JPS62181458A - Complementary type mos transistor and manufacture thereof - Google Patents

Complementary type mos transistor and manufacture thereof

Info

Publication number
JPS62181458A
JPS62181458A JP61022866A JP2286686A JPS62181458A JP S62181458 A JPS62181458 A JP S62181458A JP 61022866 A JP61022866 A JP 61022866A JP 2286686 A JP2286686 A JP 2286686A JP S62181458 A JPS62181458 A JP S62181458A
Authority
JP
Japan
Prior art keywords
conductivity type
mos transistor
region
substrate
element region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61022866A
Other languages
Japanese (ja)
Inventor
Shinji Taguchi
田口 信治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61022866A priority Critical patent/JPS62181458A/en
Publication of JPS62181458A publication Critical patent/JPS62181458A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Abstract

PURPOSE:To make it possible to absorb a current at a position as deep as a well, by providing a groove deeper than source and drain regions in a guard band forming part, diffusing impurities from the groove part, and providing a high concentration impurity region. CONSTITUTION:A part of a thin oxide film 24 on the surface of a substrate 21 is etched away. With oxide films 23 and 24 as masks, anisotropic etching is performed, and a groove part 43 having a width of 0.8mum and a depth of 1.5mum is formed. boron is diffused from polycrystalline silicon 25, in which boron is doped, into the silicon substrate 21 through the side surface and the bottom surface of the groove part 43. A P<+> high concentration impurity region 26 is formed at a deep position of the substrate surrounding the groove part 43. Thereafter, contact holes are provided in source and rain regions 28, 29, 31 and 32, and Al wirings 34 are formed. Thus, a large current, which causes latch-up, is absorbed from the guard band and the high concentration substrate. The abnormal conduction of the current in the semiconductor device can be blocked.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に係り、特にラッチアップ耐性全
有するCMOS半導体装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a CMOS semiconductor device having full latch-up resistance and a method for manufacturing the same.

〔従来技術〕[Prior art]

0MOS(相複型MOS)半導体装置において従来ラッ
チアップ対策が考えられている。従来例を第4図に示す
。この装置では、P型半導体基板】にN型ウェル領域2
が形成されている。基板表面には選択的に素子分離用絶
縁膜3が設けられ。
Conventionally, countermeasures against latch-up have been considered in OMOS (phase complex MOS) semiconductor devices. A conventional example is shown in FIG. In this device, an N-type well region 2 is formed on a P-type semiconductor substrate.
is formed. An element isolation insulating film 3 is selectively provided on the substrate surface.

この絶Ji@3に囲まれた基板1表面にトランジスタの
ドレイン・ソースとなるN+型の高濃度不純物領域4.
5とゲート酸化膜を介したゲート電極6とからなるNチ
ャネルMOS)ランジスタTrlが設けられている。一
方Nウェル2の表面にはトランジスタのソース・ドレイ
ンとなるP十型高濃度不純物領域7,8とゲート酸化膜
を介したゲート電極9とからなるPチャネルMOS)ラ
ンジスタTr2が設けられている。このT、1とTr2
との間には、ラッチアップを防止するために前記高濃度
不純物領域4,5,7.8と同程度に浅くP+型の高濃
度の不純物を含むガートバンド−0が設けられている。
On the surface of the substrate 1 surrounded by this impurity, an N+ type high concentration impurity region 4. which becomes the drain and source of the transistor.
An N-channel MOS transistor Trl is provided, which includes a gate electrode 6 and a gate electrode 6 with a gate oxide film interposed therebetween. On the other hand, on the surface of the N-well 2, a P-channel MOS transistor Tr2 is provided, which is made up of P-type high-concentration impurity regions 7 and 8, which serve as the source and drain of the transistor, and a gate electrode 9 with a gate oxide film interposed therebetween. This T, 1 and Tr2
In order to prevent latch-up, a guard band -0 containing a P+ type impurity at a high concentration and having a shallow depth similar to that of the high concentration impurity regions 4, 5, and 7.8 is provided between the two.

このガートバンド−OはTrlのソース領域5と同電位
Vssになるよう接続されている。
This guard band -O is connected to the source region 5 of Trl so as to have the same potential Vss.

ラッチアップとは以上のように構成されたCMOS半導
体装置において、CMOS構造上必然的T、 1 、 
T、 2の各々ソース5,7とP型基板1とNウェル2
とでPNPNのサイリスタを形成し、とのCMOS半導
体装置が動作するとき、雑音などのトリガ入力によフ、
各所に生じ&PNP、NPNの寄生バイポーラトランジ
スタが閉ループを形成し電源VDDからアースに向い持
続的に大電流が流れ、電glLを切るまで流れ続ける現
象をいうが、従来技術では、ガートバンド10t−設け
てNウェル2と継領域5との間に流れる電流をガートバ
ンド10から吸い出し、継領域50周辺の電位を大電流
が流れ始める電圧以下におさえている。
In a CMOS semiconductor device configured as described above, latch-up occurs when T, 1,
T, 2 sources 5, 7, P type substrate 1 and N well 2, respectively
A PNPN thyristor is formed with and, and when a CMOS semiconductor device with and is operated, there is no damage due to trigger input such as noise.
This is a phenomenon in which parasitic bipolar transistors such as &PNP and NPN occur in various places and form a closed loop, and a large current continuously flows from the power supply VDD to the ground, and continues to flow until the power supply is turned off. The current flowing between the N-well 2 and the joint region 5 is sucked out from the guard band 10, and the potential around the joint region 50 is kept below the voltage at which a large current begins to flow.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来装置のガートバンドは’I’l、T、2の各々ソ−
ス・ドレイン領域と同程度の深さで構成され。
The guard bands of the conventional device are 'I'l, T, and 2.
The depth of the drain region is approximately the same as that of the drain region.

ウェル領域に比較して大変浅い、ラッチアップを起こす
大電流はウェル底部の深い位置において流れるので、従
来のような浅いガートバンドではラッチアップ耐性向上
の十分な効果は得られない。
Since the large current that causes latch-up flows deep at the bottom of the well, which is very shallow compared to the well region, a conventional shallow guard band cannot sufficiently improve latch-up resistance.

本発明では、ウェルと同程度深い位置においても電流を
吸出すことのできるガートバンドを形成することを目的
とする。
The present invention aims to form a guard band that can draw out current even at a position as deep as the well.

〔問題を解決するための手段〕[Means to solve the problem]

本発明では、CMOSi1’%l成するPチャンネル及
びNチャンネルMOS)ランジスタのあいだにそれらの
ソース・ドレイン領域よシも深い位置に基板と同型で高
濃度のガートバンドを以下に述べる方法によシ形成する
ことにより、従来の問題点を解決した。
In the present invention, a highly doped guard band of the same type as the substrate is formed between the P-channel and N-channel MOS transistors (1'% CMOS Si transistors) deep in their source/drain regions by the method described below. By forming this, the problems of the conventional method were solved.

第1の方法としてはガートバンド形成部K / −ス・
ドレイン領域よや深く溝部を設け、この溝部から不純物
を拡散し、高濃度不純物領域を設けた。
The first method is to use the guard band forming part K/-S.
A groove was provided slightly deeper than the drain region, and impurities were diffused from this groove to provide a high concentration impurity region.

第2の方法としてはガートバンド形成部に加速電圧を変
化させたイオン注入を多段にわたって行ない、熱拡散に
よシンース・ドレイン領域よシ深い位置ま゛でにも高濃
度の不純物領域を設けた。
In the second method, ion implantation with varying acceleration voltages was carried out in multiple stages into the guard band formation region, and a highly concentrated impurity region was formed even deeper than the thin drain region by thermal diffusion.

〔作 用〕[For production]

以上のように構成したCMOS半導体装置ではウェルか
ら基板表面に形成されたMOSトランジスタの高濃度不
純物領域へ大電流が流れ出してもMOSトランジスタの
高濃度不純物領域より深く。
In the CMOS semiconductor device configured as described above, even if a large current flows from the well to the high concentration impurity region of the MOS transistor formed on the substrate surface, the flow is deeper than the high concentration impurity region of the MOS transistor.

基板と同型で、高濃度に構成されたガートバンドがこの
大電流を吸出し、MOSトランジスタの高濃度不純物領
域付近の電圧はラッチアップを起こすまでに至らない。
The guard band, which is of the same type as the substrate and has a high concentration, absorbs this large current, and the voltage near the high concentration impurity region of the MOS transistor does not reach the level where latch-up occurs.

〔実施例〕〔Example〕

本発明の一実施例vi−第1図a−gに示す製造方法全
併記して示す。
Embodiment vi of the present invention - All of the manufacturing methods shown in FIGS. 1a-g are shown together.

P型シリコン基板21に熱酸化11!l形成しレジスh
t塗布後そのパターニングを行ない、イオン注入法等で
リンなどの不純物を導入し、レジスト除去後熱拡散して
Nウェル22を形成する。(第1図aに図示)次に、膜
厚500Aの酸化膜41゜膜厚2500Aの窒化膜42
を順次CVD法によフ堆fRI、、、素子領域以外の部
分全選択除去する。(第1図すに図示)つづいて、第1
図Cに示すように1000℃で熱酸化を行ない窒化膜4
2t−耐酸化マスクとじて素子分離酸化膜23を厚さ7
000Aに形成し、前記酸化膜41及び窒化膜42全エ
ツチング除去する。つづいて、再度1000℃で熱酸化
を行ない】000^の酸化膜24を形成し、溝部43を
形成する予定の基板21表面上の薄い酸化IL@ 24
の一部をエツチング除去し、酸化膜23゜24t−マス
クとして異方性エツチング(几IE)全行ない幅0.8
μm、深さ1.5μmの溝部43t−形成する。(@1
図dに図示)つづいてポロンを含む高濃度の多結晶シリ
コン44を600OA堆積し、S部43内部にも充分堆
積する。(第1図e図示)つづいて第1図fに示すよう
に溝部43の内部の多結晶シリコン25のみ残してRI
E法でエツチング除去し、1000℃のN2雰囲気中で
10分間熱処理を行なう。このボロン全ドープされた多
結晶シリコン25から溝部43の側面と底面を通ワてシ
リコン基板21ヘボロンが拡散され溝部43を囲む基板
の深い位置にP+の高濃度不純物領域26が形成される
。つづいて全面に多結晶シリコン層を堆積し1選択的エ
ツチングによシゲート電極27全形成し、このゲート電
極27をマスクにして、ヒ素などの不純物をイオン注入
し継型高濃度のドレイン拳ソース領域28,291−形
成し。
Thermal oxidation 11 on P-type silicon substrate 21! l form resist h
After T coating, patterning is performed, impurities such as phosphorus are introduced by ion implantation, etc., and after the resist is removed, thermal diffusion is performed to form the N well 22. (Illustrated in FIG. 1a) Next, an oxide film 41° with a film thickness of 500A and a nitride film 42 with a film thickness of 2500A
All portions other than the element region are selectively removed by sequential CVD method. (Illustrated in Figure 1) Next, the first
As shown in Figure C, the nitride film 4 is thermally oxidized at 1000°C.
2t - The element isolation oxide film 23 is made to a thickness of 7 by using an oxidation-resistant mask.
000A, and the oxide film 41 and nitride film 42 are completely etched away. Subsequently, thermal oxidation is performed again at 1000°C to form an oxide film 24 of 000^, and a thin oxide IL@24 is formed on the surface of the substrate 21 where the groove 43 is to be formed.
A part of the oxide film was removed by etching, and anisotropic etching (IE) was performed as a 23°24t oxide film with a width of 0.8
A groove 43t having a depth of 1.5 μm and a depth of 1.5 μm is formed. (@1
(Illustrated in FIG. d) Subsequently, 600 OA of polycrystalline silicon 44 containing poron is deposited to a thickness of 600 OA, and is sufficiently deposited inside the S portion 43. (Illustrated in FIG. 1 e) Next, as shown in FIG.
Etching is performed using the E method, and heat treatment is performed for 10 minutes in a N2 atmosphere at 1000°C. Boron is diffused into the silicon substrate 21 from this polycrystalline silicon 25 fully doped with boron through the side and bottom surfaces of the trench 43 to form a P+ high concentration impurity region 26 at a deep position in the substrate surrounding the trench 43. Next, a polycrystalline silicon layer is deposited on the entire surface, and a silicate gate electrode 27 is entirely formed by selective etching. Using this gate electrode 27 as a mask, ions of impurities such as arsenic are implanted, and a high concentration drain source region is formed. 28,291-formation.

N型MOS)ランジスタTr1 を形成する5次にNウ
ェル22上にも同様に多結晶シリコンからなるゲート電
極30t−形成し、ホウ素などの不純物をイオン注入し
、戸型高濃度のソース・ドレイン領域31.32を形成
し、P型MOS)ランジスタTr2 を形成する。(第
1図gに図示)次に全面にBPSGt−含むCVDシリ
コン酸化膜ヲ1.1μm堆積し、ガートバンド24,2
5.ゲート電極27.30.Trl及びTr2のソース
Φドレイン領域28,29,31.32にコンタクトホ
ールを設け、At配a34’に形成する。(第1図りに
図示) 以上のような工程で製造されたCMOS半導体装置は、
各々のソース・ドレイ/領域28,29゜31.32よ
りも深いガートバンド24.25が得られ、ウェル22
の底部から流れ出す電流分までもこのガートバンド24
.25から吸出することかでき、ラッチアップ耐性が向
上する。また溝部43は異方性エツチングによシ形成さ
れ、狭い幅で深く食刻できることから集積度向上には大
きく影響しない。この製造方法においては、素子分離用
酸化膜23t−形成した後、溝部43を形成しているが
、これは、溝部43を形成した後酸化を行なうと溝部4
3周辺にストレスがかかり欠陥が生じることがありこれ
金防ぐためである。しかしながらストレスの影響の小さ
い場合や、シリコン基板への影響の少ない5EPOX法
や熱処理全行なわないBOX法などで素子分離を行なう
場合は。
A gate electrode 30t made of polycrystalline silicon is similarly formed on the quintic N well 22 forming the transistor Tr1 (N-type MOS) transistor Tr1, and impurities such as boron are ion-implanted to form a door-shaped heavily doped source/drain region. 31 and 32 are formed, and a P-type MOS) transistor Tr2 is formed. (Illustrated in FIG. 1g) Next, a 1.1 μm thick CVD silicon oxide film containing BPSGt was deposited on the entire surface, and the guard bands 24, 2
5. Gate electrode 27.30. Contact holes are provided in the source Φ drain regions 28, 29, 31, and 32 of Trl and Tr2, and are formed in At interconnections a34'. (Illustrated in the first diagram) The CMOS semiconductor device manufactured through the above steps is
A girt band 24.25 deeper than each source drain/region 28, 29° 31.32 is obtained and the well 22
Even the current flowing from the bottom of the guard band 24
.. 25, which improves latch-up resistance. Further, the groove portion 43 is formed by anisotropic etching and can be etched deeply with a narrow width, so that it does not greatly affect the improvement in the degree of integration. In this manufacturing method, the trench 43 is formed after the element isolation oxide film 23t is formed.
3. This is to prevent stress from being applied to the surrounding area, which can cause defects. However, in cases where the influence of stress is small, or when element isolation is performed using the 5EPOX method, which has little effect on the silicon substrate, or the BOX method, which does not perform any heat treatment.

素子分離する前に溝部43を形成することができる。The groove portion 43 can be formed before element isolation.

次に他の実施例を第2図aからCに示す。P型シリコン
基板21にN型ウェル22と素子分離用酸化膜231!
−形成する工程は第1の実施例と同様である。(@1図
a〜C参照)これに続き、第2図aに示すように再度酸
化膜24を形成し、ガートバンド形成予定部45にボロ
ンなどの不純物を加速電圧全変化させながらTrl及び
Tr2のソース・ドレイン領域より深い位置までにも多
段にイオン注入する。つづいて高温処理して熱拡散全行
ない深い位置まで高濃度のガードリング45を得る。
Next, other embodiments are shown in FIGS. 2a to 2c. P-type silicon substrate 21, N-type well 22 and element isolation oxide film 231!
-The forming process is the same as in the first embodiment. (See @1 Figures a to C) Subsequently, as shown in Figure 2 a, the oxide film 24 is formed again, and impurities such as boron are added to the guard band forming portion 45 while changing the acceleration voltage to Trl and Tr2. Ion implantation is performed in multiple stages, even to positions deeper than the source/drain regions. Subsequently, high-temperature treatment is performed to fully perform thermal diffusion to obtain a guard ring 45 with a high concentration to a deep position.

(第2図すに図示)次に第1図f1gに示した第1の実
施例の工程と同様にN型MOS)ランジスタTr]とP
型MOSトランジスタTr2とを形成し。
(Illustrated in FIG. 2) Next, as in the process of the first embodiment shown in FIG.
MOS transistor Tr2 is formed.

第2図Cに示すようなTI、Tr2のソース・ドレイン
領域28,29,31,32よシ深く、底部付近まで高
濃度のガードリンク45f:持つCMOS半導体装置が
形成される。
As shown in FIG. 2C, a CMOS semiconductor device having a highly doped guard link 45f deeper than the source/drain regions 28, 29, 31, and 32 of TI and Tr2 to near the bottom is formed.

また他の実施例として第3図に示すように第1図、第2
図に示した実施例において10  /−以上のシリコン
基板51に低濃度(〜1015/c!i)のシリコン単
結晶52を成長させたエピタキシャル基板を使用し、高
濃度部51をガートバンド26と同電位になるよう接続
した。これによシラッチアップを起こす大電流をガート
バンド26と高濃度の基板51から吸い出すことができ
るのでラッチアップ耐性が更に向上する。
In addition, as another example, as shown in FIG.
In the embodiment shown in the figure, an epitaxial substrate in which a silicon single crystal 52 with a low concentration (~1015/c!i) is grown on a silicon substrate 51 with a thickness of 10/- or more is used, and the high concentration portion 51 is formed with a guard band 26. They were connected to have the same potential. This allows the large current that causes latch-up to be sucked out from the guard band 26 and the highly concentrated substrate 51, thereby further improving latch-up resistance.

本実施例では、基板側にガートバンドを設ける場合につ
いて説明したが、ウェル側に設けることもできる。この
場合はガートバンドに注入する不純物の導電型は、ウェ
ルの導電型と同型にするが他の条件等は同様である。
In this embodiment, the case where the guard band is provided on the substrate side has been described, but it can also be provided on the well side. In this case, the conductivity type of the impurity implanted into the guard band is the same as that of the well, but other conditions are the same.

本実施例においては%P型基板を用いて説明したが、N
型基板を用いたPウェル領域を備える半導体装置の場合
も同様の効果が得られる。
In this example, a %P-type substrate was used, but N
A similar effect can be obtained in the case of a semiconductor device including a P-well region using a molded substrate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ガートバンド及び
高濃度基板からラッチアップを起こす大電流全吸出し、
半導体装置内の電流の異常な流れt?措止できるのでラ
ッチアップ耐性が大幅に向上し、エピタキシャル基板を
用いない場合でもラッチアップを起こす最少トリガ電流
を従来装置の10〜100倍まで大きくすることができ
た。
As explained above, according to the present invention, the large current that causes latch-up from the guard band and the high-concentration substrate can be fully extracted.
Abnormal flow of current in the semiconductor device t? Since the latch-up resistance can be significantly improved, the minimum trigger current that causes latch-up can be increased by 10 to 100 times that of the conventional device even when an epitaxial substrate is not used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造方法及び半導体装置の
溝数図、第2図、第3図は他の実施例。 23・・・素子分離用酸化膜  24・・・溝部多結晶
シリコン25.45・・・高1度、不鈍物領域のガート
バンド同    人i別共人 j 第1図 ?526 第2図 nl   〆55         丑2第 3 図 /U 薗 4I21
FIG. 1 shows a manufacturing method and the number of grooves in a semiconductor device according to one embodiment of the present invention, and FIGS. 2 and 3 show other embodiments. 23... Oxide film for element isolation 24... Groove polycrystalline silicon 25. 45... Height 1 degree, guard band in the inert region Doujin i Separate coujin j Figure 1? 526 Figure 2 nl 〆55 Ushi 2 Figure 3/U Sono 4I21

Claims (1)

【特許請求の範囲】 1)一導電型半導体基板と、この半導体基板の一部に設
けられた他導電型の半導体ウェル領域と、前記半導体基
板表面に設けられ、他導電型のソース・ドレイン領域を
有する第1MOSトランジスタと、前記半導体ウェル領
域表面に設けられ、一導電型のソース・ドレイン領域を
有する第2MOSトランジスタと、前記第1MOSトラ
ンジスタと前記第2MOSトランジスタとの間に設けら
れ、前記第1及び第2MOSトランジスタのソース・ド
レイン領域よりも深く、高濃度に形成され、前記第1ま
たは第2MOSトランジスタのソースと同電位に接続さ
れた一導電型または他導電型不純物領域とを有すること
を特徴とする相補型MOSトランジスタ。 2)前記第1MOSトランジスタと第2MOSトランジ
スタとの間に設けられた一導電型高濃度不純物領域は前
記半導体ウェル領域と同程度に深く、そのドープ量が1
0^1^8/cm以上であることを特徴とする特許請求
の範囲第1項記載の相補型MOSトランジスタ。 3)一導電型半導体基板の一部に他導電型不純物を導入
し、低濃度の他導電型半導体ウェル領域を形成する工程
と、この基板表面に選択的に素子分離絶縁膜を形成し、
前記一導電型半導体基板と前記他導電型半導体領域のそ
れぞれに第1素子領域と第2素子領域とを定める工程と
、前記第1素子領域と第2素子領域の間に溝部を形成す
る工程と、この溝部内部に一導電型または他導電型高濃
度不純部を含む多結晶シリコン堆積する工程と、熱処理
により前記溝部から拡散を行ないこの溝の周囲に一導電
型または他導電型の高濃度不純物領域を形成する工程と
、前記第1素子領域及び第2素子領域にそれぞれ反対導
電型不純物を導入し、他導電チャネル型MOSトランジ
スタと一導電チャネル型MOSトランジスタを形成する
工程とからなることを特徴とする相補型MOSトランジ
スタの製造方法。 4)一導電型半導体基板の一部に他導電型不純物を導入
し、低濃度の他導電型半導体領域を形成する工程と、こ
の基板表面に選択的に素子分離絶縁膜を形成し、前記一
導電型半導体基板と前記他導電型半導体領域のそれぞれ
に第1素子領域と第2素子領域とを定める工程と、前記
第1素子領域と第2素子領域の間に一導電型または他導
電型不純物を加速電圧を変化させて多段にイオン注入を
行ない、熱拡散により一導電型または他導電型の高濃度
不純物領域を形成する工程と、前記第1素子領域及び第
2素子領域にそれぞれ反対導電型不純物を導入し、他導
電チャネル型MOSトランジスタと一導電チャネル型M
OSトランジスタを形成する工程とからなることを特徴
とする相補型MOSトランジスタの製造方法。 5)前記一導電型基板は高濃度基板に低濃度の単結晶を
エピタキシャル成長させて形成することを特徴とする特
許請求の範囲第3、第4項記載の相補型MOSトランジ
スタの製造方法。
[Claims] 1) A semiconductor substrate of one conductivity type, a semiconductor well region of another conductivity type provided in a part of this semiconductor substrate, and source/drain regions of another conductivity type provided on the surface of the semiconductor substrate. a second MOS transistor provided on the surface of the semiconductor well region and having source/drain regions of one conductivity type; and a second MOS transistor provided between the first MOS transistor and the second MOS transistor, and an impurity region of one conductivity type or the other conductivity type formed deeper and more highly concentrated than the source/drain region of the second MOS transistor and connected to the same potential as the source of the first or second MOS transistor. Complementary MOS transistor. 2) The high concentration impurity region of one conductivity type provided between the first MOS transistor and the second MOS transistor is as deep as the semiconductor well region, and has a doping amount of 1.
2. The complementary MOS transistor according to claim 1, characterized in that it is 0^1^8/cm or more. 3) A step of introducing an impurity of the other conductivity type into a part of the semiconductor substrate of one conductivity type to form a low concentration semiconductor well region of the other conductivity type, and selectively forming an element isolation insulating film on the surface of the substrate,
defining a first element region and a second element region in each of the one conductivity type semiconductor substrate and the other conductivity type semiconductor region; and forming a groove between the first element region and the second element region. , a process of depositing polycrystalline silicon containing a high concentration impurity of one conductivity type or the other conductivity type inside the groove, and diffusion from the groove part by heat treatment to form a high concentration impurity of one conductivity type or the other conductivity type around the groove. and a step of introducing impurities of opposite conductivity type into the first element region and the second element region, respectively, to form a different conductivity channel type MOS transistor and a single conductivity channel type MOS transistor. A method for manufacturing a complementary MOS transistor. 4) A step of introducing an impurity of the other conductivity type into a part of the semiconductor substrate of one conductivity type to form a semiconductor region of the other conductivity type at a low concentration, and selectively forming an element isolation insulating film on the surface of this substrate. a step of defining a first element region and a second element region in each of the conductivity type semiconductor substrate and the other conductivity type semiconductor region; and impurities of one conductivity type or the other conductivity type between the first element region and the second element region. A process of performing ion implantation in multiple stages by changing the acceleration voltage to form a highly concentrated impurity region of one conductivity type or the other conductivity type by thermal diffusion, and implanting an opposite conductivity type in the first element region and the second element region, respectively. By introducing impurities, a multi-conducting channel type MOS transistor and a single-conducting channel type MOS transistor
1. A method for manufacturing a complementary MOS transistor, comprising the steps of forming an OS transistor. 5) The method of manufacturing a complementary MOS transistor according to claims 3 and 4, wherein the one conductivity type substrate is formed by epitaxially growing a low concentration single crystal on a high concentration substrate.
JP61022866A 1986-02-06 1986-02-06 Complementary type mos transistor and manufacture thereof Pending JPS62181458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022866A JPS62181458A (en) 1986-02-06 1986-02-06 Complementary type mos transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022866A JPS62181458A (en) 1986-02-06 1986-02-06 Complementary type mos transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS62181458A true JPS62181458A (en) 1987-08-08

Family

ID=12094622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022866A Pending JPS62181458A (en) 1986-02-06 1986-02-06 Complementary type mos transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62181458A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440550U (en) * 1990-08-05 1992-04-07
US5468576A (en) * 1991-03-29 1995-11-21 Kabushiki Kaisha Toshiba Method for manufacturing exposure mask
JP2004282022A (en) * 2003-03-12 2004-10-07 Hynix Semiconductor Inc Well structure of high voltage device
JP2008010756A (en) * 2006-06-30 2008-01-17 Fujitsu Ltd Semiconductor device, and its manufacturing method
JP2009147378A (en) * 2009-03-24 2009-07-02 Mitsubishi Electric Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440550U (en) * 1990-08-05 1992-04-07
US5468576A (en) * 1991-03-29 1995-11-21 Kabushiki Kaisha Toshiba Method for manufacturing exposure mask
JP2004282022A (en) * 2003-03-12 2004-10-07 Hynix Semiconductor Inc Well structure of high voltage device
JP2008010756A (en) * 2006-06-30 2008-01-17 Fujitsu Ltd Semiconductor device, and its manufacturing method
JP2009147378A (en) * 2009-03-24 2009-07-02 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JPH0315346B2 (en)
JPH01101662A (en) Manufacture of cmos device
JPH0193159A (en) Manufacture of bicmos element
JPH02219262A (en) Semiconductor device
JPH0348458A (en) Bi-cmos integrated circuit and manufacture thereof
JPS62181458A (en) Complementary type mos transistor and manufacture thereof
KR100232249B1 (en) Method for manufacturing bimos device with improvement of high frequency characteristics of bipolar transistor
JPH04179159A (en) Manufacture of semiconductor device
KR100306504B1 (en) Low cost deep sub-micron cmos process
JP2575876B2 (en) Semiconductor device
JPH03262154A (en) Manufacture of bicmos type semiconductor integrated circuit
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0481336B2 (en)
JPS60211867A (en) Semiconductor device and manufacture thereof
JPS63244666A (en) Manufacture of semiconductor device
JPH04372164A (en) Manufacture of bicmos semiconductor device
JPS6376470A (en) Manufacture of semiconductor device
JPS61139057A (en) Manufacture of semiconductor integrated circuit device
JPH06177333A (en) Manufacture of bi-cmos semiconductor device
JPH11204668A (en) Manufacture of semiconductor device
JPH01157565A (en) Manufacture of bi-mos integrated circuit device
JPH0376154A (en) Manufacture of semiconductor device
JPH06125044A (en) Manufacture of semiconductor device
KR20020034561A (en) Semiconductor device and fabricating method thereof
JPS59215765A (en) Complementary type semiconductor device and manufacture thereof