158942A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
oxide film
mask
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4080582A
Other languages
Japanese (ja)
Inventor
Akira Muramatsu
彰 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4080582A priority Critical patent/JPS58158942A/en
Publication of JPS58158942A publication Critical patent/JPS58158942A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an IC with sufficient withstand voltage at high integration by a method wherein Si substrate is provided with LOCOS type and isoplanar type oxide film. CONSTITUTION:A dual mask of SiO2 and Si3N4 is formed on N epitaxial layer on P<-> type substrate wherein N<+> layer is embedded and resist mask 9 is provided to form a convex 10 in bipolar element region II required of high withstand voltage. When the mask 9 is removed to form an oxide film for separation, a layer 5b reaches embedded layer while another layer 5a does not. Another resist mask 11 is provided to form P<-> layer 12, P<+> layer and CMOSFET separated by LOCOS type oxide film is formed on the further regionI. The high integration may be sustained since a channel stopper is not required under separated layer due to needless high withstand voltage. On the other hand, the bipolar elements separated by isoplanar type oxide film is formed in the region II required of high withstand voltage, however, the separated layer reaching substrate being formed, the withstand voltage is sufficient without channel stopper at all. Through this combined system, the chip size may be reduced remarkably.

Description

【発明の詳細な説明】 本発明a牛4体集棟回路装置(以下IOと略称する)K
胸する。
[Detailed description of the invention] The present invention a cow 4-body integrated circuit device (hereinafter abbreviated as IO) K
Chest.

一つの半婆体基体上にバイポーラ集子を含む回路とMO
8集子II−tむ回路とt共存さぜる工CVこおいて、
谷諏子や1g1N1関t[気的に分陰(アイソレーショ
ン)するために半導体PN接合を利用するブレーナ方式
1遇択酸化により半導体表面に形成した半導体酸化膜t
オリ用するLO008方式がそれぞれ単独に採用はれて
bる。このうちプレーナ方式は、例えば第1図に示す↓
うに、P−型基板1上にN 埋込l曽21エビlキシャ
ルN層3葡形成し、N鳩3我面からP−基板IK接続す
るアインレーションP/mlニー拡散するものであるか
、アイソレーションP盾番自体が倒方間に拡散l槓を広
くとり、耐圧t*ぶされるバイポーラ素子7タ離する場
曾N層内に形成されるコレツ4やペースとの関−を充分
にとらなければならず集積度が低い。一方; LOOO
E1方式は、第2図にボ丁ように、エピタキシャルN層
3の表面kl[(ヒ性マスクを用いて選択的に歌化して
廖い毅化課5【形成するものでおり、バイポーラ本子七
分離する場合、分離子A地分にB(ボロン)イオン打込
みにより酸化−5の直下及び周辺に分庫用P#tik設
ける必要があり、この場合も2層6の几めの月参ぜ余裕
が必賢で集積度【大きくすることができない。
Circuit containing bipolar collector and MO on one semi-circular substrate
8 Collection II-T circuit and t coexistence engineering CV,
Suzuko Tani and 1g1N1 [semiconductor oxide film formed on the semiconductor surface by selective oxidation using Brehner method 1 selective oxidation using semiconductor PN junction for atmospheric isolation.
Each of the LO008 methods used for this purpose is independently adopted. Among these, the planar method is shown in Figure 1, for example↓
Is it possible to form an N buried layer 21 and an axial N layer 3 on the P-type substrate 1, and to connect the P-type substrate IK from the N layer 3 side by diffusing the insulation layer P/ml knee? The isolation P shield itself has a wide diffusion layer between the two sides, and the relationship between the bipolar element 7 which is exposed to the withstand voltage t* and the distance formed in the N layer and the pace is sufficiently taken. Therefore, the degree of integration is low. On the other hand; LOOO
In the E1 method, as shown in Fig. 2, the surface of the epitaxial N layer 3 is formed by selectively converting it into a bipolar layer using a polarizing mask. In the case of separation, it is necessary to install P#tik for a separate storage immediately under and around the oxidation-5 by implanting B (boron) ions into the separator A region, and in this case, there is also a small monthly separation margin of 2 layers 6. is wise and the degree of integration [cannot be increased].

分蘭方式としてはこれ以外に半導体表面に形成した凹部
上酸化し基板に違する深い酸化flt利用するアイソプ
レーナ方式がある。しかしこの方式による深い酸化膜は
MO8案子Q9離には必要でないため、専らパイボーラ
エCにお灯る分離に利用さ庇ている。
In addition to this, there is an isoplanar method that uses deep oxidation flt, which oxidizes the recesses formed on the semiconductor surface and differs from the substrate. However, the deep oxide film created by this method is not necessary for the separation of MO8 and Q9, so it is used exclusively for the separation of Pyborae C.

本発明はバイポーラMO8工Cに関しては従来併用され
なかったLOOO8とアイソプレーナ技術r一つの基板
上に適用することにより、集a度を篩め、しかも充分な
耐圧k1M持でさる半導体装置r提供することr目的と
する。
The present invention provides a semiconductor device r with reduced aggregation and sufficient withstand voltage k1M by applying LOOO8 and isoplanar technology, which have not been used together in the past, on a single substrate for bipolar MO8 technology. This is the purpose.

51!3図(a) 〜(f)if P −m 81 、
!板上にNPN)ランジスタと相葡形MO8F11iT
k形敗する場曾に本発明r適用した冥塵ガプロセスi示
し、以−F各1ai[便って峰述丁ゐユ (a)  P−型81基板lの表面にドナ不純物(8b
又はAθ)【部分拡散してN+埋込層2を形&L7、七
〇上VCkJ’1JBL層3k1.5〜2.5μmの犀
さVCエピタキシャル成長させる。このM一層3の表面
に薄す酸化膜(SiOglMり711”介して耐酸化性
膜としてナイトライド(sisNa)膜8を形成する。
51!3 Figures (a) to (f) if P-m 81,
! NPN) transistor on the board and MO8F11iT
The present invention is applied to the Meijin gas process I in the case where the P-type 81 substrate is destroyed.
or Aθ) [Partially diffused to form an N+ buried layer 2 with a shape &L7, 70, and VCkJ'1JBL layer 3k with a thickness of 1.5 to 2.5 μm and VC epitaxially grown. A nitride (sisNa) film 8 is formed as an oxidation-resistant film on the surface of this M layer 3 via a thin oxide film (SiOglM layer 711'').

(1))  分離用酸化mt−形成すべき部分のナイト
ライド1F一部分的に除去する。この後、MO831子
を形成すべき領域(1)上勿ホトレジスト・マスク9で
傍い、バイポーラ素子を形成丁べき領域(II)の紡紀
ナイトライドを除去した部分のS1層3tエツチして深
さLpm程度の凹部10會形成する。
(1)) Partially remove nitride 1F in the part to be formed of oxidized mt for separation. After this, of course, a photoresist mask 9 is placed over the area (1) where the MO831 element is to be formed, and the S1 layer 3t is etched deeply in the area (II) where the bipolar element is to be formed, where the spiny nitride has been removed. 10 recesses with a length of about Lpm are formed.

(0)  ホトレジスト・マスク9に*り除き、酸化処
理を行なうことによシナイトライド除去部のS1層に適
訳的に分離用酸化111−形成する、この分隘用鹸化膜
の廖さHl、5μm1M度でおり、−域■では分離用酸
化115aにN 埋込1#I2やP−基&lに運するこ
とがないが、領域…では凹slOに勢威され九分離用版
化膜5bはN 坤込層2やP−基板IK帰絖される。
(0) The thickness of the saponified separation film 111, which is appropriately formed on the S1 layer of the cinitride-removed portion by removing it on the photoresist mask 9 and performing oxidation treatment, 5μm and 1M degree, and in the − region ■, the isolation oxide 115a does not carry N to the embedded 1#I2 or the P− group &l, but in the region..., it is dominated by the concave slO, and the isolation plated film 5b carries N. The embedded layer 2 and the P-substrate IK are applied.

((L)  ナイトライドl1li8に取り除さ、表面
の一部rホトレジストマスク11で轡って分I@亀骸化
良でセルアラインした状態でB(ボロン)不純物tイオ
ン打込み、砿散し、iiI域Iにおいてt濃度のP−ウ
ェル12を形成する。他方領域11においてはベース形
成のためそれより高一度のP 層13【形成する。
((L) Removed with nitride l1li8, covered part of the surface with a photoresist mask 11, aligned the cell with a part I@Kamekukaryo, implanted B (boron) impurity t ions, scattered, iiiI In region I, a P-well 12 with a t concentration is formed.On the other hand, in region 11, a P-well 13 with a higher concentration is formed to form a base.

(6)1ml#Iにおいて表面の一部に薄い熱酸比換1
4を介してポリ81又はMO等による絶縁ゲー)15を
形成し、これら絶縁ゲート15と分離用酸化−5ar(
よりセルファラインされたN 拡散ソース・ドレイン1
6及びP 拡散ソース・ドレイン17會形成する。
(6) In 1ml #I, a thin layer of hot acid 1 on a part of the surface
An insulating gate 15 made of poly 81 or MO or the like is formed through the insulating gate 15 and an oxidized -5ar(
More self-aligned N diffused source/drain 1
6 and P diffusion sources/drains 17 are formed.

一方、領域nにおいて一11skM酸化111118で
マスクしてN+拡散工ξツタ19に一形成するとともに
分離用酸化gsbでセルファラインされたN+BHコレ
クタコンタクト部2011−形成する。同図(f)t!
この工11における各拡散層の平面的配at示すもので
ある。
On the other hand, in region n, an N+ diffusion layer 19 is formed by masking with 111skM oxide 111118, and an N+BH collector contact portion 2011 is self-lined with isolation oxide GSB. Same figure (f) t!
The planar arrangement of each diffusion layer in this process 11 is shown.

この後、○vp(化学気相析出)法によるPa()(リ
ンシリケート・ガラス)a121に形成し、コンタクト
ホトエッチ後にムz;i1m、ムlのパターニングニッ
チを行なうことにより、各領域の素子の%他関を相互K
11illするムl配822に形成丁る。。
After this, elements in each area are formed on Pa() (phosphosilicate glass) a121 by ○vp (chemical vapor deposition) method, and patterning niches of muz; i1m and mu1 are performed after contact photoetching. % of other companies mutually K
11 illumination pattern 822 is formed. .

同図において、領域!簡にはNチャネルMO8FIT及
びPチャネルM O8P lc ? #構Wii、すf
Lhとともに、領域11111に:はバイポーラMPN
)ランジスタが構成されるユ 以上vl施例で述べた本発明によ、7′Lは下記の効果
が奏せられる。
In the same figure, area! Simply put, N channel MO8FIT and P channel MO8P lc? # Structure Wii, Suf
Along with Lh, in region 11111: is bipolar MPN
) According to the present invention described in the above embodiments, the transistor 7'L has the following effects.

(1)  *域1llaはLOOOB方式ノ酸化all
K!、!!7分騰された相補的MO8回路か形成される
。このMO8回路においては耐沿t−誉しないがら分離
用酸化換の下−や周辺においてP多分離層6を設ける必
l!かなく、シ友がってこの部分での集積FIIL′+
r:元分に大きく大きく保つことができる。
(1) *Area 1lla is LOOOB method oxidation all
K! ,! ! A complementary MO8 circuit with a 7 minute increase is formed. In this MO8 circuit, it is necessary to provide a P isolation layer 6 under and around the oxidation layer for isolation, although it is not recommended for corrosion resistance. Without further ado, our friends are accumulating FIIL'+ in this part.
r: It is possible to keep the original amount large.

(2)  領域l−はアイソプレーナ方式の酸化によp
分離され九バイポーラ(ロ)路が形成される。このバイ
ポーラ回路では耐圧【費するが、分−用酸化候が凹部に
よシN層円に深く形成されP−基板に接続するためP型
分庫層を設けなくとも耐圧が侍られ、したがってこの部
分での集積fは小さくならない。
(2) Region l− is p due to isoplanar oxidation.
They are separated to form nine bipolar (b) tracts. In this bipolar circuit, the withstand voltage [is required], but since the dividing oxidation is formed deep in the N-layer circle through the recess and connected to the P-type substrate, the withstand voltage can be met without providing a P-type dividing layer. The accumulation f at a portion does not become small.

上記(1)(2)↓9、本発明によればプレーナ方式の
みの場合に比してバイポーラ回路の面積を約50%、L
OOOB方式のみの場合に比して約20X縮小し、全体
としてチップサイズを大幅に―小することができる。
According to the above (1) (2) ↓9, according to the present invention, the area of the bipolar circuit can be reduced by approximately 50% compared to the case of only the planar method.
The size is reduced by about 20X compared to the case of using only the OOOB method, and the overall chip size can be significantly reduced.

本発明は前記状J1例に限定されず、これ以外の撞々な
形での実施が可能であるが、%KNPN)ランジスタで
耐圧15v以下のバイポーラMO8ICの全てに通用し
て奪効である。
The present invention is not limited to the above-mentioned example J1, and can be implemented in various other forms, but it is applicable and effective to all bipolar MO8ICs that are %KNPN) transistors and have a withstand voltage of 15V or less.

【図面の簡単な説明】[Brief explanation of the drawing]

81図及び1g2図は在来の分離方式を示す半導体素子
の一5IIFrrjIJ図である。@3図−) 〜(f
)#:を本発81:lVこよる半導体集積回路i!皺の
製造プロセスの各工程を示し、このうち(a) 〜(@
)$1!l1rl1図、(f)H(e)に対応する平面
図、第4図は第3図のプロセスを経て完成した半尋体集
槓回路装置の断面図である。 l・・・P−基板、2・・・M+涯込層、3・・・エピ
タキシャルへ、4・・・アイフレー91フ2層、5・・
・分11川緻化換、6・・・9庫用P層、7・・・薄い
酸化膜、8・・・ナイトライド−19・・・ホトレジス
ト・マスク、10・・・凹部、11・・・ホトレジスト
マスク、12・・・P−ウェル、13・・・P ペース
、14・・・熟酸化映、15・・・ゲート、16.17
・・・ソース・ドレイン、18・・・熱酸化編、19・
・・工i74.20・・・コレクタコンタクト、21・
・・P8GIm、22・・・ムl配−3第  1  図 第  2  図
81 and 1g2 are diagrams of a semiconductor device showing a conventional separation method. @Figure 3-) ~(f
) #: The original 81: Semiconductor integrated circuit due to lV i! Each step of the wrinkle manufacturing process is shown, among which (a) ~ (@
) $1! FIG. 4 is a cross-sectional view of the half-body integrated circuit device completed through the process shown in FIG. 3. l...P-substrate, 2...M+ layer, 3...to epitaxial layer, 4... Eye-Fray 91 2nd layer, 5...
・Minute 11 river densification conversion, 6...9 P layer for storage, 7...thin oxide film, 8...nitride-19...photoresist mask, 10...concavity, 11...・Photoresist mask, 12...P-well, 13...P pace, 14...ripe oxide film, 15...gate, 16.17
...Source/drain, 18...Thermal oxidation, 19.
...Eng.i74.20...Collector contact, 21.
...P8GIm, 22...Ml-3 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、生部体基体上に異なる導電型の半導体層が形l1i
tされ、この半導体層はその表面に選択的に形成さfL
7を辱い半導体酸化mによって第lの回路を肩する17
4@域群と′m2の回路を有する島憤域群とに分離され
、第1の(ロ)略を刹する島憤域に上記半導体層表面か
ら基体に運する酸化膜によって分離されるとともに第2
の回路を有する島憤域は基体に遜することのない酸化1
i@l[よって分離されている仁とII−特徴とする半
導体集軸回路装置。 2、第1 (DIFI11!i%はバイポーラ素子を言
む回路であり、#!2の回w1はMO8素子【言む回路
でめる特ト饋求の範曲絡1墳に記載の半導体集軸回路装
置。 3、第14篭m81半尋俸A−板の一正面上に第2専畦
型^磯度埋込層を弁して第2纒嵐番は磯鼓半尋体層ケ成
長路ぜる工程、纂2尋電型低一度千導体層表面に耐酸化
性マスクを部分的に彫戚する1機、耐鹸化性マスクで機
った一S領域上りdのマスクで慢い、他部の耐酸イと性
マスクで橿われない半導体層表面−會エッチして凹部を
形成する工程、第2のマスクkm除いて耐酸化性マスク
で柵わnない部分で凹部の形成された半導体部分に基板
に運する酸化膜を形成するとともに凹部の形成されない
半導体部分表面に酸化ar形成する工程、基板に達する
酸化−で曲管れた半導体領域に上記酸イヒ膜tマスクの
一部として不純物會目己督合的に拡散してバイポーラ素
子を構成する各領域を形成し、他方、基&に通しない酸
化膜で囲まれた半導体iii域の一部にIP縁ケート勿
形成し絶縁ゲートと1に酸化膜tマスクとして自己誓合
的にMO8素イkllJgするンース・ドレインを形成
することt舟倣とする半導体集軸回路装置の製造法。
[Claims] 1. Semiconductor layers of different conductivity types are formed on the living body substrate.
t, and this semiconductor layer is selectively formed on its surface fL
7 and shoulder the lth circuit by semiconductor oxidation m17
It is separated into the 4@ region group and the island region group having a circuit of 'm2, and the first (b) region is separated by an oxide film carried from the surface of the semiconductor layer to the substrate. Second
The island region has a circuit of oxidation 1 that is comparable to the substrate.
A semiconductor integrated circuit device characterized by i@l and II separated by i@l. 2, 1st (DIFI11!i% is a circuit that refers to a bipolar element, and #!2's w1 is a semiconductor collection described in Tokuto Hokyo's Hankyokuro 1 tomb with a circuit that refers to MO8 element. Axial circuit device. 3. On one front of the 14th basket m81 half-fatty layer A-board, the second dedicated furrow type ^ Isodo buried layer is opened, and the second wire arashi is grown by Isozumi half-fatty layer. In the wiring process, an oxidation-resistant mask is partially carved on the surface of the 2-layer conductor layer, and a saponification-resistant mask is used to create a mask with an S area up to d. The surface of the semiconductor layer that is not covered by the oxidation-resistant mask in other parts - the process of etching to form a recess, the semiconductor with the recess formed in the part that is not covered by the oxidation-resistant mask except for the second mask km A process of forming an oxide film to be carried to the substrate and forming an oxide film on the surface of the semiconductor part where no recess is formed, and adding an impurity as part of the oxide film t mask to the curved semiconductor region due to the oxidation that reaches the substrate. Each region constituting the bipolar element is formed by diffusion in a synergistic manner, and an IP edge gate is formed in a part of the semiconductor region iii surrounded by the oxide film that does not pass through the base to form an insulating gate. 1. A method for manufacturing a semiconductor integrated circuit device, which includes forming a source drain that self-asserts MO8 element as an oxide film mask in step 1.
JP4080582A 1982-03-17 1982-03-17 Semiconductor ic device and manufacture thereof Pending JPS58158942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4080582A JPS58158942A (en) 1982-03-17 1982-03-17 Semiconductor ic device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4080582A JPS58158942A (en) 1982-03-17 1982-03-17 Semiconductor ic device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58158942A true JPS58158942A (en) 1983-09-21

Family

ID=12590850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4080582A Pending JPS58158942A (en) 1982-03-17 1982-03-17 Semiconductor ic device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58158942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0226892A2 (en) * 1985-12-17 1987-07-01 Siemens Aktiengesellschaft Process for manufacturing of bipolar and complementary MOS-transistors on a common silicon substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137482A (en) * 1974-04-18 1975-10-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50137482A (en) * 1974-04-18 1975-10-31

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0226892A2 (en) * 1985-12-17 1987-07-01 Siemens Aktiengesellschaft Process for manufacturing of bipolar and complementary MOS-transistors on a common silicon substrate

Similar Documents

Publication Publication Date Title
JPS5931052A (en) Semiconductor ic device and manufacture thereof
JPS58158942A (en) Semiconductor ic device and manufacture thereof
JPH0116018B2 (en)
JPS6050063B2 (en) Complementary MOS semiconductor device and manufacturing method thereof
JPS5984435A (en) Semiconductor integrated circuit and manufacture thereof
JP2730650B2 (en) Method for manufacturing semiconductor device
JP2658027B2 (en) Method for manufacturing semiconductor device
JPH03262154A (en) Manufacture of bicmos type semiconductor integrated circuit
JPS61269360A (en) Semiconductor device and manufacture thereof
JPS59161838A (en) Semiconductor device and manufacture thereof
JP2723539B2 (en) Master slice type semiconductor device
JPS60244037A (en) Semiconductor device and manufacture thereof
JPS62245649A (en) Semiconductor device and manufacture thereof
JPH06151579A (en) Semiconductor device and its manufacture
JPH03136274A (en) Manufacture of semiconductor device
JP2571449B2 (en) Manufacturing method of bipolar IC
JPS6129539B2 (en)
JPS5941851A (en) Manufacture of semiconductor device
JPS58197869A (en) Semiconductor integrated device
JPS61219165A (en) Manufacture of complementary semiconductor integrated circuit device
JPH0215651A (en) Manufacture of semiconductor device
JPS61176134A (en) Manufacture of semiconductor device
JPS60182149A (en) Manufacture of semiconductor integrated circuit
JPS5522888A (en) Manufacturing method of insulation gate type semiconductor device
JPS63181365A (en) Manufacture of semiconductor device