JPS63181365A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63181365A
JPS63181365A JP1286287A JP1286287A JPS63181365A JP S63181365 A JPS63181365 A JP S63181365A JP 1286287 A JP1286287 A JP 1286287A JP 1286287 A JP1286287 A JP 1286287A JP S63181365 A JPS63181365 A JP S63181365A
Authority
JP
Japan
Prior art keywords
region
semiconductor device
type
base
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1286287A
Other languages
Japanese (ja)
Inventor
Akitaka Inoue
井上 晃孝
Kazumi Yamauchi
和海 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP1286287A priority Critical patent/JPS63181365A/en
Publication of JPS63181365A publication Critical patent/JPS63181365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To simplify the process of manufacture as well as to contrive accomplishment of a shallow base coupling by a method wherein the emitter and the base lead-out region of a bipolar type transistor and the source and drain region of an MOS transistor are formed simultaneously. CONSTITUTION:A polycrystalline silicon is covered with a field oxide film 3 and an oxide film 6, and a gate part 4 of p-type and n-type MOS transistors, the emitter region of an n-p-n bipolar transistor, and the pattern 5 to be used for formation of a base electrode lead-out region are formed respectively. Then, ions are implanted using a resist pattern 7 and a gate electrode 4 as a mask, and after resist has been removed, an annealing operation is performed and a source and drain region 8', a collector electrode lead-out region 9', and an emitter region 10' are formed. Then, ions are implanted using a resist pattern 7' and the gate electrode 4 as a mask, and after the resist has been removed, an annealing operation is performed, a source and drain region 12' and a base electrode lead-out region 13' are formed. Subsequently, a resist pattern 7'' is formed, the polysilicon layer 5 used as a mask is removed using said resist pattern 7'' as a mask, ions are implanted, and after the resist has been removed, an annealing operation is performed, and a base region 15' is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はLSI等に有用な半導体装置に係り、特に同一
半導体基板上にMOS型半導体装置とバイポーラ型半導
体装置とを有するBi−MOS型半導体装置の製造方法
に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a semiconductor device useful for LSI etc., and particularly to a Bi-MOS type semiconductor having a MOS type semiconductor device and a bipolar type semiconductor device on the same semiconductor substrate. The present invention relates to a method for manufacturing a device.

〔従来の技術〕[Conventional technology]

近年、LSI等半導体集積回路装置に用いる能動素子と
して集積化の比較的容易なMO3型トランジスタ等MO
3型半導体装置ばかりでなく高速化が可能なバイポーラ
型トランジスタ等バイポーラ型半導体装置も多く用いら
れている。特に同一半導体基板上にMOS型半導体装置
とバイポーラ型半導体装置とを形成した半導体装置(以
下Bi−MO3型半導体装置という)は、MO3型半導
体装置の長所である低消費電力とバイポーラ型半導体装
置の長所である高い電流駆動能力を合わせ持った高性能
の半導体装置として注目されている。
In recent years, MO3 type transistors and other MO3 type transistors, which are relatively easy to integrate, have been used as active elements in semiconductor integrated circuit devices such as LSIs.
Not only type 3 semiconductor devices but also bipolar type semiconductor devices such as bipolar type transistors, which can be operated at higher speeds, are often used. In particular, a semiconductor device in which a MOS type semiconductor device and a bipolar type semiconductor device are formed on the same semiconductor substrate (hereinafter referred to as a Bi-MO3 type semiconductor device) has the advantages of low power consumption of the MO3 type semiconductor device and the advantages of the bipolar type semiconductor device. It is attracting attention as a high-performance semiconductor device that has the advantage of high current drive capability.

その製造方法は製造工程が多く複雑ではあるが、MO3
型半導体装置の領域形成工程とバイポーラ型半導体装置
のそれと兼用出来る場合は同時に並行して領域を形成し
て工程数をふやさずに集積度を上げている。その−例を
第2図によってn型MOSトランジスタとn−p−n)
ランジスタを同一基板上に形成した場合について説明す
る。
Although the manufacturing method is complicated with many manufacturing steps, MO3
In cases where the region forming process for a type semiconductor device and that for a bipolar type semiconductor device can be used, the regions are formed simultaneously in parallel to increase the degree of integration without increasing the number of steps. An example of this is shown in Figure 2 as an n-type MOS transistor (n-p-n).
A case where transistors are formed on the same substrate will be described.

(1)  p−型シリコン基板21中にn+型埋込み層
22を形成後、2μ糟の厚さのn型エピタキシャル層2
3を成長後、p型ウェル領域24、p型分離領域25に
ホウ素(B)を注入拡散してそれぞれの領域を形成する
(第2図(a))。
(1) After forming the n+ type buried layer 22 in the p-type silicon substrate 21, the n-type epitaxial layer 2 with a thickness of 2 μm is formed.
After growing 3, boron (B) is implanted and diffused into the p-type well region 24 and the p-type isolation region 25 to form the respective regions (FIG. 2(a)).

(2)次に例えば選択酸化(LOGO3)法によりフィ
ールド酸化シリコン膜26を形成後ベース領域となるべ
きn−型領域の一部にホウ素(B)をイオン注入してベ
ース領域28を形成するが同時にゲート酸化膜27も形
成する(第2図(b))。
(2) Next, after forming a field silicon oxide film 26 by, for example, selective oxidation (LOGO3) method, boron (B) ions are implanted into a part of the n-type region that is to become a base region to form a base region 28. At the same time, a gate oxide film 27 is also formed (FIG. 2(b)).

(3)選択的イオン注入法により砒素(As)イオンを
注入してn3型コレクタ引出し領域29とn゛型エミッ
タ領域30を形成後第1の接続層31をn−pn型トラ
ンジスタ部分とMO3型トランジスタ部分を同時に形成
する(第2図(C))。
(3) After forming the n3 type collector extraction region 29 and the n' type emitter region 30 by implanting arsenic (As) ions by selective ion implantation, the first connection layer 31 is connected to the n-pn type transistor part and the MO3 type. A transistor portion is formed at the same time (FIG. 2(C)).

(4)n“型ソース、ドレイン領域32をイオン注入に
より形成してから、p゛型ベース引出し領域33を形成
する(この時必要があればp゛型チャネルMoS型トラ
ンジスタのソース、ドレイン領域も同時に形成できる)
(第2図(d))。
(4) After forming the n" type source and drain regions 32 by ion implantation, the p type base extraction region 33 is formed (at this time, if necessary, the source and drain regions of the p type channel MoS transistor are also formed. (can be formed at the same time)
(Figure 2(d)).

(5)第1の接続層31を含む半導体基板表面に酸化シ
リコン膜34を眉間絶縁膜として被覆する(第2図(e
))。
(5) Cover the surface of the semiconductor substrate including the first connection layer 31 with a silicon oxide film 34 as a glabellar insulating film (Fig. 2(e)
)).

(6)  各領域への接続孔を形成して第2の接続層3
5を形成し回路を完成する(第2図(f))。
(6) Form connection holes to each region to form the second connection layer 3
5 to complete the circuit (Fig. 2(f)).

前記のように従来のバイポーラ型トランジスタの製造工
程にいくつかのマスク工程、即ちp型ウェル形成、n型
チャンネルMOSl−ランジスタのソース、ドレイン領
域形成、p型チャンネルMOSトランジスタのソース、
ドレイン領域形成等を加えるのみで同一半導体基板上に
B1−CMOSトランジスタを形成することができる(
例えばIHBE Transaction on El
ectron Devicess Vol、HD−32
、No、2、Feb、1985 p232〜236ある
いはDeges tof Technical Pap
ers of IEDM ’ 85 p423〜426
参照)。
As mentioned above, the conventional bipolar transistor manufacturing process includes several mask steps, namely, p-type well formation, n-type channel MOS transistor source and drain region formation, p-type channel MOS transistor source,
A B1-CMOS transistor can be formed on the same semiconductor substrate by simply adding drain region formation, etc. (
For example, IHBE Transaction on El
ectron Devices Vol, HD-32
, No. 2, Feb, 1985 p232-236 or Deges to Technical Pap
ers of IEDM '85 p423-426
reference).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

バイポーラ型トランジスタの動作速度を速くするために
はベース領域の深さくエミッタ、ベース領域間のpn接
合とベース、コレクタ領域間のpn接合との最少距離、
第1図(g)のd)を浅く形成する必要がある。そのた
めベース領域形成後の熱処理工程はより低温、短時間に
し、その回数も出来るだけ減らす必要がある。これは、
一般にベース領域の形成の際注入されるホウ素(B)イ
オンは拡散係数が大きく熱処理の度に拡散領域が広がる
性質を持つためである。
In order to increase the operating speed of a bipolar transistor, the depth of the base region should be increased, the emitter, the minimum distance between the pn junction between the base regions and the pn junction between the base and collector regions,
It is necessary to form d) in FIG. 1(g) shallowly. Therefore, it is necessary to perform the heat treatment process after forming the base region at a lower temperature and for a shorter time, and to reduce the number of times as much as possible. this is,
This is because boron (B) ions, which are generally implanted when forming the base region, have a large diffusion coefficient and a property that the diffusion region expands each time heat treatment is performed.

ところが、バイポーラ型トランジスタは通常半導体基板
中にまずコレクタ領域を形成し、次にベース領域、エミ
ッタ領域の順に形成するため、ベース領域の形成後エミ
ッタ領域形成のための熱処理はさけられない。
However, in a bipolar transistor, a collector region is usually formed first in a semiconductor substrate, then a base region and an emitter region are formed in this order, so heat treatment for forming the emitter region after the base region is formed cannot be avoided.

また、Bi−MO3型半導体装置を製造する場合は第2
図に示す如く、ベース領域形成後、ゲート電極形成時と
ソース、ドレイン領域形成時の熱処理が更に加わり少な
くとも2回の熱処理が加わることになり、これらの熱処
理により接合の深さが深くなってしまうという問題点が
あった。
In addition, when manufacturing a Bi-MO3 type semiconductor device, the second
As shown in the figure, after the base region is formed, heat treatment is additionally performed during the gate electrode formation and the source and drain region formation, resulting in at least two additional heat treatments, and these heat treatments increase the depth of the junction. There was a problem.

従って本発明の目的はBi−MO3型半導体装置の製造
工程をできるだけ簡単にし、しがもより浅いバイポーラ
型トランジスタのベース接合を実現する製造方法を提供
することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a manufacturing method that simplifies the manufacturing process of a Bi-MO3 type semiconductor device as much as possible, and that also realizes a shallower base junction of a bipolar transistor.

〔問題点を解決するための手段および作用〕このため本
発明では、Bi−MO3型半導体装置の製造方法におい
て、バイポーラ型トランジスタのエミッタ領域およびベ
ース電極引出し領域形成のためのマスキングとMOsト
ランジスタのゲ−ト電極のパターニングを同時に遂行す
ること、このパターンをマスクとしてMOS)ランジス
タのソース、ドレイン領域とバイポーラ型トランジスタ
のエミッタ領域、ベース電極引出し領域を同時に形成す
ること、バイポーラトランジスタのエミッタ領域および
ベース電極引出し領域を形成した後にベース領域を形成
することを特徴とするものである。
[Means and effects for solving the problem] Therefore, in the present invention, in the manufacturing method of a Bi-MO3 type semiconductor device, masking for forming the emitter region and base electrode extraction region of the bipolar transistor and the gate electrode of the MOs transistor are performed. - Simultaneously forming the source and drain regions of the MOS transistor, the emitter region of the bipolar transistor, and the base electrode extraction region using this pattern as a mask; the emitter region and the base electrode of the bipolar transistor; This method is characterized in that the base region is formed after the drawer region is formed.

エミッタ領域およびベース電極引出し領域の形成をMO
Sトランジスタのソース、ドレイン領域の形成と同時に
行うことにより製造工程を簡単化出来るとともに、エミ
ッタ領域およびベース電極引出し領域を形成した後ベー
ス領域を形成することにより、ベース領域形成後の熱処
理工程が短縮し、所定の浅いベース接合を実現すること
ができる。
Formation of emitter region and base electrode extraction region
The manufacturing process can be simplified by forming the source and drain regions of the S transistor at the same time, and the heat treatment process after forming the base region can be shortened by forming the base region after forming the emitter region and base electrode extraction region. However, a predetermined shallow base junction can be realized.

〔実施例〕〔Example〕

本発明の実施例を第1図について説明する。 An embodiment of the invention will be described with reference to FIG.

第1図はnpn型バイポーラトランジスタとp−チャネ
ル、n−チャネルのCMO5MOSトランジスタシリコ
ン基板上に製造する場合の製造工程の断面図である。
FIG. 1 is a cross-sectional view of the manufacturing process for manufacturing an npn-type bipolar transistor, p-channel, and n-channel CMO5MOS transistors on a silicon substrate.

(1)p型シリコン基板1に接合の深さが数μm程度の
比較的深いn型拡散層2(以下n−ウェルという)を形
成する。これはp型シリコン基板にn型不純物、例えば
リン(P)イオンを選択注入して熱処理を行って形成す
る等通常の方法を用いる。
(1) A relatively deep n-type diffusion layer 2 (hereinafter referred to as n-well) with a junction depth of about several μm is formed on a p-type silicon substrate 1. This is done by a conventional method such as selectively implanting n-type impurities, such as phosphorus (P) ions, into a p-type silicon substrate and performing heat treatment.

次に選択酸化(LOGO3)法によりフィールド酸化膜
3を形成することによってp型MO3)ランジスタ、n
型MOS)ランジスタおよびnpnバイポーラトランジ
スタの各領域を分離し、酸化雰囲気中で加熱しゲート酸
化膜6を形成した後リンをドープした多結晶シリコンを
着膜しパターニングするが、本実施例ではp型、n型の
MOSトランジスタのゲート部4とともにnpnバイポ
ーラトランジスタのエミッタ領域とベース電極引出し領
域形成用パターン5を同時にパターニングして形成する
(第1図(a))。
Next, by forming a field oxide film 3 by selective oxidation (LOGO3) method, a p-type MO3) transistor, an n
After separating each region of the transistor (type MOS) transistor and the npn bipolar transistor and heating it in an oxidizing atmosphere to form a gate oxide film 6, a film of polycrystalline silicon doped with phosphorus is deposited and patterned. , the gate portion 4 of the n-type MOS transistor, the emitter region of the npn bipolar transistor, and the pattern 5 for forming the base electrode extraction region are formed by patterning at the same time (FIG. 1(a)).

(2)次にフォトリソ技術を用いてフォトレジストを着
膜後パターニングによってn型MOSトランジスタ部分
8、コレクタ電極引出し形成領域9、エミッタ形成領域
10を残してレジストパターン7を形成し、これとゲー
ト電極4をマスクとしてn型不純物の例えば砒素(As
)イオンを注入し、各領域にn型の高濃度不純物を導入
する(第1図(b))。
(2) Next, a photoresist film is deposited using photolithography, and then patterned to form a resist pattern 7, leaving the n-type MOS transistor portion 8, the collector electrode extraction formation region 9, and the emitter formation region 10. 4 as a mask, use an n-type impurity such as arsenic (As).
) Ions are implanted to introduce high concentration n-type impurities into each region (FIG. 1(b)).

(3)  この後レジストパターン7を除去してアニー
ルと呼ばれる熱処理を行い、n型の高濃度不純物拡散層
から成るn型MOS)ランジスタのソース、ドレイン領
域8′、コレクタ電極引出し領域9′、エミッタ領域1
0′が同時に形成される。
(3) After that, the resist pattern 7 is removed and a heat treatment called annealing is performed to remove the source, drain region 8', collector electrode extraction region 9', and emitter of the n-type MOS (n-type MOS) transistor consisting of an n-type high concentration impurity diffusion layer. Area 1
0' is formed at the same time.

次にフォトリソ技術を用いてフォトレジストを着膜後、
p型MO3I−ランジスタ部分12、ベース電極引出し
形成領域13を残してレジストパターン7′を形成し、
これとゲート電極4をマスクとしてp型不純物の例えば
ホウ素(B)イオンを注入し、各領域にp型の高濃度不
純物を導入する(第1図(C))。
Next, after depositing a photoresist film using photolithography technology,
A resist pattern 7' is formed leaving the p-type MO3I-transistor portion 12 and the base electrode extraction forming region 13,
Using this and the gate electrode 4 as a mask, p-type impurities such as boron (B) ions are implanted to introduce high-concentration p-type impurities into each region (FIG. 1(C)).

(4)  この後レジストパターン7′を除去してアニ
ールを行いp型の高濃度不純物拡散層から成るp型MO
3)ランジスタのソース、ドレイン領域12′、ベース
電極引出し領域13′を形成する。
(4) After this, the resist pattern 7' is removed and annealing is performed to form a p-type MO consisting of a p-type high concentration impurity diffusion layer.
3) Form the source and drain regions 12' and base electrode extension region 13' of the transistor.

次に再びフォトリソ技術によりフォトレジストを塗布し
パターニングによりnpn)ランジスタのベース形成領
域15を残してレジストパターン7“を形成した後、こ
れをマスクとしてドライエツチングまたはウェットエツ
チングによりベース形成領域15上のリンをドープした
多結晶シリコン層5を除去する(第1図(d) ’I 
Next, a photoresist is applied again by photolithography and patterned to form a resist pattern 7'' leaving the base formation region 15 of the npn transistor. Using this as a mask, dry etching or wet etching is performed to form a resist pattern 7'' on the base formation region 15. The polycrystalline silicon layer 5 doped with is removed (Fig. 1(d) 'I
.

(5)  それからレジストパターン7“をマスクとし
てp型不純物であるホウ素(B)イオンを注入しベース
形成領域中にp型不純物を導入する(第1図(e))。
(5) Then, using the resist pattern 7'' as a mask, boron (B) ions, which are p-type impurities, are implanted to introduce the p-type impurity into the base formation region (FIG. 1(e)).

この場合、ホウ素イオンの濃度や量はベース領域形成に
最適の条件で選択することができる。
In this case, the concentration and amount of boron ions can be selected under optimal conditions for forming the base region.

(6)  レジストパターン7#を除去してからアニー
ルを行いnpn)ランジスタのベース領域15′を形成
する。ベース領域形成後層間絶縁膜として例えば酸化シ
リコン膜あるいはPSG(リンガラス)膜17をCVD
法などで着膜後平坦化する(第1図(f))。
(6) After removing the resist pattern 7#, annealing is performed to form the base region 15' of the npn transistor. After forming the base region, for example, a silicon oxide film or a PSG (phosphorus glass) film 17 is deposited as an interlayer insulating film by CVD.
After the film is deposited, it is flattened using a method or the like (FIG. 1(f)).

(7)最後に眉間絶縁膜17にコンタクトホールを開口
し、引出し電極18を例えばアルミニウムCAl)のス
パッタリングにより着膜・パターニングを行い回路を完
成させる(第1図(g))。
(7) Finally, a contact hole is opened in the glabella insulating film 17, and the extraction electrode 18 is deposited and patterned by sputtering, for example, aluminum (CAl), to complete the circuit (FIG. 1(g)).

なお本実施例ではゲート電極材料としてリンをドープし
た多結晶シリコンを用いた例について説明したが、本発
明はこれに限られるものではなく、同様の効果が得られ
れば例えばチタン(Ti)、タングステン(W)等の高
融点金属あるいはこれら金属とポリシリコンとの積層構
造またはこれら金属のシリサイドを用いることも出来る
Although this embodiment describes an example in which phosphorus-doped polycrystalline silicon is used as the gate electrode material, the present invention is not limited to this. For example, titanium (Ti) or tungsten may be used if the same effect can be obtained. It is also possible to use high melting point metals such as (W), a laminated structure of these metals and polysilicon, or silicides of these metals.

また、本実施例では不純物イオン注入後の熱処理(アニ
ール)を各不純物イオン注入工程の後でその都度行って
いるが、これは最終のイオン注入工程後に兼用して行う
ことも可能である。
Further, in this embodiment, heat treatment (annealing) after impurity ion implantation is performed after each impurity ion implantation step, but this can also be performed after the final ion implantation step.

さらに、本実施例はn型MO3)ランジスタ、p型MO
Sトランジスタ、npnバイポーラトランジスタを一つ
のシリコン基板中に形成した例について説明したが、本
発明はこれに限られるものではなく、Bi−MO3型半
導体装置であればいかなる組合わせも可能なことはもち
ろんである。
Furthermore, this embodiment uses an n-type MO3) transistor, a p-type MO3) transistor, and a p-type MO3) transistor.
Although an example in which an S transistor and an NPN bipolar transistor are formed in one silicon substrate has been described, the present invention is not limited to this, and of course any combination is possible as long as it is a Bi-MO3 type semiconductor device. It is.

〔発明の効果〕〔Effect of the invention〕

本発明によると通常のMO3型半導体装置の製造工程に
必要なフォトパターンにさらに一層だけ、即ち第1図(
d)(e)のベース形成領域15の作成に必要なフォト
レジストパターン7“を追加するだけでBi−MO3型
半導体装置を製造することができ、工程の増加および複
雑化を最少限にとどめることができた。
According to the present invention, only one layer is added to the photopattern required for the manufacturing process of a normal MO3 type semiconductor device, that is, as shown in FIG.
d) A Bi-MO3 type semiconductor device can be manufactured by simply adding the photoresist pattern 7'' necessary for creating the base forming region 15 in (e), and the increase and complexity of the process can be kept to a minimum. was completed.

またバイポーラ型トランジスタのベース領域形成工程を
エミッタ領域の形成よりも後にすることによって、ベー
ス領域形成後熱処理工程の低温化および短縮が図れる。
Furthermore, by performing the step of forming the base region of the bipolar transistor after forming the emitter region, it is possible to reduce the temperature and shorten the heat treatment step after forming the base region.

従ってその深さく第1図(g)のベース領域の厚みd)
をより浅くサブミクロンの単位のベース接合が実現でき
、動作速度の速い高性能なバイポーラ型トランジスタを
得ることができる。
Therefore, its depth is the thickness d) of the base region in Figure 1 (g).
This makes it possible to realize shallower base junctions on the order of submicrons, making it possible to obtain high-performance bipolar transistors with high operating speeds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の工程説明図、第2図は従来
例の工程説明図である。 1・・−・p型シリコン基板  2−n型ウェル領域3
−・フィールド酸化膜  4−・ゲート電極5−マスク
パターン   6−・ゲート酸化膜7.7′、7#−・
−・フォトレジスト8′、12′・−ソース、ドレイン
領域9′−コレクタ電極引出し形成領域 10・−・エミッタ形成領域 13−ベース電極引出し形成領域 15′−・ベース領域 17・・・層間絶縁膜    18−引出し電極特許出
願人  富士ゼロックス株式会社代理人弁理士   山
 谷 晧 榮 第1図(そ/)/) PMO8NM(MNPN)5>Vj、!トランンフ;ダ
       トランシシ(ダ第1図(ぞの2) 第2図(そf)/)
FIG. 1 is a process explanatory diagram of an embodiment of the present invention, and FIG. 2 is a process explanatory diagram of a conventional example. 1...p-type silicon substrate 2-n-type well region 3
-・Field oxide film 4-・Gate electrode 5-Mask pattern 6-・Gate oxide film 7.7', 7#-・
- Photoresist 8', 12' - Source, drain region 9' - Collector electrode extension formation region 10 - Emitter formation region 13 - Base electrode extension formation region 15' - Base region 17... Interlayer insulating film 18- Extraction electrode patent applicant Fuji Xerox Co., Ltd. Representative patent attorney Akira Yamatani Sakae 1 (So/)/) PMO8NM (MNPN) 5>Vj,! Tranff; da transition (da 1st figure (zono 2) 2nd figure (sof)/)

Claims (3)

【特許請求の範囲】[Claims] (1)バイポーラ型半導体装置とMOS型半導体装置と
を同一の半導体基板上に形成した半導体装置の製造方法
において、MOS型半導体装置のゲート電極となる電極
材料をパターニングしてこれをマスクとして、MOS型
半導体装置のソース、ドレイン領域形成工程と、バイポ
ーラ型半導体装置のエミッタ領域あるいはベース電極引
出し領域の形成工程を同時に行い、両工程終了後に前記
バイポーラ型半導体装置のベース領域を形成することを
特徴とする半導体装置の製造方法。
(1) In a method of manufacturing a semiconductor device in which a bipolar type semiconductor device and a MOS type semiconductor device are formed on the same semiconductor substrate, an electrode material that will become the gate electrode of the MOS type semiconductor device is patterned, and this is used as a mask to form the MOS type semiconductor device. A step of forming a source and drain region of a bipolar semiconductor device and a step of forming an emitter region or a base electrode lead-out region of a bipolar semiconductor device are performed simultaneously, and the base region of the bipolar semiconductor device is formed after both steps are completed. A method for manufacturing a semiconductor device.
(2)前記バイポーラ型半導体装置のベース領域を形成
する前に、エミッタ領域、ベース電極引出し領域を形成
する際に用いたパターニングしたゲート電極材料を除去
した後、ベース領域へのイオン注入を行うことを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
(2) Before forming the base region of the bipolar semiconductor device, ion implantation into the base region is performed after removing the patterned gate electrode material used in forming the emitter region and the base electrode extraction region. A method for manufacturing a semiconductor device according to claim 1, characterized in that:
(3)前記MOS型半導体装置として相補型半導体装置
を形成することを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。
(3) A method for manufacturing a semiconductor device according to claim 1, characterized in that a complementary semiconductor device is formed as the MOS semiconductor device.
JP1286287A 1987-01-22 1987-01-22 Manufacture of semiconductor device Pending JPS63181365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1286287A JPS63181365A (en) 1987-01-22 1987-01-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1286287A JPS63181365A (en) 1987-01-22 1987-01-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63181365A true JPS63181365A (en) 1988-07-26

Family

ID=11817222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1286287A Pending JPS63181365A (en) 1987-01-22 1987-01-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63181365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109379A (en) * 2009-12-25 2010-05-13 Mitsumi Electric Co Ltd Method of manufacturing cmos device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109379A (en) * 2009-12-25 2010-05-13 Mitsumi Electric Co Ltd Method of manufacturing cmos device

Similar Documents

Publication Publication Date Title
JPH0555484A (en) Manufacture of semiconductor device
JPH0348457A (en) Semiconductor device and manufacture thereof
JPH10214907A (en) Semiconductor device and its manufacture
US4983531A (en) Method of fabricating a single polysilicon bipolar transistor which is compatible with a method of fabricating CMOS transistors
JP2953425B2 (en) Method for manufacturing semiconductor device
JPS60163452A (en) Integrated circuit with bipolar device and field effect device and method of producing same
JP2940984B2 (en) Manufacturing method of BiCMOS type semiconductor integrated circuit
US6218253B1 (en) Method of manufacturing a bipolar transistor by using only two mask layers
JPS63181365A (en) Manufacture of semiconductor device
JPS6380560A (en) Method of manufacturing bipolar transistor and complementary field effect transistor simultaneously with the minimum number of masks
JP2575876B2 (en) Semiconductor device
JPS62181458A (en) Complementary type mos transistor and manufacture thereof
JPH0481336B2 (en)
JPH056961A (en) Manufacture of semiconductor device
JPH07161729A (en) Manufacture of semiconductor device
JP2936632B2 (en) Method for manufacturing BiCMOS integrated circuit
JP2610906B2 (en) Method for manufacturing BiMOS semiconductor circuit device
JP3309995B2 (en) Semiconductor device
JP2616809B2 (en) Semiconductor device
JP2541126B2 (en) Method for manufacturing BiCMOS integrated circuit
JPS62293665A (en) Manufacture of semiconductor integrated circuit device
JPS6286752A (en) Manufacture of semiconductor integrated circuit
JPS60211867A (en) Semiconductor device and manufacture thereof
JPH11251467A (en) Semiconductor device and manufacture thereof
JP2820284B2 (en) Method for manufacturing semiconductor device